Created
September 29, 2017 14:15
-
-
Save TomAugspurger/436442baeb353c53bcdf61adf6b32823 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import os.path as op | |
from time import time | |
import dask.dataframe as ddf | |
import dask.array as da | |
from dask import compute | |
from distributed import Client | |
def make_categorical_data(n_samples=int(1e7), n_features=10): | |
"""Generate some random categorical data | |
The default parameters should generate around 1GB of random integer data | |
with increasing cardinality along with a normally distributed real valued | |
target variable. | |
""" | |
feature_names = ['f_%03d' % i for i in range(n_features)] | |
features_series = [ | |
da.random.randint(low=0, high=(i + 1) * 10, size=n_samples, | |
chunks=n_samples // 10) | |
for i in range(n_features) | |
] | |
features_series = [ | |
ddf.from_dask_array(col_data, columns=[feature_name]) | |
for col_data, feature_name in zip(features_series, feature_names) | |
] | |
target = da.random.normal(loc=0, scale=1, size=n_samples, | |
chunks=n_samples // 10) | |
target = ddf.from_dask_array(target, columns=['target']) | |
data = ddf.concat(features_series + [target], axis=1) | |
data = data.repartition(npartitions=10) | |
return data | |
def encode_with_target_mean(data, target_colname='target'): | |
"""Supervised encoding of categorical variables with per-group target mean. | |
All columns that contain integer values are replaced by real valued data | |
representing the average target value for each category. | |
""" | |
features_data = data.drop(target_colname, axis=1) | |
target_data = data[target_colname] | |
encode_columns = features_data.select_dtypes( | |
['int', 'object']).dtypes.index | |
mappings = [target_data.groupby(features_data[col]).mean() | |
for col in encode_columns] | |
mappings = compute(*mappings) | |
mappings = {m.index.name: m for m in mappings} | |
for col in encode_columns: | |
features_data[col] = features_data[col].map(mappings[col]) | |
return ddf.concat([features_data, target_data], axis=1) | |
if __name__ == '__main__': | |
# make sure dask uses the distributed scheduler: | |
# Start the scheduler and at least one worker with: | |
# $ dask-scheduler | |
# $ dask-worker localhost:8786 | |
# | |
c = Client('localhost:8786') | |
original_folder_name = op.abspath('random_categorical_data') | |
encoded_folder_name = op.abspath('random_encoded_data') | |
if not op.exists(original_folder_name): | |
print("Generating random categorical data in", original_folder_name) | |
os.mkdir(original_folder_name) | |
data = make_categorical_data() | |
ddf.to_parquet(original_folder_name, data) | |
print("Using data from", original_folder_name) | |
data = ddf.read_parquet(original_folder_name) | |
data = c.persist(data) | |
print("Encoding categorical variables...") | |
encoded = encode_with_target_mean(data, target_colname='target') | |
print("Saving encoded data to", encoded_folder_name) | |
t0 = time() | |
# Repartition to get small parquet files in the output folder. | |
encoded = encoded.repartition(npartitions=10) | |
encoded.to_parquet(encoded_folder_name) | |
print("done in %0.3fs" % (time() - t0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment