Last active
February 3, 2026 20:18
-
-
Save dacr/7e6a838a8d79e55b21bb7c8e68af97a7 to your computer and use it in GitHub Desktop.
Playing with Java Deep Learning (DJL), tutorial-02 / published by https://github.com/dacr/code-examples-manager #5bad9d22-6b77-4427-894c-ec30c1a6f019/b991f77f7927dffdf4d181b721a1411dc55ccbee
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // summary : Playing with Java Deep Learning (DJL), tutorial-02 | |
| // keywords : djl, machine-learning, tutorial, ai | |
| // publish : gist | |
| // authors : David Crosson | |
| // license : Apache License Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) | |
| // id : 5bad9d22-6b77-4427-894c-ec30c1a6f019 | |
| // created-on : 2021-03-05T09:23:01Z | |
| // managed-by : https://github.com/dacr/code-examples-manager | |
| // run-with : scala-cli $file | |
| // --------------------- | |
| //> using scala "3.7.2" | |
| //> using dep "org.slf4j:slf4j-api:2.0.17" | |
| //> using dep "org.slf4j:slf4j-simple:2.0.17" | |
| //> using dep "ai.djl:api:0.33.0" | |
| //> using dep "ai.djl:basicdataset:0.33.0" | |
| //> using dep "ai.djl:model-zoo:0.33.0" | |
| //> using dep "ai.djl.mxnet:mxnet-engine:0.33.0" | |
| ////> using dep "net.java.dev.jna:jna:5.13.0" | |
| // --------------------- | |
| // inspired from https://docs.djl.ai/jupyter/tutorial/02_train_your_first_model.html | |
| import java.nio.file._ | |
| import ai.djl._ | |
| import ai.djl.basicdataset.cv.classification.Mnist | |
| import ai.djl.ndarray.types._ | |
| import ai.djl.training._ | |
| import ai.djl.training.dataset._ | |
| import ai.djl.training.initializer._ | |
| import ai.djl.training.loss._ | |
| import ai.djl.training.listener._ | |
| import ai.djl.training.evaluator._ | |
| import ai.djl.training.optimizer._ | |
| import ai.djl.training.util._ | |
| import ai.djl.basicmodelzoo.cv.classification._ | |
| import ai.djl.basicmodelzoo.basic._ | |
| println("----------------- Prepare MNIST dataset for training") | |
| val batchSize = 32 | |
| val mnist = Mnist.builder.setSampling(batchSize, true).build | |
| mnist.prepare(new ProgressBar) | |
| println("----------------- Create your Model") | |
| val model = Model.newInstance("mlp") | |
| model.setBlock(new Mlp(28 * 28, 10, Array(128, 64))) | |
| println("----------------- Create a Trainer") | |
| val config = new DefaultTrainingConfig(Loss.softmaxCrossEntropyLoss()) | |
| //softmaxCrossEntropyLoss is a standard loss for classification problems | |
| .addEvaluator(new Accuracy()) // Use accuracy so we humans can understand how accurate the model is | |
| .addTrainingListeners(TrainingListener.Defaults.logging() : _*) | |
| val trainer = model.newTrainer(config) | |
| println("----------------- Initialize Training") | |
| trainer.initialize(new Shape(1, 28 * 28)) | |
| println("----------------- Train your model") | |
| val epoch = 2 | |
| EasyTrain.fit(trainer, epoch, mnist, null) | |
| println("----------------- Save your model") | |
| val modelDir = Paths.get("build/mlp") | |
| Files.createDirectories(modelDir) | |
| model.setProperty("Epoch", String.valueOf(epoch)) | |
| model.save(modelDir, "mlp") | |
| println(model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment