Created
July 15, 2012 00:28
-
-
Save yihui/3114112 to your computer and use it in GitHub Desktop.
Highlight Matlab code in knitr
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
<<adjust-preamble, echo=FALSE, results='asis'>>= | |
if (opts_knit$get('use.highlight')) cat('\\def\\usehighlightdefs{1}\n') | |
@ | |
\ifx\highlightexists\undefined | |
\newcommand{\hlstd}[1]{\textcolor[rgb]{0,0,0}{#1}} | |
\newcommand{\hlnum}[1]{\textcolor[rgb]{0.69,0.49,0}{#1}} | |
\newcommand{\hlesc}[1]{\textcolor[rgb]{1,0,1}{#1}} | |
\newcommand{\hlstr}[1]{\textcolor[rgb]{0.75,0.01,0.01}{#1}} | |
\newcommand{\hlpps}[1]{\textcolor[rgb]{0.51,0.51,0}{#1}} | |
\newcommand{\hlslc}[1]{\textcolor[rgb]{0.51,0.51,0.51}{\it{#1}}} | |
\newcommand{\hlcom}[1]{\textcolor[rgb]{0.51,0.51,0.51}{\it{#1}}} | |
\newcommand{\hlppc}[1]{\textcolor[rgb]{0,0.51,0}{#1}} | |
\newcommand{\hlopt}[1]{\textcolor[rgb]{0,0,0}{#1}} | |
\newcommand{\hllin}[1]{\textcolor[rgb]{0.33,0.33,0.33}{#1}} | |
\newcommand{\hlkwa}[1]{\textcolor[rgb]{0,0,0}{\bf{#1}}} | |
\newcommand{\hlkwb}[1]{\textcolor[rgb]{0,0.34,0.68}{#1}} | |
\newcommand{\hlkwc}[1]{\textcolor[rgb]{0,0,0}{\bf{#1}}} | |
\newcommand{\hlkwd}[1]{\textcolor[rgb]{0,0,0.51}{#1}} | |
\definecolor{bgcolor}{rgb}{0.88,0.92,0.93} | |
\else | |
\newcommand{\hlopt}[1]{\textcolor[rgb]{0,0,0}{#1}} | |
\fi | |
\begin{document} | |
Normal R chunks. | |
<<test-R>>= | |
1+1 | |
rnorm(5) | |
@ | |
Highlight matlab chunks. | |
<<test-matlab, engine='highlight', highlight.opts='-S matlab -O latex'>>= | |
function Y = kalmanM(pos) | |
dt=1; | |
%% Initialize state transition matrix | |
A=[ 1 0 dt 0 0 0;... % [x ] | |
0 1 0 dt 0 0;... % [y ] | |
0 0 1 0 dt 0;... % [Vx] | |
0 0 0 1 0 dt;... % [Vy] | |
0 0 0 0 1 0 ;... % [Ax] | |
0 0 0 0 0 1 ]; % [Ay] | |
% Initialize measurement matrix | |
H = [ 1 0 0 0 0 0; 0 1 0 0 0 0 ]; | |
Q = eye(6); | |
R = 1000 * eye(2); | |
x_est = zeros(6, 1); | |
p_est = zeros(6, 6); | |
numPts = size(pos,1); | |
Y = zeros(numPts, 2); | |
for idx = 1:numPts | |
z = pos(idx, :)'; | |
%% Predicted state and covariance | |
x_prd = A * x_est; | |
p_prd = A * p_est * A' + Q; | |
%% Estimation | |
S = H * p_prd' * H' + R; | |
B = H * p_prd'; | |
klm_gain = (S \ B)'; | |
%% Estimated state and covariance | |
x_est = x_prd + klm_gain * (z - H * x_prd); | |
p_est = p_prd - klm_gain * H * p_prd; | |
%% Compute the estimated measurements | |
Y(idx, :) = H * x_est; | |
end % of the function | |
end % of the function | |
@ | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment