Created
October 16, 2024 15:12
-
-
Save 110CodingP/fb791830a025e1f366424e0df217ea51 to your computer and use it in GitHub Desktop.
dataset1_knn_gaussian.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"authorship_tag": "ABX9TyPAAz1LnYVeWXT+tSQXLxy6", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/110CodingP/fb791830a025e1f366424e0df217ea51/dataset1_knn_gaussian.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"id": "RQ4kD8nee0Nw" | |
}, | |
"outputs": [], | |
"source": [ | |
"! pip install -q kaggle" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from google.colab import files\n", | |
"\n", | |
"files.upload()" | |
], | |
"metadata": { | |
"id": "0BFTikjYf-lY", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 92 | |
}, | |
"outputId": "9b4ead35-9a67-4fe2-ecb4-ee670805ceb8" | |
}, | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <input type=\"file\" id=\"files-7765420d-275f-4a85-aa3f-ba7227ecc9a2\" name=\"files[]\" multiple disabled\n", | |
" style=\"border:none\" />\n", | |
" <output id=\"result-7765420d-275f-4a85-aa3f-ba7227ecc9a2\">\n", | |
" Upload widget is only available when the cell has been executed in the\n", | |
" current browser session. Please rerun this cell to enable.\n", | |
" </output>\n", | |
" <script>// Copyright 2017 Google LLC\n", | |
"//\n", | |
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n", | |
"// you may not use this file except in compliance with the License.\n", | |
"// You may obtain a copy of the License at\n", | |
"//\n", | |
"// http://www.apache.org/licenses/LICENSE-2.0\n", | |
"//\n", | |
"// Unless required by applicable law or agreed to in writing, software\n", | |
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n", | |
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", | |
"// See the License for the specific language governing permissions and\n", | |
"// limitations under the License.\n", | |
"\n", | |
"/**\n", | |
" * @fileoverview Helpers for google.colab Python module.\n", | |
" */\n", | |
"(function(scope) {\n", | |
"function span(text, styleAttributes = {}) {\n", | |
" const element = document.createElement('span');\n", | |
" element.textContent = text;\n", | |
" for (const key of Object.keys(styleAttributes)) {\n", | |
" element.style[key] = styleAttributes[key];\n", | |
" }\n", | |
" return element;\n", | |
"}\n", | |
"\n", | |
"// Max number of bytes which will be uploaded at a time.\n", | |
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n", | |
"\n", | |
"function _uploadFiles(inputId, outputId) {\n", | |
" const steps = uploadFilesStep(inputId, outputId);\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" // Cache steps on the outputElement to make it available for the next call\n", | |
" // to uploadFilesContinue from Python.\n", | |
" outputElement.steps = steps;\n", | |
"\n", | |
" return _uploadFilesContinue(outputId);\n", | |
"}\n", | |
"\n", | |
"// This is roughly an async generator (not supported in the browser yet),\n", | |
"// where there are multiple asynchronous steps and the Python side is going\n", | |
"// to poll for completion of each step.\n", | |
"// This uses a Promise to block the python side on completion of each step,\n", | |
"// then passes the result of the previous step as the input to the next step.\n", | |
"function _uploadFilesContinue(outputId) {\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" const steps = outputElement.steps;\n", | |
"\n", | |
" const next = steps.next(outputElement.lastPromiseValue);\n", | |
" return Promise.resolve(next.value.promise).then((value) => {\n", | |
" // Cache the last promise value to make it available to the next\n", | |
" // step of the generator.\n", | |
" outputElement.lastPromiseValue = value;\n", | |
" return next.value.response;\n", | |
" });\n", | |
"}\n", | |
"\n", | |
"/**\n", | |
" * Generator function which is called between each async step of the upload\n", | |
" * process.\n", | |
" * @param {string} inputId Element ID of the input file picker element.\n", | |
" * @param {string} outputId Element ID of the output display.\n", | |
" * @return {!Iterable<!Object>} Iterable of next steps.\n", | |
" */\n", | |
"function* uploadFilesStep(inputId, outputId) {\n", | |
" const inputElement = document.getElementById(inputId);\n", | |
" inputElement.disabled = false;\n", | |
"\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" outputElement.innerHTML = '';\n", | |
"\n", | |
" const pickedPromise = new Promise((resolve) => {\n", | |
" inputElement.addEventListener('change', (e) => {\n", | |
" resolve(e.target.files);\n", | |
" });\n", | |
" });\n", | |
"\n", | |
" const cancel = document.createElement('button');\n", | |
" inputElement.parentElement.appendChild(cancel);\n", | |
" cancel.textContent = 'Cancel upload';\n", | |
" const cancelPromise = new Promise((resolve) => {\n", | |
" cancel.onclick = () => {\n", | |
" resolve(null);\n", | |
" };\n", | |
" });\n", | |
"\n", | |
" // Wait for the user to pick the files.\n", | |
" const files = yield {\n", | |
" promise: Promise.race([pickedPromise, cancelPromise]),\n", | |
" response: {\n", | |
" action: 'starting',\n", | |
" }\n", | |
" };\n", | |
"\n", | |
" cancel.remove();\n", | |
"\n", | |
" // Disable the input element since further picks are not allowed.\n", | |
" inputElement.disabled = true;\n", | |
"\n", | |
" if (!files) {\n", | |
" return {\n", | |
" response: {\n", | |
" action: 'complete',\n", | |
" }\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" for (const file of files) {\n", | |
" const li = document.createElement('li');\n", | |
" li.append(span(file.name, {fontWeight: 'bold'}));\n", | |
" li.append(span(\n", | |
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n", | |
" `last modified: ${\n", | |
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n", | |
" 'n/a'} - `));\n", | |
" const percent = span('0% done');\n", | |
" li.appendChild(percent);\n", | |
"\n", | |
" outputElement.appendChild(li);\n", | |
"\n", | |
" const fileDataPromise = new Promise((resolve) => {\n", | |
" const reader = new FileReader();\n", | |
" reader.onload = (e) => {\n", | |
" resolve(e.target.result);\n", | |
" };\n", | |
" reader.readAsArrayBuffer(file);\n", | |
" });\n", | |
" // Wait for the data to be ready.\n", | |
" let fileData = yield {\n", | |
" promise: fileDataPromise,\n", | |
" response: {\n", | |
" action: 'continue',\n", | |
" }\n", | |
" };\n", | |
"\n", | |
" // Use a chunked sending to avoid message size limits. See b/62115660.\n", | |
" let position = 0;\n", | |
" do {\n", | |
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n", | |
" const chunk = new Uint8Array(fileData, position, length);\n", | |
" position += length;\n", | |
"\n", | |
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n", | |
" yield {\n", | |
" response: {\n", | |
" action: 'append',\n", | |
" file: file.name,\n", | |
" data: base64,\n", | |
" },\n", | |
" };\n", | |
"\n", | |
" let percentDone = fileData.byteLength === 0 ?\n", | |
" 100 :\n", | |
" Math.round((position / fileData.byteLength) * 100);\n", | |
" percent.textContent = `${percentDone}% done`;\n", | |
"\n", | |
" } while (position < fileData.byteLength);\n", | |
" }\n", | |
"\n", | |
" // All done.\n", | |
" yield {\n", | |
" response: {\n", | |
" action: 'complete',\n", | |
" }\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"scope.google = scope.google || {};\n", | |
"scope.google.colab = scope.google.colab || {};\n", | |
"scope.google.colab._files = {\n", | |
" _uploadFiles,\n", | |
" _uploadFilesContinue,\n", | |
"};\n", | |
"})(self);\n", | |
"</script> " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Saving kaggle.json to kaggle.json\n" | |
] | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"{'kaggle.json': b'{\"username\":\"codingp110\",\"key\":\"81f210dea3939d586d081537b5076f96\"}'}" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 2 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"! mkdir ~/.kaggle\n", | |
"\n", | |
"! cp kaggle.json ~/.kaggle/" | |
], | |
"metadata": { | |
"id": "yMXfjphbgGxV" | |
}, | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"! chmod 600 ~/.kaggle/kaggle.json" | |
], | |
"metadata": { | |
"id": "l9PCFxiYgJBB" | |
}, | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"! kaggle datasets download codingp110/emoticons" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "qzCwlx1wgLn6", | |
"outputId": "5e63512a-29b6-469e-e313-494cc18dc7b0" | |
}, | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Dataset URL: https://www.kaggle.com/datasets/codingp110/emoticons\n", | |
"License(s): unknown\n", | |
"Downloading emoticons.zip to /content\n", | |
"100% 133k/133k [00:00<00:00, 415kB/s]\n", | |
"100% 133k/133k [00:00<00:00, 415kB/s]\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"! unzip /content/emoticons.zip" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "g0T-GLsLgu5b", | |
"outputId": "818d8859-a103-42dd-d7a1-df65e21150fd" | |
}, | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Archive: /content/emoticons.zip\n", | |
" inflating: test_emoticon.csv \n", | |
" inflating: train_emoticon.csv \n", | |
" inflating: valid_emoticon.csv \n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"! pip install catboost" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Uz4ds1crg0Ln", | |
"outputId": "03830e62-474a-4879-a252-88bacece6f63" | |
}, | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Collecting catboost\n", | |
" Downloading catboost-1.2.7-cp310-cp310-manylinux2014_x86_64.whl.metadata (1.2 kB)\n", | |
"Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (from catboost) (0.20.3)\n", | |
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from catboost) (3.7.1)\n", | |
"Requirement already satisfied: numpy<2.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from catboost) (1.26.4)\n", | |
"Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-packages (from catboost) (2.2.2)\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from catboost) (1.13.1)\n", | |
"Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from catboost) (5.24.1)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from catboost) (1.16.0)\n", | |
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2.8.2)\n", | |
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2024.2)\n", | |
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2024.2)\n", | |
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.3.0)\n", | |
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (0.12.1)\n", | |
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (4.54.1)\n", | |
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.4.7)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (24.1)\n", | |
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (10.4.0)\n", | |
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (3.1.4)\n", | |
"Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->catboost) (9.0.0)\n", | |
"Downloading catboost-1.2.7-cp310-cp310-manylinux2014_x86_64.whl (98.7 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.7/98.7 MB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hInstalling collected packages: catboost\n", | |
"Successfully installed catboost-1.2.7\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"from sklearn.linear_model import LogisticRegression\n", | |
"from sklearn.ensemble import RandomForestClassifier\n", | |
"from sklearn.model_selection import train_test_split, GridSearchCV\n", | |
"from sklearn.preprocessing import (StandardScaler, OneHotEncoder)\n", | |
"from sklearn.metrics import accuracy_score\n", | |
"import xgboost as xgb\n", | |
"from catboost import CatBoostClassifier\n", | |
"from lightgbm import LGBMClassifier\n", | |
"from sklearn.tree import DecisionTreeClassifier\n", | |
"from sklearn.ensemble import (ExtraTreesClassifier,\n", | |
" GradientBoostingClassifier, AdaBoostClassifier)\n", | |
"from sklearn.neighbors import (KNeighborsClassifier, RadiusNeighborsClassifier)\n", | |
"from sklearn.mixture import GaussianMixture\n", | |
"from sklearn.decomposition import PCA" | |
], | |
"metadata": { | |
"id": "701sqYtkg7cP" | |
}, | |
"execution_count": 40, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"train_emoticon_df = pd.read_csv('train_emoticon.csv')\n", | |
"train_Y = train_emoticon_df['label']\n", | |
"valid_emoticon_df = pd.read_csv('valid_emoticon.csv')\n", | |
"valid_Y = valid_emoticon_df['label']\n", | |
"test_emoticon_df = pd.read_csv('test_emoticon.csv')" | |
], | |
"metadata": { | |
"id": "kXzBBu0fg-5K" | |
}, | |
"execution_count": 46, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def preprocess_emoticons(emoticons):\n", | |
" return [[c for c in emoticon] for emoticon in emoticons]" | |
], | |
"metadata": { | |
"id": "xRA-Fu2AhCqZ" | |
}, | |
"execution_count": 36, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"train_emoticon_X = pd.DataFrame(preprocess_emoticons(train_emoticon_df['input_emoticon']))\n", | |
"valid_emoticon_X = pd.DataFrame(preprocess_emoticons(valid_emoticon_df['input_emoticon']))" | |
], | |
"metadata": { | |
"id": "XQgfEwbulr-r" | |
}, | |
"execution_count": 38, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"enc = OneHotEncoder(handle_unknown='ignore')\n", | |
"enc.fit(train_emoticon_X)\n", | |
"train_X = enc.transform(train_emoticon_X)\n", | |
"valid_X = enc.transform(valid_emoticon_X)" | |
], | |
"metadata": { | |
"id": "DrSxtWkqshjP" | |
}, | |
"execution_count": 42, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"train_X.shape" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "CFM-QRr5t67t", | |
"outputId": "5e6a9ec7-dc26-49e9-a0e0-a1601cba72b7" | |
}, | |
"execution_count": 44, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(7080, 2159)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 44 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def tune_and_evaluate(model, param_grid):\n", | |
" grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy', n_jobs=-1)\n", | |
" grid_search.fit(train_X, train_Y)\n", | |
" best_model = grid_search.best_estimator_\n", | |
" valid_pred = best_model.predict(valid_X)\n", | |
" valid_acc = accuracy_score(valid_Y, valid_pred)\n", | |
" return grid_search.best_params_, valid_acc, best_model" | |
], | |
"metadata": { | |
"id": "6j8xhcXdhMtc" | |
}, | |
"execution_count": 47, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"log_reg_param_grid = {\n", | |
" 'C': [0.01, 0.1, 1, 10, 100],\n", | |
" 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'saga']\n", | |
"}\n", | |
"log_reg = LogisticRegression(max_iter=5000)\n", | |
"log_reg_params, log_reg_acc, best_log_reg = tune_and_evaluate(log_reg, log_reg_param_grid)" | |
], | |
"metadata": { | |
"id": "VwsHXfXRuN8y" | |
}, | |
"execution_count": 48, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"log_reg_acc" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "fo-IvhgbuXms", | |
"outputId": "6c5904f6-71b6-48cf-dea2-dcbe1f430610" | |
}, | |
"execution_count": 49, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.9161554192229039" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 49 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from sklearn.svm import SVC\n", | |
"svm_param_grid = {\n", | |
" 'C': [0.1, 1, 10],\n", | |
" 'kernel': ['linear', 'rbf', 'poly'] }\n", | |
"svm_model = SVC()\n", | |
"svm_params, svm_acc, best_svm_model = tune_and_evaluate(svm_model, svm_param_grid)" | |
], | |
"metadata": { | |
"id": "It_znLNAvFVB" | |
}, | |
"execution_count": 52, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"svm_acc" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "LOEf4Xuz2xPU", | |
"outputId": "6f309260-aafe-4dc3-d94e-2aed3639ad23" | |
}, | |
"execution_count": 53, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.8916155419222904" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 53 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"knn_param_grid = {\n", | |
" 'n_neighbors': [1,5,10,15],\n", | |
" 'weights' : ['uniform','distance']\n", | |
"}\n", | |
"knn = KNeighborsClassifier()\n", | |
"knn_params, knn_acc, knn_model = tune_and_evaluate(knn, knn_param_grid)" | |
], | |
"metadata": { | |
"id": "NvYdxC65hqS7" | |
}, | |
"execution_count": 54, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(knn_acc)\n", | |
"print(knn_params)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "8QpSfVjuicCT", | |
"outputId": "6f137773-ac06-4c88-d03e-13c75d1cf670" | |
}, | |
"execution_count": 55, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"0.5398773006134969\n", | |
"{'n_neighbors': 15, 'weights': 'uniform'}\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"enn_param_grid = {\n", | |
" 'radius' : [1.0, 5.0 , 10.0 ,15.0 ],\n", | |
" 'weights' : ['uniform', 'distance']\n", | |
"}\n", | |
"enn = RadiusNeighborsClassifier()\n", | |
"enn_params, enn_acc, enn_model = tune_and_evaluate(enn, enn_param_grid)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "GGH4si_Dj0PQ", | |
"outputId": "1403e9e3-ef55-4bbe-fd96-1d4ddc22d87b" | |
}, | |
"execution_count": 56, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [ nan nan 0.5079096 0.51016949 0.50508475 0.50508475\n", | |
" 0.50508475 0.50508475]\n", | |
" warnings.warn(\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(enn_acc)\n", | |
"print(enn_params)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "jGwom8z8j0dL", | |
"outputId": "66e497aa-4c72-440f-c54d-c4b599e3fd42" | |
}, | |
"execution_count": 57, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"0.5194274028629857\n", | |
"{'radius': 5.0, 'weights': 'distance'}\n" | |
] | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment