Skip to content

Instantly share code, notes, and snippets.

@AKuederle
Created October 13, 2015 12:11
Show Gist options
  • Save AKuederle/d7837facee0479beb6cf to your computer and use it in GitHub Desktop.
Save AKuederle/d7837facee0479beb6cf to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>I</th>\n",
" </tr>\n",
" <tr>\n",
" <th>U</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0.000000</th>\n",
" <td>-0.004425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.002441</th>\n",
" <td>-0.003018</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.004883</th>\n",
" <td>-0.002408</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.007324</th>\n",
" <td>-0.001544</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.009766</th>\n",
" <td>-0.000931</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.012207</th>\n",
" <td>-0.000494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.014648</th>\n",
" <td>-0.000220</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.017090</th>\n",
" <td>0.000177</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.019531</th>\n",
" <td>0.000436</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.021973</th>\n",
" <td>0.000702</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.024414</th>\n",
" <td>0.000888</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.026855</th>\n",
" <td>0.001254</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.029297</th>\n",
" <td>0.001349</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.031738</th>\n",
" <td>0.001483</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.034180</th>\n",
" <td>0.001782</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.036621</th>\n",
" <td>0.002014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.039062</th>\n",
" <td>0.002142</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.041504</th>\n",
" <td>0.002252</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.043945</th>\n",
" <td>0.002502</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.046387</th>\n",
" <td>0.002539</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.048828</th>\n",
" <td>0.002930</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.051270</th>\n",
" <td>0.003015</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.053711</th>\n",
" <td>0.003149</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.056152</th>\n",
" <td>0.003064</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.058594</th>\n",
" <td>0.003268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.061035</th>\n",
" <td>0.003284</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.063477</th>\n",
" <td>0.003662</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.065918</th>\n",
" <td>0.003696</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.068359</th>\n",
" <td>0.003857</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0.070801</th>\n",
" <td>0.003937</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.073242</th>\n",
" <td>0.000735</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.070801</th>\n",
" <td>0.000995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.068359</th>\n",
" <td>0.001517</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.065918</th>\n",
" <td>0.001694</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.063477</th>\n",
" <td>0.001608</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.061035</th>\n",
" <td>0.002039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.058594</th>\n",
" <td>0.002426</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.056152</th>\n",
" <td>0.002585</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.053711</th>\n",
" <td>0.002582</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.051270</th>\n",
" <td>0.002997</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.048828</th>\n",
" <td>0.003391</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.046387</th>\n",
" <td>0.003445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.043945</th>\n",
" <td>0.003653</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.041504</th>\n",
" <td>0.004019</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.039062</th>\n",
" <td>0.004129</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.036621</th>\n",
" <td>0.004065</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.034180</th>\n",
" <td>0.004523</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.031738</th>\n",
" <td>0.004800</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.029297</th>\n",
" <td>0.005118</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.026855</th>\n",
" <td>0.005154</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.024414</th>\n",
" <td>0.005441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.021973</th>\n",
" <td>0.005652</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.019531</th>\n",
" <td>0.005713</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.017090</th>\n",
" <td>0.005975</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.014648</th>\n",
" <td>0.006259</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.012207</th>\n",
" <td>0.006375</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.009766</th>\n",
" <td>0.006555</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.007324</th>\n",
" <td>0.006882</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.004883</th>\n",
" <td>0.007031</td>\n",
" </tr>\n",
" <tr>\n",
" <th>-0.002441</th>\n",
" <td>0.007092</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>820 rows × 1 columns</p>\n",
"</div>"
],
"text/plain": [
" I\n",
"U \n",
" 0.000000 -0.004425\n",
" 0.002441 -0.003018\n",
" 0.004883 -0.002408\n",
" 0.007324 -0.001544\n",
" 0.009766 -0.000931\n",
" 0.012207 -0.000494\n",
" 0.014648 -0.000220\n",
" 0.017090 0.000177\n",
" 0.019531 0.000436\n",
" 0.021973 0.000702\n",
" 0.024414 0.000888\n",
" 0.026855 0.001254\n",
" 0.029297 0.001349\n",
" 0.031738 0.001483\n",
" 0.034180 0.001782\n",
" 0.036621 0.002014\n",
" 0.039062 0.002142\n",
" 0.041504 0.002252\n",
" 0.043945 0.002502\n",
" 0.046387 0.002539\n",
" 0.048828 0.002930\n",
" 0.051270 0.003015\n",
" 0.053711 0.003149\n",
" 0.056152 0.003064\n",
" 0.058594 0.003268\n",
" 0.061035 0.003284\n",
" 0.063477 0.003662\n",
" 0.065918 0.003696\n",
" 0.068359 0.003857\n",
" 0.070801 0.003937\n",
"... ...\n",
"-0.073242 0.000735\n",
"-0.070801 0.000995\n",
"-0.068359 0.001517\n",
"-0.065918 0.001694\n",
"-0.063477 0.001608\n",
"-0.061035 0.002039\n",
"-0.058594 0.002426\n",
"-0.056152 0.002585\n",
"-0.053711 0.002582\n",
"-0.051270 0.002997\n",
"-0.048828 0.003391\n",
"-0.046387 0.003445\n",
"-0.043945 0.003653\n",
"-0.041504 0.004019\n",
"-0.039062 0.004129\n",
"-0.036621 0.004065\n",
"-0.034180 0.004523\n",
"-0.031738 0.004800\n",
"-0.029297 0.005118\n",
"-0.026855 0.005154\n",
"-0.024414 0.005441\n",
"-0.021973 0.005652\n",
"-0.019531 0.005713\n",
"-0.017090 0.005975\n",
"-0.014648 0.006259\n",
"-0.012207 0.006375\n",
"-0.009766 0.006555\n",
"-0.007324 0.006882\n",
"-0.004883 0.007031\n",
"-0.002441 0.007092\n",
"\n",
"[820 rows x 1 columns]"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Leervoltagram = pd.read_csv(\"./Messdaten/Referenz_2_20mV_s.txt\",index_col=0, sep=\";\", decimal=\",\")\n",
"Leervoltagram.rename(columns={\"WE(1).Current (A)\":\"I\"}, inplace=True)\n",
"Leervoltagram.index.names = [\"U\"]\n",
"Leervoltagram.I = Leervoltagram.I * 10**6\n",
"Leervoltagram"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x8c78470>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAESCAYAAAAbq2nJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE85JREFUeJzt3XuMXGd5x/HveJ2UQpcGxBATZ8GocZ7EFZGstgaJlkJU\now0tMbRSXJdLUlJiEZxGlVouCqKl/FEsNZVFLaIQp5AiioNEQG5JcQItVURRiKuQIMU8sAqufEmc\nBRLFNL34Mv1jz8Yze5md2bOzF7/fj2R5zznv+553nj27vz1nZs40Wq0WkqQyrVrqCUiSlo4hIEkF\nMwQkqWCGgCQVzBCQpIIZApJUsNV1B4iIUWAXMATsycydU7a/A/gA0ABOAO/LzEerbYeAZ4HTwMnM\n3FR3PpKk3tU6E4iIIWA3MApsALZFxOVTmj0OvCEzrwA+Dny6bVsLeGNmbjQAJGnx1T0T2ASMZeYh\ngIjYC2wBDk42yMxvt7V/ELh4yhiNmnOQJM1T3ecE1gKH25aPVOtmcz1wb9tyC/h6RByIiPfWnIsk\nqU91Q6Dne05ExJuA9wAfbFv9+szcCFwFvD8ifqPmfCRJfah7OegoMNK2PMLE2UCHiLgCuAMYzcyn\nJ9dn5hPV/+MR8WUmLi89MNvOWq1Wq9Hw6pEk9WnWX5x1Q+AAsD4i1gHHgK3AtvYGEfFK4B7gnZk5\n1rb+hcBQZp6IiBcBbwY+1m1njUaD8fETNad8bmk2h61JG+sxnTXpVGI9ms3hWbfVCoHMPBURO4D9\nTLxE9M7MPBgR26vttwMfBV4C3BYRcPaloGuAe6p1q4HPZ+Z9deYjSepPY4XdSrpVWoLPpcS/arqx\nHtNZk04l1qPZHJ71cpDvGJakghkCklQwQ0CSCmYISFLBDAFJKpghIEkr1ObN9W+yYAhI0opV/w4K\nhoAkFaz2h8pIkuCL/zLGQ99/akHH/LXLXs41V16yoGNO5ZmAJBXMMwFJWgDXXHnJwP9qHwTPBCSp\nYIaAJK1QC/H5KoaAJK1Q9933b7XHMAQkqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBSSqYISBJ\nBTMEJKlgtW8gFxGjwC5gCNiTmTunbH8H8AEmPv3gBPC+zHy0l76SpMGqdSYQEUPAbmAU2ABsi4jL\npzR7HHhDZl4BfBz4dB99JUkDVPdMYBMwlpmHACJiL7AFODjZIDO/3db+QeDiXvtKkgar7nMCa4HD\nbctHqnWzuR64d559JUkLrO6ZQKvXhhHxJuA9wOv77duu2RyeT7dzmjXpZD2msyadrMdZdUPgKDDS\ntjzCxF/0HSLiCuAOYDQzn+6n71Tj4yfmPdlzUbM5bE3aWI/prEmnEuvRLfTqhsABYH1ErAOOAVuB\nbe0NIuKVwD3AOzNzrJ++kqTBqvWcQGaeAnYA+4HHgLsz82BEbI+I7VWzjwIvAW6LiIcj4jvd+taZ\njySpP41Wa16X5pdKq7TTuLmUeGrbjfWYzpp0KrEezebwrJ9D6TuGJalghoAkFcwQkKSCGQKSVDBD\nQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKpghIEkFMwQk\nqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBSSrY6roDRMQosAsYAvZk5s4p2y8DPgNsBG7JzFvb\nth0CngVOAyczc1Pd+UiSelcrBCJiCNgN/BZwFHgoIvZl5sG2Zj8BbgLeNsMQLeCNmfnTOvOQJM1P\n3ctBm4CxzDyUmSeBvcCW9gaZOZ6ZB4CTs4zRqDkHSdI81Q2BtcDhtuUj1bpetYCvR8SBiHhvzblI\nkvpU9zmBVs3+r8/MJyKiCdwfEd/PzAe6dWg2h2vu8txjTTpZj+msSSfrcVbdEDgKjLQtjzBxNtCT\nzHyi+n88Ir7MxOWlriEwPn5iHtM8dzWbw9akjfWYzpp0KrEe3UKvbggcANZHxDrgGLAV2DZL245r\n/xHxQmAoM09ExIuANwMfqzkfSVIfaoVAZp6KiB3AfiZeInpnZh6MiO3V9tsjYg3wEPBi4ExE3Axs\nAF4O3BMRk/P4fGbeV2c+kqT+NFqtupf1F1WrtNO4uZR4atuN9ZjOmnQqsR7N5vCsr8L0HcOSVDBD\nQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKpghIEkFMwQk\nqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBSSqYISBJBTMEJKlghoAkFWx13QEiYhTYBQwBezJz\n55TtlwGfATYCt2Tmrb32lSQNVq0zgYgYAnYDo8AGYFtEXD6l2U+Am4C/nkdfSdIA1b0ctAkYy8xD\nmXkS2AtsaW+QmeOZeQA42W9fSdJg1Q2BtcDhtuUj1bpB95UkLYC6zwm0FrtvszlcY5fnJmvSyXpM\nZ006WY+z6obAUWCkbXmEib/oB9Z3fPxEz5MrQbM5bE3aWI/prEmnEuvRLfTqhsABYH1ErAOOAVuB\nbbO0bdToK0kagFohkJmnImIHsJ+Jl3nemZkHI2J7tf32iFgDPAS8GDgTETcDGzLzZzP1rTMfSVJ/\nGq1Wncv6i65V2mncXEo8te3GekxnTTqVWI9mc3jqlZjn+Y5hSSqYISBJBTMEJKlghoAkFcwQkKSC\nGQKSVDBDQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKpgh\nIEkFMwQkqWCGgCQVzBCQpIIZApJUMENAkgq2uu4AETEK7AKGgD2ZuXOGNp8ErgKeA67LzIer9YeA\nZ4HTwMnM3FR3PpKk3tU6E4iIIWA3MApsALZFxOVT2rwFuCQz1wM3ALe1bW4Bb8zMjQaAJC2+upeD\nNgFjmXkoM08Ce4EtU9pcDdwFkJkPAhdExIVt2xs15yBJmqe6IbAWONy2fKRa12ubFvD1iDgQEe+t\nORdJUp/qPifQ6rHdbH/t/3pmHouIJnB/RHw/Mx/oNlCzOdzXBEtgTTpZj+msSSfrcVbdEDgKjLQt\njzDxl363NhdX68jMY9X/4xHxZSYuL3UNgfHxEzWnfG5pNoetSRvrMZ016VRiPbqFXt3LQQeA9RGx\nLiLOB7YC+6a02Qe8GyAiXgc8k5nHI+KFETFcrX8R8GbgezXnI0nqQ60QyMxTwA5gP/AYcHdmHoyI\n7RGxvWpzL/B4RIwBtwM3Vt3XAA9ExHeBB4F/ysz76sxHktSfRqvV62X9ZaFV2mncXEo8te3Gekxn\nTTqVWI9mc3jWV2H6jmFJKpghIEkFMwQkqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBSSqYISBJ\nBTMEJKlghoAkFcwQkKSCGQKSVDBDQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCknQO\n+88nT3TdbghI0jnsb+95tOv21XV3EBGjwC5gCNiTmTtnaPNJ4CrgOeC6zHy4176SpPl7/9tf03V7\nrTOBiBgCdgOjwAZgW0RcPqXNW4BLMnM9cANwW699JUn1vPoVL+66ve7loE3AWGYeysyTwF5gy5Q2\nVwN3AWTmg8AFEbGmx76SpAGqGwJrgcNty0eqdb20uaiHvpKkAar7nECrx3aNmvt5XrM5vFBDnTOs\nSSfrMZ016WQ9zqobAkeBkbblESb+ou/W5uKqzXk99O3QarX48Y9/Nu/JnouazWHGx7u/BKwk1mM6\na9KpxHp0C726l4MOAOsjYl1EnA9sBfZNabMPeDdARLwOeCYzj/fYt8OHP/WtmtOVJLWrFQKZeQrY\nAewHHgPuzsyDEbE9IrZXbe4FHo+IMeB24MZufbvtb+OlzTrTlSRN0Wi1er2svyy0SjuNm0uJp7bd\nWI/prEmnEuvRbA7P+rys7xiWpIIZApJUMENAkgpmCEhSwQwBSSqYISBJBTMEJKlghoAkFcwQkKSC\nGQKSVDBDQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKpgh\nIEkFMwQkqWCr59sxIl4K3A28CjgEXJOZz8zQbhTYBQwBezJzZ7X+L4A/Asarph/OzK/Ndz6SpP7V\nORP4EHB/Zl4KfKNa7hARQ8BuYBTYAGyLiMurzS3gbzJzY/XPAJCkRVYnBK4G7qq+vgt42wxtNgFj\nmXkoM08Ce4EtbdsbNfYvSaqpTghcmJnHq6+PAxfO0GYtcLht+Ui1btJNEfFIRNwZERfUmIskaR66\nPicQEfcDa2bYdEv7Qma2IqI1Q7uZ1k26DfjL6uuPA7cC13ebD0CzOTxXk+JYk07WYzpr0sl6nNU1\nBDJz82zbIuJ4RKzJzCcj4hXAUzM0OwqMtC2PMHE2QGY+3z4i9gD/2MuEx8dP9NKsGM3msDVpYz2m\nsyadSqxHt9CrczloH3Bt9fW1wFdmaHMAWB8R6yLifGBr1Y8qOCa9HfhejblIkuahTgh8AtgcET8A\nrqyWiYiLIuKrAJl5CtgB7AceA+7OzINV/50R8WhEPAL8JvAnNeYiSZqHRqvV7bL9stMq7TRuLiWe\n2nZjPaazJp1KrEezOTzrKzF9x7AkFcwQkKSCGQKSVDBDQJIKZghIUsEMAUkqmCEgSQUzBCSpYIaA\nJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKljXTxZbbm6+9ZucOnV61u1z3RS7t7tmd2805xA97GPu\nefZ+e++hoVWcPn1mhjHqzaGXQRamFnPso887na8aWsWZKfWYe4y5d7Iwx9ZcY9Ss9yyNVq1qcOZM\nq7cxenggy6EWvY0x8/rGqgatM3MdedDTcVH352wBfkZ6GeNLO98667YVFQJP/OS/mPsRz3rb7B62\nVm16adS1f80BepxDA1i1ahVnzkwPgV4G6WmWczSaa4zFrAVM/PKY+RdIt0Eac+5jzik05p5no5eK\n150HTJvI6qEGp06frcnc37NedjLXGEt/7M3WavXqVZw6NfEzU/v73kOjOb/v9Q+LWt8zP1RmhSvx\nAzK6sR7TWZNOJdbDD5WRJM3IEJCkghkCklQwQ0CSCmYISFLB5v0S0Yh4KXA38CrgEHBNZj4zQ7u/\nA34beCozX9Nvf0nS4NQ5E/gQcH9mXgp8o1qeyWeA0Rr9JUkDUicErgbuqr6+C3jbTI0y8wHg6fn2\nlyQNTp0QuDAzj1dfHwcuXOT+kqSauj4nEBH3A2tm2HRL+0JmtiJi3m89rttfkjQ/XUMgMzfPti0i\njkfEmsx8MiJeATzV577n07/RbA73uZtznzXpZD2msyadrMdZdS4H7QOurb6+FvjKIveXJNVUJwQ+\nAWyOiB8AV1bLRMRFEfHVyUYR8QXg34FLI+JwRPxht/6SpMWz0u4iKklaQL5jWJIKZghIUsEMAUkq\n2KJ+vGREjAK7gCFgT2bunKHNJ4GrgOeA6zLz4W59u92DKCI+DLwHOA38cWbeN9AHWEMf92JasDpE\nxDeZeB/If1fDb87MHw/mEfZnUPWo1n8J+FXgs5l5U9tYvwJ8FngBcG9m3jyoxzcfS1STb7JMjxEY\naE02A38FnA/8H/BnmfmvVZ9lfZz0a9HOBCJiCNjNxH2ENgDbIuLyKW3eAlySmeuBG4Dbeug74z2I\nImIDsLVqPwp8KiKW85nPnPdSWsA6PP+RvMAfZObG6t+y+eFmQPUA/gf4CPCnM+zzNuD66vhbX/3i\nWE6WoibL+RiBwdVkHPidzLyCiZewf65tyOV+nPRlMX8pbgLGMvNQZp4E9gJbprR5/n5CmfkgcEFE\nrJmj72z3INoCfCEzT2bmIWCsGme56uVeSgtVh9e2jbkAHys+EAOpR2Y+l5nfAv63faDqDYvDmfmd\natXfz7LPpbSoNWmzXI8RGFxNvpuZT1brHwN+PiLOWyHHSV8WMwTWAofblo9U63ppc1GXvrPdg+ii\nql23/S0nvdxLqVsN+6nDRW3Ld0XEwxHxkTqTH4BB1WPS1NdGr6WzTkdZfsfLYtdk0nI9RmDwNQH4\nPeA/qgBZCcdJXxbzOYFe35DQy18djZnG6+EeREv6pogFuBfT1HXzrcOkd2TmsYj4BeBLEfGuzPzc\nnL0WyDKsx5JbhjVZ0mMElrYmEfHLVG9s7WvSK8hihsBRYKRteYTORJ2pzcVVm/NmWH+0+nq2exDN\nNNZRltAC3Iup22Pquw6Zeaz6/2cR8Q9MnDYv2g/4EtVjNker/jONtWiWWU2W/Bip9r0kNYmIi4F7\ngHdl5o/axlry42QhLebloANMPImyLiLOZ+LJyn1T2uwD3g0QEa8DnqlO1br1ne0eRPuA34+I8yPi\n1cB6YPI63nLUy72UFqwOETEUES8DiIjzgLcC31vgx1THoOoxqeOMMzOfAJ6NiNdWT5y/a5Z9LqVF\nrckKOEZgQDWJiAuArwIfzMxvTw60Qo6TvixaCGTmKWAHsJ+JJ1ruzsyDEbE9IrZXbe4FHo+IMeB2\n4MZufauhZ7wHUWY+Bnyxav/PwI2ZuZwvCcx5L6YFrsMLgK9FxCPAw0xcM71jMR5ojwZSj2qMQ8Ct\nwHUxcT+ry6pNNwJ7gB8y8UTi1wb6CPu32DX5OZb3MQKDq8kO4JeAP6+eD3l4MhBZ/sdJX7x3kCQV\nbDm/bl6SNGCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBaZ6qNx/9aIb1Z5ZiPtJ8GAKSVDBDQJIK\nZghIUsEMAWn+pl37r24q5r1YtGIYAtL8PQ384pR1L6/WSyuCISDNU2aeAH4YEb/btvoG4P4lmpLU\nN+8iKtUQEeuZ+ODxlwHnA48A78/Mny7pxKQeGQKSVDAvB0lSwQwBSSqYISBJBTMEJKlghoAkFcwQ\nkKSCGQKSVDBDQJIK9v9ZVDNNZxI4ZAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8c45080>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Leervoltagram.plot()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x8b0b208>]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEDCAYAAAAvNJM9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4W/W95/G3JO/7EtlOvCaO88tOAiEEQkvCmhAglC3Q\nUrrQli70Mr2du8zcee4zM3eWy9xbyqX0MhRoB0rbQCEsLQlha2jYk5A9zi9xYie2432VLVvrmT+k\npMbIjmzZOpL9fT0PTyzpHPtjIenj31l+x2IYBkIIIcRwVrMDCCGEiE1SEEIIIUKSghBCCBGSFIQQ\nQoiQpCCEEEKEJAUhhBAipIRIv4FSah3wMGADntRaPzjs8a8AfwtYAAfwPa31geBjdUAv4AM8WuuV\nkeYRQggxMSIaQSilbMCjwDpgIXCXUmrBsMVOAl/UWi8F/gn4xZDHDGCN1nq5lIMQQsSWSEcQK4Ea\nrXUdgFJqM7ARqD67gNb6wyHLfwyUDPselggzCCGEmASR7oMoBuqH3G4I3jeSe4GtQ24bwFtKqd1K\nqW9HmEUIIcQEirQgwp6nQym1Fvgm8HdD7l6ttV4OrAd+oJT6QoR5hBBCTJBINzE1AqVDbpcSGEV8\nhlJqKfAEsE5r3XX2fq11U/DfNqXUSwQ2We0c6YcZhmFYLLJFSgghxmhcH5yRFsRuoEopVQGcATYB\ndw1dQClVBmwB7tZa1wy5Pw2waa0dSql04Frgv432wywWC21tjggjm8duz5T8Jorn/PGcHSS/2ez2\nzHGtF1FBaK29Sqn7ge0EDnN9SmtdrZS6L/j448A/ArnAY0op+MvhrEXAluB9CcBvtNZvRJJHCCHE\nxLHE2XTfRry3uOQ3Tzznj+fsIPnNZrdnjmsTk5xJLYQQIiQpCCGEECFJQQghhAhJCkIIIURIUhBC\nCCFCkoIQQggRkhSEEEKIkKQghBBChCQFIYQQIiQpCCGEECFJQQghhAhJCkIIIURIUhBCCCFCkoIQ\nQggRkhSEEEKIkKQghBBChCQFIYQQIiQpCCGEECFJQQghxCiaO5288fEps2OYQgpCCCFGYBgG//fl\nQ/zs+X309rvNjhN1UhBCCDGCQ7WdnG7tA8Bms5icJvqkIIQQYgSvffiXTUvJiTYTk5hDCkIIIUKo\naejhWH03AAk2Cwm26fdxmRDpN1BKrQMeBmzAk1rrB4c9/hXgbwEL4AC+p7U+EM66Qghhltc+rAPA\nZrWQkhTxR2VciqgSlVI24FFgHbAQuEsptWDYYieBL2qtlwL/BPxiDOsKIUTU1Tb1sv9EB3NLssnN\nTCYlWQpiPFYCNVrrOq21B9gMbBy6gNb6Q611T/Dmx0BJuOsKIYQZXnz3BAC3fGEOLo+P1OTpt/8B\nIi+IYqB+yO2G4H0juRfYOs51hRBi0lXXdXKkrotFFbnML8/F5fZN201Mkf7WRrgLKqXWAt8EVo91\n3aHs9szxrBYzJL+54jl/PGeH+Mjv8/l58dd7ALj35iXk5Wfg9vpJSUqIi/wTLdKCaARKh9wuJTAS\n+Ayl1FLgCWCd1rprLOsO19bmGHdYs9ntmZLfRPGcP56zQ/zk3/7JaU429nDZ4iJyUhJoPBM4iikl\n2RYX+Ucy3nKLtCB2A1VKqQrgDLAJuGvoAkqpMmALcLfWumYs6wohRLS09wzw0s6TZKQmsunKuQAM\nun0ApE7TTUwR7YPQWnuB+4HtwBHgOa11tVLqPqXUfcHF/hHIBR5TSu1VSn0y2rqR5BFCiPEwDIPf\nvHEMt8fPpivnkpmWBIDbEyiI6XoUU8S/tdZ6G7Bt2H2PD/n6W8C3wl1XCCGibY9uY/+JDuaX5XDZ\n4qJz958dQaQkyVFMQggx7fQPevjNW8dIsFm5Z918LJa/zLk04PICkJaSaFY8U0lBCCGmLcMw+OVr\n1fT0ubnxsnKK8tI+83j/YKAg0lOlIIQQYlrZ/kk9e4+3M78shw2XVnzucafLA0CGFIQQQkwfxxu6\neWHHCbLTk7jvpkVYrZ+fztsZHEFkpElBCCHEtNDlcPF/XzmMgcF3Ny4iOyM55HKyiUkIIaaRvgEP\nDz23jy6Hi9vWVKLKckdcduDsCEIKQgghpjaXx8cjLxygsb2fqy8qYd3KslGX7z+3DyIpGvFijhSE\nEGJa8Hh9PPbyIWoae1i1sJA7r676zCGtoTjPbWKanifKSUEIIaa8AZeXh39/gAMnOlgyJ59vbliA\n9TzlAIGCsFospMqZ1EIIMfX09Lt55IUD1Db1srxqBt/duCjsy4f2D3pIS0k470hjqpKCEEJMWS1d\nTv75N5/S0+fmssVFfOP6+dis4W84cQ56SUuZvh+T0/c3F0JMWX7D4E+fNvLCjhO4PD6+9MU5bLi0\nPKzNSkM5XV7yskIfAjsdSEEIIaaUAZeXX75WzZ5jbaSnJHDPdQu5dMgEfOHyeH14vH7Spun+B5CC\nEEJMEYZhsPWjU2z76DROlxdVmjPqSXDnc/Ykuek6UR9IQQgh4pxhGOzY28j2XfW0dg2QkZrIzZfP\n5vpLy8PeGR3KuUNcZR+EEELEl+ZOJ1s/OsXeY230D3qxWS0srcznm9cvICs98hPbzhZEqhSEEELE\nNq/PT/WpLg7XdrLveDut3QMA5GYms7RyBrevrSRnnJuTQukfDJxFnS6bmIQQIvb09LupaejmvQNN\n1DT2nNsvkJRgZdHsPK64YBYXzrOHnIk1Us6zFwuSndRCCGE+j9ePPt1F9eku9hxtOzdKAMjPSuHi\n+QUsnTuDBeW5JCdO7mVA+5zT+1oQIAUhhDBBT5+Lnn43dc0OTp7pweny0drlpKnDicfrByA1OYGl\nlflUzspi8Zx8Zs/MimrGXqcbYEL2Z8QrKQghxKRyDnp599MGPtjfSENbH/0DHjp6XZ9bLsFmodie\nwbySHOaVZrN4dj7JSZM7ShiNI1gQmdP0YkEgBSGEmCTNnU62fXSKDw414/MbACTYrKSlJHBBZT6Z\naUmUFmYwvyyXzLREkhNtMTUpXm9/YBNTZpqMIIQQYkI0dfTz0p9Pske3YQAFuamsWFDIsjn5zCnO\nGvN0F2ZxDLixWS0yF1MklFLrgIcBG/Ck1vrBYY/PB34FLAf+QWv9kyGP1QG9gA/waK1XRppHCGEO\nr8/Pm7vreXlnLR6vn/LCTDZcWs6F8+wUFmbR1uYwO+KYOPo9ZKQlxk2hTYaICkIpZQMeBa4GGoFd\nSqlXtdbVQxbrAH4I3BziWxjAGq11ZyQ5hBDmau8e4GdbDlLf2kdmWiLfvmEhFyl7XE+T3et0Y89J\nNTuGqSIdQawEarTWdQBKqc3ARuBcQWit24A2pdSGEb5H/L6ChBDs0a088ccjuD1+Ll8ykzuunBv3\nh4a6PT4G3T6ypvEOaoi8IIqB+iG3G4BLxrC+AbyllPIBj2utn4gwjxAiSgZcXja/fZydB5pITrRx\n74YFXLa4KK5HDWc5gudAZE7jQ1wh8oIwIlx/tda6SSllB95USh3VWu8cbQW7PTPCH2kuyW+ueM4f\nS9n7Bzw8+tJuPtWtVMzM4q+/fCGzZ2WPuk4s5T+fnkEfAAX56edyx1P+iRJpQTQCpUNulxIYRYRF\na90U/LdNKfUSgU1WoxZEvO3oGspuz5T8Jorn/LGUvaXTyaMvHaSxrZ9FFbk8cPsFJNiso+aLpfzh\nONXYDUCiJfCZE2/5hxtvuUVaELuBKqVUBXAG2ATcNcKynxl3KqXSAJvW2qGUSgeuBf5bhHmEEJOo\nrXuAf/5t4BKeV11UwqYr50Y0pXas+stJcrKJady01l6l1P3AdgKHuT6lta5WSt0XfPxxpVQRsAvI\nAvxKqQeAhUABsEUpdTbHb7TWb0SSRwgxeeqae/np8/txOD3cvraS9ZeUmx1p0pybZkMKIjJa623A\ntmH3PT7k62Y+uxnqrD5gWaQ/Xwgx+Tp7B/m33x+gb8DDV6+dx9oLS8yONKkc586int5HMU29saEQ\nYkJ19Azyf367l55+N5vWzp3y5QDQ1ReYKyo3c+KuLxGPpCCEECPqG/Dw0PP7aO0e4IbLyrnm4lAb\nA6aert5BLJbpPZMryFxMQogROAe9PPLCAZo6nFy3spRbvlhpdqSo6XS4yE5PmpI74Mdiev/2QoiQ\nvD4/j7x4gJrGHlYtLOT2tXPNjhQ1fsOgu89FbmaK2VFMJwUhhPgMwzB49g3NsfpuVig737ph4bSa\nsK7P6cHrM8ib5vsfQApCCDHMm7vq+fP+JsoKM7h3w8JJud5zLOtyyA7qs6QghBDn7D3WxnPv1JCd\nnsRf3brU1Cu6maXTMQhAbpYUhBSEEAKA0y0OHv/DYRITrTxw+1LysqbnNngZQfyFFIQQAofTzc9e\nPIjb4+fbNyyioijL7EimOVsQebKTWgpCiOnO5fHx8y0H6egdZOPls7lI2c2OZKrOXhlBnCUFIcQ0\nZhgGT287yrGGHlbML+DG1RVmRzJdZ+8gFiAnQwpCCkKIaezdfWf46EgLc2Zl8Z0bp9fhrCNp7xkg\nJzOZxAT5eJRnQIhp6uipLn771nEyUhP53sbF0/6sYQicINjZ68KeLfsfQApCiGmppcvJz7YcBAzu\n27iIfPlABKCjdxADsOekmh0lJkhBCDHNDLq9PLrlIAMuL19bN59FFXlmR4oZbd0DAMyQggCkIISY\nVgzD4Fdbj9LY1s+VFxazeslMsyPFlPbuwEly9hwZUYEUhBDThmEYPP+nGnYdbaWqJJs7r6oyO1LM\nOTeCyJYRBEhBCDFtvLvvDNs/qWdmfhr337JEdkqH0NZzdgQhBQFSEEJMC7VNvfz2rWNkpCbyozsu\nIHOaX2t5JO3dAyTYrGRnyPMDUhBCTHl9Ax7+/aVD+HwG37lxoWw+GYFhGLR2DWDPSZHzQYKkIISY\nwnr73fyPZ3bT0TvIjasrWDwn3+xIMau3343T5WVmfrrZUWKGFIQQU9gL756gtWuAL14wi5tWzzY7\nTkxr6nACMDM/zeQksUMKQogpasfeRt470ESJPYO7r5037S78M1ZNnVIQwyVE+g2UUuuAhwEb8KTW\n+sFhj88HfgUsB/5Ba/2TcNcVQoxPdV0nv3kzsFP6h7fKEUvhaGrvB5BNTENE9KpRStmAR4F1wELg\nLqXUgmGLdQA/BP51HOsKIcaopdPJv798CID7b1kih2yG6ewIoihPRhBnRfpnxUqgRmtdp7X2AJuB\njUMX0Fq3aa13A56xriuEGJsBl5d/e+EA/YNe7rlOMa80x+xIcaO5o5/czGRSkyPesDJlRFoQxUD9\nkNsNwfsme10hxDCGYfC7t47T3Onk2otL+cIFs8yOFDcG3V46el0yehgm0qo0or2u3Z4ZwY80n+Q3\nVzznHy27YRg8/doR3jvYxJxZ2Xz3tmUxdz2DWH7uq2s7AZhXnjdizljOP1kiLYhGoHTI7VICI4FJ\nW7etzRF2uFhjt2dKfhPFc/7zZX97TwMv/qmGwrw0vn/zIrq7+qOY7vxi/bk/cKwFgBmZSSFzxnr+\n8xlvuUVaELuBKqVUBXAG2ATcNcKyw4+xG8u6QogRHDzZwea3j5OZlsjf3LmMvCyZiXSsTrf0AVBW\nOP1GCaOJqCC01l6l1P3AdgKHqj6lta5WSt0XfPxxpVQRsAvIAvxKqQeAhVrrvlDrRpJHiOnmWH03\nj245iNVq4QdfWiLlME71rQ4SbBY5B2KYiHfXa623AduG3ff4kK+b+eympFHXFUKEp7N3kH9/6SA+\nn8EDty+VI5bGyef309DWT/GMDDlfZBh5NoSIQ30DHh56fj+9Tg+brpzLEpljadyaOwfweP2UFmaY\nHSXmSEEIEWfcHh+PbjnImfZ+rl5RwtUrSsyOFNfqWwI7n8sKpCCGk4IQIo54fX4een4/x+q7WaHs\n3HlVFRaZmjoisoN6ZFIQQsQJr8/PYy8f4lh9NxfNs/PtGxfJdQsmwOnWwAiixC4jiOGkIISIA4Zh\n8Nu3jrP3eDsLynP51g0LY+5EuHjk9xucPNNLYV4aaSkyxcZw8goTIsYZhsGLf6phx95GSuwZ/PDW\nJSQn2cyONSXUt/Yx6PahSrPNjhKTpDKFiHFbPzrFi++eJDsjif9w+1JSkuRtO1GO1XcDUFUihwiH\nIq80IWLYrqOtbHn3JDNyUvm7u5bLiXAT7GxByDkkoUlBCBGj3j/YxC+3VpOUZOO/fGMlWcmyWWki\nGYbBsYZucjOTmZEtxRuK7IMQIgbt0W089Vo1ackJ/M2dy6mUTSATrrG9H4fTgyrLkUOFRyAjCCFi\nTENbH7/ceoSkRCt/c9dyOT5/klSf6gJgQXmuyUlil4wghIgh9a19/K9f72HA5eOr1yoph0lUXScF\ncT5SEELEiJZOJw89t49Bt497Nyxg9ZKZZkeasnx+P7q+C3tOCjOy5ZrdI5GCECIGtPcM8C+b99LT\n7+bLV1dJOUyyU819DLh8LCjPMztKTJOCEMJkvf1ufrJ5H529Lm69Yg5Xrwg5O76YQNWnApcYlc1L\no5OCEMJEAy4v//bCflq6Brh+VTkbLq0wO9K0cDh4Der5UhCjkqOYhDCJc9DLQ8/vo7bJweVLZnLr\nFXPMjjQt9PS50PXdzC3OJjs9yew4MU1GEEKYwOvz8/AL+zl5ppdLFxXx9fXz5Vj8KNmt2zAMuHhB\ngdlRYp4UhBBR5vcb/HJrNTUNPVw8v4B7NyzAapVyiJaPq1uwACuUFMT5SEEIEUV+v8GTrx3ho8Mt\nVM7K4hvXz5dyiKLO3kFqGnpQZTnkZiabHSfmSUEIESXDy+GvNy2TmVmjbNfRVgAuXlBocpL4IAUh\nRBQYhsFz79R8phxSk6Ucou2T6lasFgsXKbvZUeKCFIQQk8wwDH731nHe3F1PYW4qP7pDysEMje39\n1Db1sqAil6w0OXopHBG/SpVS64CHARvwpNb6wRDLPAKsB5zA17XWe4P31wG9gA/waK1XRppHiFhi\nGAa/2nqU9w42UTwjnb/etEwubWmSt3fXA7BmWbHJSeJHRCMIpZQNeBRYBywE7lJKLRi2zPXAXK11\nFfAd4LEhDxvAGq31cikHMRX94f063jvYxOyZmfz4zmWyY9Qk/YMePjjUTH5WCsurZpgdJ25Euolp\nJVCjta7TWnuAzcDGYcvcBDwNoLX+GMhRSg3dQySHcIgpacfeRl5+r5YZ2Sk8cNsF5GRIOZhl5/4m\n3F4/V11UIkeNjUGkBVEM1A+53RC8L9xlDOAtpdRupdS3I8wiRMzY9tEpntmuyUhN5IHblpIlZ+ya\nxu83eOfTBpISrFy+VCZBHItIN4YaYS43UmVfrrU+o5SyA28qpY5qrXeO9o3s9vieH1/ymysa+Xfu\nbeT3O04wIyeV//ndy5hlz5iQ7yvP/fh8dKiJ9p5Brr2knNll45+9Nd6f//GItCAagaFTT5YSGCGM\ntkxJ8D601meC/7YppV4isMlq1IJoa3NEGNk8dnum5DdRNPLvOtrK468cJjnJxl/dsoREjAn5mfLc\nj4/fMHjmtSNYgC8sLhx3hqnw/I9HpJuYdgNVSqkKpVQSsAl4ddgyrwL3ACilVgHdWusWpVSaUioz\neH86cC1wMMI8QpjmSF0nT/zhMEmJVn68aRklBRMzchDjt/toK/WtfaxaVEjxBI3kppOICkJr7QXu\nB7YDR4DntNbVSqn7lFL3BZfZCpxUStUAjwPfD65eBOxUSu0DPgb+qLV+I5I8QpiltqmXn20J/H3z\nw1uXMrc42+REwuf389KfT2KzWth4+Wyz48SliA/I1lpvA7YNu+/xYbfvD7HeSWBZpD9fCLP19rt5\ndMtB3B4f3795sVyEJka8f7CZlq4B1iwvpiA3zew4cUnO2BEiAg1tfTzywgG6HC5uvnw2F8kMoTHB\n4/Xxynu1JCZYufGyCrPjxC0pCCHGqamjn//97B4GXD42Xj6bG1dXmB1JEDh7/ZnXNV0OF+suKZOT\nEyMgBSHEODR19POvm/cx4PLxjevn84Wls8yOJIJ27G3k/UPNzJ6ZxcbVsu8hElIQQoxRQ2sf/7p5\nL71OD7evrZRyiCGnWxz87u3jZKQm8oMvLSY5yWZ2pLgmBSHEGNQ19/KTzfvoH/TylWvmcdVFJWZH\nEkGDbi+PvXIYr8/gWzcsIC8rxexIcU8KQogwHTjRweOvHmJQNivFHK/Pzy9fq6al08m1F5eytFIm\n5JsIUhBChGHngTM8vU1js1n4zk2LuGShXJEsVnh9fv7t9/s5XNfF3OJsbltTaXakKUMKQohR+A2D\nl/58ktc+PEV6SgL/4Y4LqJwlJ8HFCo/Xzy9ePczhui6WVubzvZsXk2CT66BNFCkIIUbg8vh45vWj\nfHi4hYKcVP7qtqXMmpFudiwRNODy8uiWg1Sf6kKV5vC9mxeTnCg7pSeSFIQQIbR0Ofn5lkM0tPUx\ne2YmP7pjGRmpiWbHEkF9Ax5++vw+apscLK+awXc3LiIxQcphoklBCDFMY3s/D/7mU/oGPKxZXsxd\nV1WRmCCbLWKFw+nmX363j4a2PlYvKeLr6+djs8r/n8kgBSHEEB8eauaZNzQut4+7r53HlRfKYayx\n5Ex7Pz99fj8dvYOsXV7M3dfOw2KRK8RNFikIIQgcQ//sG8f44FAzKUk2vrtxESsXyJFKseR0i4Of\nPLcPh9PDTasr2Hj5bCmHSSYFIaa94w3dgWPouwaYPTOT+zYupiAn1exYIsjr8/Piuyd4c1cDfsPg\nnusUa5YPv7KxmAxSEGLa6nK4ePYNzd7j7QCsW1nGLVfMkcMkY0iXw8VjrxyipqEHe04Kt6+Zy4r5\nMmNutEhBiGnH5fGx/ZPTbP3oFG6Pn3mlOdx6xRyqSnLMjiaG2HW0lV9v1/QNeFi5oICvrZtParJ8\nZEWTPNti2vD5DXbuP8PL79XS5XCRlZ7El6+ew+VLZ2KVbdkxw+3x8dLOk2z/pJ6kBCt3XzuPtcuL\nZX+DCaQgxJTn8vj49Fgb23fVc7rZQWKClQ2XlnP9qnL5izTG7D3exjOva3r63RTmpfFXty5hZr6c\nnGgWeXeIKaunz8Ur79fx4eFmXG4fVgtcvnQmN18+W2b6jDHNnU5e2HGCT4+1nSvw9ZeUkZYiJyea\nSQpCTBmGYdDY3s+hk50cru1A1/fg9fnJz0rmmhUl3HjFXBINw+yYYgiP18+2j0/xxw9O4fX5KS/M\n5JsbFlBakGF2NIEUhIhjXp+fnj43R+o6qWns4VBtJ10O17nHS+wZXHlhMV+4YCY2qxX7jAza2hwm\nJhZDHavv5unXj9LU4SQ7I4mvXD2Pi5Rd9jXEECkIMar+QQ+nmx2kJCdgt2ealsNvGDR3ODnR2ENj\nez9nOvo5Vt+N2+M/t0xGaiKXLCxk8ew8Fs3OIydDrkUci06e6eW1D+vYe7wdC3DlhcXc8sVK0lLk\n4yjWyP8RcY5z0ENTh5Oaxh4a2vo43tBDa9cAAKnJNp5bMjkXyPF4fbi9flxuH119LpranTgG3Jxu\n6eN0i4Pefjd+IzB751Az89MoyktjzqwsFs/Op7QgA6tV/vqMVdWnunh3XyOfVLcCUFaYwVevUzJ9\negyLuCCUUuuAhwEb8KTW+sEQyzwCrAecwNe11nvDXVdMDsMwcAx40Ke7OdHYw8mmXk409DB0C31a\ncgKLZudRUZTJ0sr8cQ/9e51u2rsHcbm9OF0+Tpzp4VSzA5vVQpfDxZn2fkbaM5CcaCMvKxnDgGVz\n86kszqa8KBN7TipZaUnjyiOiq8vh4oU/n2TrB3UAlNjT+fLV81BlObI5KcZFVBBKKRvwKHA10Ajs\nUkq9qrWuHrLM9cBcrXWVUuoS4DFgVTjrionl8frZe7yN4/U9HK7rpLnTee4xC1BZkk1ZQQZVJTnM\nmpFOsT097PMDDMOgs9cV2PzT3s+RU504+j30DbjpdLgYad9warKNyuJsMtMSSUq0kZWWxMwZaeSk\nJ5ObmUxZYYZ8iMSpvgEPL+08yc79Z/D6DArz0rj72nksKMuVkV6ciHQEsRKo0VrXASilNgMbgaEf\n8jcBTwNorT9WSuUopYqA2WGsKyLg9fk5UtdJfWsf7x9sprN3ELc3sM0+wWZhaWU+5YWZLJ6TR4k9\nY8znBHQ5XBw82cGhkx0cq++m1+n5zOPJiTYyUhOoLM6mclYWqUkJJCXaKLanM7c4sFlBzkOYelq6\nnLy44wR7dBsGUJCTyqZrFYvLcmTa9DgT6buzGKgfcrsBuCSMZYqBWWGsK8ZowOVl7/E29h1v51hD\nD739bgCSEq3kZaWwbO4MLlJ2ygozxnWBlb4BD2/trmff8XZOt/aduz83M5kVyk5JQQZFeWlUleSQ\nmyk7iaeT4w3dbPvoNPtr2jGA0oIMVswvYP0lZcwsypYjyOJQpAUR7kHlEzaeNPNImokwWfn3HG1h\n6/t1VNd14Aj+JZ+VnsQNq2dTWZLDykVFZKVHts3+06Ot/Muzu+kb8JBgs7Jsnp0VCwq5aH4Bxfb4\n2BQUz6+fWMxuGAZ7jrbywjvHOXyyA4B5ZTncfMVcLr9g1mdeE7GYfyziPf94RFoQjUDpkNulBEYC\noy1TElwmMYx1Pyee/wqx2zMnNH/fgId39jSw/0Q7tU2B75uRmsiGS8u5dFERM/PTzr1BXU4XbU7X\naN9uVDsPnOH/bTtKgs3KHWvnsmb5LFKS/vLyaW/vG2Xt2DDRz380xVp2r8/Pn/Y28uauetp7BgFY\nWpnP9avKmVcamPRw6Gsi1vKP1VTIPx6RFsRuoEopVQGcATYBdw1b5lXgfmCzUmoV0K21blFKdYSx\nrghh0O3l7T0NvLmrnl6nB6vFwqKKXG5fO5eywon/K8fj9fHbt46TlpLIA7ctPbf/QEw/Xp+f7Z+c\nZsfeM3T0DpKcZGPVwkLWXVI2Ka89Ya6ICkJr7VVK3Q9sJ3Co6lNa62ql1H3Bxx/XWm9VSl2vlKoB\n+oFvjLZuJHmmOsMw2K3b2Pz2cbocLhITrNy+tpIrLiie1JOMrFYLqxcXccWKMkrz5EI601Fb9wBv\nfFLPx9Ut9A14SEq0cuWFxdx0+Ww53HgKsxjxNTeNEe/DvPHmb+0e4JnXj3KkrosEm4X1l5Rz3crS\nqE5mNhX3SyQSAAAR8ElEQVSG2fGa36zs7T0DbP3wFDsPNOHzG2SmJXLhPDu3r6kc02svnp97mBL5\nx7WDUI4xjAOnmh38bMsBOntdLJmTz5evqaIwN83sWGIKa+roZ+tHp/jocAs+f+AchptWV3Dx/AK5\n4t40IgURwwzD4I8fnuLV92rx+Q1uvWIO168qj4ujhUR8Ot3i4LUPT7H7aCsGgelMrl9VzqpFhdis\nUgzTjRREDPvDB3W8vLOWvKxkvr5+Potn55sdSUxRtU29vPpeLftPBA5VLSvM4IZLK7hQ2eVqe9OY\nFESMemt3PS/vrGVGdgr/6e6L5KQzMeEMw+DoqS5eeq+WmoYeAOaWZHPDpRUsmZMnI1UhBRGLdh44\nw2/fOk52ehI/vnOZlIOYUH7DYI9uY8feRqpPdQGwqCKX6y+tYL5MoCeGkIKIMbVNvTzzuiYjNZEf\n37lMdkaLCXW4tpPf76jhdEvgJLbFs/O4cXUFVSU5JicTsUgKIob4DYNn3ziGz2/w3Y2LKLHLZRfF\nxGjpcvLM65rqU11YgEsXFXLdyjJKC+JjihRhDimIGPKnTxupberl4vkFLKzIMzuOmAI6ewd5YccJ\nPj7SgkFgxHDrFZWUF8lZz+L8pCBiRFv3AC/sOEF6SgJfvrrK7DgizvUPetj+ST1vfHIat9fPrBnp\nrL+kjNVLZpodTcQRKYgY8ewbx3B5fNxz3UKy5VrKYpwMw2B/TQdPvXaE/kEv2RlJfPWKSi5dXCSH\nq4oxk4KIASfP9HLwZAcLynNZtajQ7DgiTh082cHLO09S2xS4nOttayq56sISkpPGft0PIUAKIia8\n9mEdADdeViE7DMWY9Trd/Hq7Zo9uA+AiZeem1bMpLZCDHERkpCBM1tjWx97j7VQWZ6HK5FBDMTb7\natr55WvV9A14mDMri3uuUzLttpgwUhAm2/bxaQCZY0mMSUNrHy++e4L9JzpITAhcxOm6laXyGhIT\nSgrCRF0OFx8faWHWjHQumDvD7DgiDrg8Pt7aXc+WP5/EMGBeaQ53XVUlh62KSSEFYaI9uhWf32Dt\n8mI5wkScV0NrHz9/6SAtXQOkJNm476ZFLK3Ml1GDmDRSECY6u1Pxwnl2k5OIWObz+3n53RP8etsR\n3B4/V15YzDUrSinMk2lYxOSSgjBJb7+bYw3dzC3Olsn4xIjOzs11qsVBRmoi375hIRepArNjiWlC\nCsIk+2vaMQwZPYjQBlxennqtmk+PBUaZV64oZeNl5WTK9Z9FFElBmORgbScAF8yViwCJz6pv7eOJ\nPxymoa2fyllZ3HJFJV9cURbX10QW8UkKwgQ+v5/quk7ys1Ioku3IIsjt8fHye7Vs/+Q0hgFXXljM\nnVdVyTWghWmkIExQ2+Sgf9DLivkFcgSKAKCmoYfHXjlEl8NFQU4qX75mHksrZXQpzCUFYYLqusDm\npcWzZUrv6c7hdPPcOzV8fKQFv2Gw/pIybrp8NsmJMn+SMN+4C0IplQc8B5QDdcAdWuvuEMutAx4G\nbMCTWusHg/f/V+BbQFtw0f+ktX59vHniSV1zYFtyZXG2yUmEmRrb+/n5loM0dzqZNSOdW6+Yw/Iq\nOWhBxI5IRhB/D7yptf4/Sqm/C97++6ELKKVswKPA1UAjsEsp9arWuhowgIe01g9FkCEunW5xkJ2e\nRI5M6z0t+f0GL757gjd21ePzG1y3spTb186VkyVFzImkIG4Crgh+/TSwg2EFAawEarTWdQBKqc3A\nRqA6+Pi0e0f0DXjo6HWxZI5sX56O2rsH+PUbxzh4soOCnFTuvLqKC+RsaBGjIimIQq11S/DrFiDU\nhQyKgfohtxuAS4bc/qFS6h5gN/DjUJuopppTLYHNS2WFMhXzdOL1+XlzVz2vvFeL2+tnYUUu3795\nCWkpshtQxK5RX51KqTeBohAP/cPQG1prQyllhFgu1H1nPQb89+DX/wT8BLh3tDwAdnt8T0rW2ecG\nYElVQVz+LvGYeSgz8tc19fLYiwc4UttJdkYS99+0mDUXlox51CDPvbniPf94jFoQWutrRnpMKdWi\nlCrSWjcrpWYCrSEWawRKh9wuJTCKQGt9bnml1JPAH8IJHM8nC9ntmRw52QFATqot7n4Xuz0z7jIP\nFe38bo+Pt/Y08OK7JzAMWKHs3LNuPhmpibS3943pe8lzb66pkH88Ihnfvgp8DXgw+O/LIZbZDVQp\npSqAM8Am4C4ApdRMrXVTcLkvAQcjyBI3Gtr6SE6yMSMn1ewoYhIdONHBr7ZV09PnJjMtkXs3LGDJ\nHNnXIOJLJAXxz8DzSql7CR7mCqCUmgU8obXeoLX2KqXuB7YTOMz1qeARTAAPKqWWEdgMVQvcF0GW\nuODx+mnucFJelClHrExRLrePF3ac4O1PG7BZLaxfVcY1K0rliDURl8ZdEFrrTgKHrw6//wywYcjt\nbcC2EMvdM96fHa/OtPfh8xsUz0g3O4qYYIZhsP9EB7/erulyuJg1I53v3LhQLv8p4pocQhFFp4Mn\nyBXb5QimqcThdPOLVw9zuK6LBJuFDZeWc+NlFSTJ2dAizklBRNGp5l4Aiu0ygpgKnIMe3t13htc/\nOY3D6aGyOIs7r6ySM+TFlCEFEUVnRxAlsokprhmGwYETHfz2rWO0dQ+SlGjljrVzufbiUqxW2bck\npg4piCg63ewgPSWBrHS56Eu8OnGmh+feqaGmoQcLsP6SMq6/tJz0lESzowkx4aQgosQwDNq6ByjK\nS5VDHeNQR88gf/iglp37mzCA5VUz+NIX51Ai+5PEFCYFESX9g17cHh95mSlmRxFj4DcMPjnSwtPb\nNS63j5n5adxznUKV5ZodTYhJJwURJZ29gwDkZcnx8PHAMAz26DZe2nmSpg4nyYk2vr5+PquXFGGz\nyhXexPQgBRElnb0uAPKyZAQR62qbetn89nGON/Rgs1q4bHERN1xWIZeHFdOOFESUdDkCI4jcTBlB\nxKouh4s/flDHjr2N5/Yz3L52rhSDmLakIKKkpz8wi2uOHMEUc1xuH+/sbeDV9+twuX3MyE7hG+vn\ns6BCLgkrpjcpiCg5WxBZMidPzOh1unl7dwPvfNpA/6CX9JQENq1TXL5kJgk22c8ghBRElPQGCyJ7\nnCMIv2HgcvtIsFnx+vz4/AZWiwWny0NGaiJWi0WmdghTa5eT7bvqee9AEx6vn4zURG5aXcHVK0rJ\nSJXzGYQ4SwoiSnr73dislpBXEPP6ArO8djoGOVbfg4FBl8NFW/cAfQNeBt1evF4//YPeUX9GarIN\nm9WKxRIoogSbldTkBGZkp1CQm0qCzUqJPYOcjCTSUhKnzf4QwzCoaezhjx+d5s97G2jvCewPys9K\n4bqVpXxh6SySk6RchRhOCiJKevrd5GQm4+h38+nxdrocLuqaeznd0odz0IvX5//cOjarBavVQmqS\njaREG8Uz0klMsJJgs2KxWBh0e8nNTKa9Z5AEmxWH04PP78cwoKN3EJ/fwO35/Pc9KzHBitVqITcj\nGQPIy0wmLzOZ/OwUSuwZZKYlUpCbRmKCNW7+sjYMg16nh46eQU4191J9qovTLX20dg8AkJJkY2ll\nPqsWFnLxggI5ZFWIUUhBRElvvxu318+PHn3/M/fnZyVTlJdGeVEGORnJVJVkY7NZKchJJS8rGavF\nEtGZ1wMuL10OF82dTnx+g7rmXjp6Bhl0+85l6ugdJNFmpaXTOeL3yctKJjcrBZ/XT2ZaEqnJNpIT\nbaSnJJKWkkB6SgLpqYnkZCRjGAaDbh9FeWl4fX6Sk2z0D3jJzUrG6/Uz4PaRmGClq3eQ/kEvyUk2\nfD4Dp8uDy+3DYrHgHPSSlpKA1+fH7zfo7nOTnpKA12/gD/7X0+8+V4jt3QP09Lvp6HV9rmwTbBYu\nXVTIlSvLKctPJTFBRgtChEMKIkqWzMmnuctJXmYKi2fnMWtGOqWFGWSlTe5RTanJCaQmJzArOEHg\nxfMLRlzW4/XR5XDR1OGktWvgXLH4DYNTLQ7OtPXh8xm4vbF36UULkJGWSIk9nfzsFPKzUijKT2Nh\neS72nMD0JvF+2Ughok0KIkp+cMuSmP+ASkywUZCbRkFu6OP+z+bvcgRO+nN5fDgHvfQPegL/DQRG\nKz6/n9TkBM6095OanIArOGLoH/RiGAbZGcl4vD5SkwKjjsAOd8hMSyItJQHDMLBaLQy6fKQmJzDo\n9jIjOxXHgBub9S+bu3IykrDZrBh+g+yMJFKS5OUsxESSd5QYs+myc1uI6U720AkhhAhJCkIIIURI\nUhBCCCFCkoIQQggR0rh3Uiul8oDngHKgDrhDa90dYrlfAhuAVq31krGuL4QQwhyRjCD+HnhTaz0P\neDt4O5RfAesiWF8IIYQJIimIm4Cng18/DdwcaiGt9U6ga7zrCyGEMEckBVGotW4Jft0CFEZ5fSGE\nEJNo1H0QSqk3gaIQD/3D0Btaa0MpZYw3RKTrCyGEmHijFoTW+pqRHlNKtSilirTWzUqpmUDrGH/2\neNa32O2ZY/wxsUXymyue88dzdpD88SiSTUyvAl8Lfv014OUory+EEGISRVIQ/wxco5Q6BlwZvI1S\napZS6rWzCymlfgd8AMxTStUrpb4x2vpCCCFig8UwZNO/EEKIz5MzqYUQQoQkBSGEECIkKQghhBAh\nxfQFg8YyX5NSygbsBhq01jdGLeQowsmvlCoFngEKAAP4hdb6kShHHZpnHfAwYAOe1Fo/GGKZR4D1\ngBP4utZ6b3RTjux8+ZVSXwH+lsBVSh3A97TWB6IedAThPP/B5S4GPiTwmtoSxYijCvP1swb4KZAI\ntGut10Qz42jCeP3MAJ4lcH5YAvCvWuv/F+2coYw0792wZcb03o31EcRY5mt6ADhC4EM2VoST3wP8\nSGu9CFgF/EAptSCKGc8JluyjBObOWgjcNTyLUup6YK7Wugr4DvBY1IOOIJz8wEngi1rrpcA/Ab+I\nbsqRhZn/7HIPAq8TKLqYEObrJwf4OXCj1noxcFvUg44gzOf/fmCv1noZsAb4iVIqVv7QHmneO2B8\n791YL4iw5mtSSpUA1wNPEkNvGMLIr7Vu1lrvC37dB1QDs6KW8LNWAjVa6zqttQfYDGwctsy530lr\n/TGQo5SKlWlSzptfa/2h1ronePNjoCTKGUcTzvMP8EPgBaAtmuHCEE7+LwMvaq0bALTW7VHOOJpw\n8jcBWcGvs4AOrbU3ihlHNMq8d2eN+b0b6wUR7nxNPwX+BvBHJVX4xjTflFKqAlhO4IPLDMVA/ZDb\nDcH7zrdMrHzIhpN/qHuBrZOaaGzOm18pVUzgQ+vsX3+xNGIO5/mvAvKUUn9SSu1WSn01aunOL5z8\nTwCLlFJngP0EtlzEizG/d00fGkU635NS6gYC29z2BrdtRtVEzVellMog8FfhA8GRhBnC/bAZPkqL\nlQ+psHMopdYC3wRWT16cMQsn/8PA3wdfTxZia8QcTv5E4ELgKiAN+FAp9ZHW+vikJgtPOPn/M7BP\na71GKVUJvKmUukBr7ZjkbBNlTO9d0wtiAuZ7ugy4Kbh9LQXIUko9o7W+Z5Iif8ZEzFellEoEXgSe\n1VqbOeVII1A65HYpgb8yRlumJHhfLAgnP0qppQT+ElyntR5tSB5t4eS/CNislAKYAaxXSnm01q9G\nJ+KowslfT2DH9AAwoJT6M3ABEAsFEU7+y4D/CaC1PqGUqgUUgQNkYt2Y37umF8R5nJ2v6UFGmK9J\na/2fCbQ6SqkrgP8YrXIIw3nzB/8KfAo4orV+OLrxPmc3UBXc1HUG2ATcNWyZVwnsqNuslFoFdA/Z\njGa28+ZXSpUBW4C7tdY1UU84uvPm11rPOfu1UupXwB9ipBwgvNfPK8CjwR3CycAlwEPRDDmKcPIf\nBa4G3g9uv1cEDnyIB2N+78b6Poiw5nsaJlY2d0B4+VcDdwNrlVJ7g/+NeCTCZArubLsf2E7giLDn\ntNbVSqn7lFL3BZfZCpxUStUAjwPfNyNrKOHkB/4RyAUeCz7Xn5gU93PCzB+zwnz9HCVw9NUBAvva\nntBaHzEr81BhPv//C1ihlNoPvAX8rda605zEnzVk3jsVnPfum5G+d2UuJiGEECHF+ghCCCGESaQg\nhBBChCQFIYQQIiQpCCGEECFJQQghhAhJCkIIIURIUhBCCCFCkoIQQggR0v8HUwArNymfwVgAAAAA\nSUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8ab50b8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(Leervoltagram.index, Leervoltagram.I)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(-0.4, 1)"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAESCAYAAADnvkIDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8m9W95/GPJe/7JtuJ18RxTnYSCCEQWhLWhAChbIGW\n0oW2dKGX6e3cZebO675m5s5ymXtLuZRehgLtQGkbKISlJSFsDQ17ErLHOYmTOLEd75tky9b6zB9S\nUmNkR7ZsPZL9e79evGJJz2P/LCR9fZbnnATDMBBCCCGGs5hdgBBCiNgkASGEECIkCQghhBAhSUAI\nIYQISQJCCCFESBIQQgghQkqM9BsopdYCDwNW4Emt9YPDHv8K8LdAAuAAvqe13h98rB6wAz7Ao7Ve\nEWk9QgghJkZELQillBV4FFgLLADuUkrNH3bYCeCLWuslwD8BvxjymAGs1lovk3AQQojYEmkLYgVQ\np7WuB1BKbQI2ALVnD9Bafzjk+I+BsmHfIyHCGoQQQkyCSMcgSoGGIbcbg/eN5F5gy5DbBvCWUmqX\nUurbEdYihBBiAkUaEGGv06GUWgN8E/i7IXev0lovA9YBP1BKfSHCeoQQQkyQSLuYmoDyIbfLCbQi\nPkMptQR4Alirte4+e7/Wujn4b7tS6iUCXVY7RvphhmEYCQnSIyWEEGM0rg/OSANiF1CjlKoCzgAb\ngbuGHqCUqgA2A3drreuG3J8OWLXWDqVUBnAt8N9G+2EJCQm0tzsiLNk8NluW1G+ieK4/nmsHqd9s\nNlvWuM6LKCC01l6l1P3ANgLTXJ/SWtcqpe4LPv448I9AHvCYUgr+Mp21BNgcvC8R+I3W+o1I6hFC\nCDFxEuJsuW8j3lNc6jdPPNcfz7WD1G82my1rXF1MciW1EEKIkCQghBBChCQBIYQQIiQJCCGEECFJ\nQAghhAhJAkIIIeLUNddM7uITEhBCCBG3JndlCQkIIYQQIUW8YZAQQgh4/p06dh5pm9DvefG8Iu64\ncs6Efs+xkBaEEEKIkKQFIYQQE+COK+eY+tf+ZJAWhBBCiJAkIIQQIk5N9v44EhBCCBGn3njj3Un9\n/hIQQgghQpKAEEIIEZIEhBBCiJAkIIQQQoQkASGEEKNo6XLyxsenzC7DFBIQQggxAsMw+L8vH+Rn\nz+/F3u82u5yok4AQQogRHDzZxem2PgCs1sm95iAWSUAIIcQIXvvwL11LKUlWEysxhwSEEEKEUNfY\ny9GGHgASrQkkWqffx2XEi/UppdYCDwNW4Emt9YPDHv8K8LcEdrZwAN/TWu8P51whhDDLax/WA2C1\nJJCaPD3XNY0oEpVSVuBRYC2wALhLKTV/2GEngC9qrZcA/wT8YgznCiFE1J1strPveCdzynLIy0oh\nNUUCYjxWAHVa63qttQfYBGwYeoDW+kOtdW/w5sdAWbjnCiGEGV589zgAt3xhNi6Pj7SU6Tf+AJEH\nRCnQMOR2Y/C+kdwLbBnnuUIIMelq67s4XN/Nwqo85lXm4XL7pm0XU6S/tRHugUqpNcA3gVVjPXco\nmy1rPKfFDKnfXPFcfzzXDvFRv8/n58Vf7wbg3psXk1+QidvrJzU5MS7qn2iRBkQTUD7kdjmBlsBn\nKKWWAE8Aa7XW3WM5d7j2dse4izWbzZYl9ZsonuuP59ohfurf9slpTjT1ctmiEnJTE2k6E5jFlJpi\njYv6RzLecIs0IHYBNUqpKuAMsBG4a+gBSqkKYDNwt9a6biznCiFEtHT0DvDSjhNkpiWxMbh16KDb\nB0DaNO1iimgMQmvtBe4HtgGHgee01rVKqfuUUvcFD/tHIA94TCm1Ryn1yWjnRlKPEEKMh2EY/OaN\no7g9fjZeOYes9GQA3J5AQEzXWUwR/9Za663A1mH3PT7k628B3wr3XCGEiLbdup19xzuZV5HLZYtK\nzt1/tgWRmiyzmIQQYtrpH/Twm7eOkmi1cM/aeZ/Z53nA5QUgPTXJrPJMJQEhhJi2DMPgl6/V0tvn\n5sbLKinJT//M4/2DgYDISJOAEEKIaWXbJw3sOdbBvIpc1l9a9bnHnS4PAJkSEEIIMX0ca+zhhe3H\nyclI5r6bFmKxfH45b2ewBZGZLgEhhBDTQrfDxf995RAGBt/dsJCczJSQx0kXkxBCTCN9Ax4eem4v\n3Q4Xt62uRlXkjXjswNkWhASEEEJMbS6Pj0de2E9TRz9XX1TG2hUVox7ff24MIjka5cUcCQghxLTg\n8fp47OWD1DX1snJBMXdeXfOZKa2hOM91MU3PC+UkIIQQU96Ay8vDv9/P/uOdLJ5dwDfXz8dynnCA\nQEBYEhJIkyuphRBi6untd/PIC/s52WxnWU0h392wMOztQ/sHPaSnJp63pTFVSUAIIaas1m4n//yb\nT+ntc3PZohK+cf08rJbwO06cg17SU6fvx+T0/c2FEFOW3zD406dNvLD9OC6Pjy99cTbrL60Mq1tp\nKKfLS3526Cmw04EEhBBiShlwefnla7XsPtpORmoi91y3gEuHLMAXLo/Xh8frJ32ajj+ABIQQYoow\nDIMtH51i60encbq8qPLcUS+CO5+zF8lN14X6QAJCCBHnDMNg+54mtu1soK17gMy0JG6+fBbXX1oZ\n9mB0KOemuMoYhBBCxJeWLidbPjrFnqPt9A96sVoSWFJdwDevn092RuQXtp0NiDQJCCGEiG1en5/a\nU90cOtnF3mMdtPUMAJCXlcKS6kJuX1NN7ji7k0LpHwxcRZ0hXUxCCBF7evvd1DX28N7+Zuqaes+N\nCyQnWlg4K58rLpjJhXNtIVdijZTz7GZBMkgthBDm83j96NPd1J7uZveR9nOtBICC7FQunlfEkjmF\nzK/MIyVpcrcB7XNO770gQAJCCGGC3j4Xvf1u6lscnDjTi9Plo63bSXOnE4/XD0BaSiJLqguonpnN\notkFzJqRHdUa7U43wISMZ8QrCQghxKRyDnp599NGPtjXRGN7H/0DHjrtrs8dl2hNoNSWydyyXOaW\n57BoVgEpyZPbShiNIxgQWdN0syCQgBBCTJKWLidbPzrFBwdb8PkNABKtFtJTE7mguoCs9GTKizOZ\nV5FHVnoSKUnWmFoUz94f6GLKSpcWhBBCTIjmzn5e+vMJdut2DKAoL43l84tZOruA2aXZY17uwiyO\nATdWS4KsxRQJpdRa4GHACjyptX5w2OPzgF8By4B/0Fr/ZMhj9YAd8AEerfWKSOsRQpjD6/Pz5q4G\nXt5xEo/XT2VxFusvreTCuTaKi7Npb3eYXeKYOPo9ZKYnxU2gTYaIAkIpZQUeBa4GmoCdSqlXtda1\nQw7rBH4I3BziWxjAaq11VyR1CCHM1dEzwM82H6ChrY+s9CS+fcMCLlK2uF4m2+50Y8tNM7sMU0Xa\nglgB1Gmt6wGUUpuADcC5gNBatwPtSqn1I3yP+H0FCSHYrdt44o+HcXv8XL54BndcOSfup4a6PT4G\n3T6yp/EANUQeEKVAw5DbjcAlYzjfAN5SSvmAx7XWT0RYjxAiSgZcXja9fYwd+5tJSbJy7/r5XLao\nJK5bDWc5gtdAZE3jKa4QeUAYEZ6/SmvdrJSyAW8qpY5orXeMdoLNlhXhjzSX1G+ueK4/lmrvH/Dw\n6Eu7+FS3UTUjm7/+8oXMmpkz6jmxVP/59A76ACgqyDhXdzzVP1EiDYgmoHzI7XICrYiwaK2bg/+2\nK6VeItBlNWpAxNtA11A2W5bUb6J4rj+Wam/tcvLoSwdoau9nYVUeD9x+AYlWy6j1xVL94TjV1ANA\nUkLgMyfe6h9uvOEWaUDsAmqUUlXAGWAjcNcIx36m3amUSgesWmuHUioDuBb4bxHWI4SYRO09A/zz\nbwNbeF51URkbr5wT0ZLaseovF8lJF9O4aa29Sqn7gW0Eprk+pbWuVUrdF3z8caVUCbATyAb8SqkH\ngAVAEbBZKXW2jt9ord+IpB4hxOSpb7Hz0+f34XB6uH1NNesuqTS7pElzbpkNCYjIaK23AluH3ff4\nkK9b+Gw31Fl9wNJIf74QYvJ12Qf5t9/vp2/Aw1evncuaC8vMLmlSOc5dRT29ZzFNvbahEGJCdfYO\n8n9+u4fefjcb18yZ8uEA0N0XWCsqL2vi9peIRxIQQogR9Q14eOj5vbT1DHDDZZVcc3GozoCpp9s+\nSELC9F7JFWQtJiHECJyDXh55YT/NnU6uW1HOLV+sNrukqOlyuMjJSJ6SA/BjMb1/eyFESF6fn0de\n3E9dUy8rFxRz+5o5ZpcUNX7DoKfPRV5WqtmlmE4CQgjxGYZh8OwbmqMNPSxXNr51w4JptWBdn9OD\n12eQP83HH0ACQggxzJs7G/jzvmYqijO5d/2CSdnvOZZ1O2SA+iwJCCHEOXuOtvPcO3XkZCTzV7cu\nMXVHN7N0OQYByMuWgJCAEEIAcLrVweN/OERSkoUHbl9Cfvb07IOXFsRfSEAIIXA43fzsxQO4PX6+\nfcNCqkqyzS7JNGcDIl8GqSUghJjuXB4fP998gE77IBsun8VFymZ2SabqsksL4iwJCCGmMcMweHrr\nEY429rJ8XhE3rqoyuyTTddkHSQByMyUgJCCEmMbe3XuGjw63MntmNt+5cXpNZx1JR+8AuVkpJCXK\nx6M8A0JMU0dOdfPbt46RmZbE9zYsmvZXDUPgAsEuuwtbjow/gASEENNSa7eTn20+ABjct2EhBfKB\nCECnfRADsOWmmV1KTJCAEGKaGXR7eXTzAQZcXr62dh4Lq/LNLilmtPcMAFAoAQFIQAgxrRiGwa+2\nHKGpvZ8rLyxl1eIZZpcUUzp6AhfJ2XKlRQUSEEJMG4Zh8Pyf6th5pI2ashzuvKrG7JJizrkWRI60\nIEACQohp4929Z9j2SQMzCtK5/5bFMigdQnvv2RaEBARIQAgxLZxstvPbt46SmZbEj+64gKxpvtfy\nSDp6Bki0WsjJlOcHJCCEmPL6Bjz8+0sH8fkMvnPjAuk+GYFhGLR1D2DLTZXrQYIkIISYwuz9bv7H\nM7votA9y46oqFs0uMLukmGXvd+N0eZlRkGF2KTFDAkKIKeyFd4/T1j3AFy+YyU2rZpldTkxr7nQC\nMKMg3eRKYocEhBBT1PY9Tby3v5kyWyZ3Xzt32m38M1bNXRIQwyVG+g2UUmuBhwEr8KTW+sFhj88D\nfgUsA/5Ba/2TcM8VQoxPbX0Xv3kzMCj9w1tlxlI4mjv6AaSLaYiIXjVKKSvwKLAWWADcpZSaP+yw\nTuCHwL+O41whxBi1djn595cPAnD/LYtlymaYzrYgSvKlBXFWpH9WrADqtNb1WmsPsAnYMPQArXW7\n1noX4BnruUKIsRlwefm3F/bTP+jlnusUc8tzzS4pbrR09pOXlUJaSsQdK1NGpAFRCjQMud0YvG+y\nzxVCDGMYBr976xgtXU6uvbicL1ww0+yS4sag20un3SWth2EijUoj2ufabFkR/EjzSf3miuf6R6vd\nMAyefu0w7x1oZvbMHL5729KY288glp/72pNdAMytzB+xzliuf7JEGhBNQPmQ2+UEWgKTdm57uyPs\n4mKNzZYl9Zsonus/X+1v727kxT/VUZyfzvdvXkhPd38Uqzu/WH/u9x9tBaAwKzlknbFe//mMN9wi\nDYhdQI1Sqgo4A2wE7hrh2OFz7MZyrhBiBAdOdLLp7WNkpSfxN3cuJT9bViIdq9OtfQBUFE+/VsJo\nIgoIrbVXKXU/sI3AVNWntNa1Sqn7go8/rpQqAXYC2YBfKfUAsEBr3Rfq3EjqEWK6OdrQw6ObD2Cx\nJPCDLy2WcBinhjYHidYEuQZimIiH67XWW4Gtw+57fMjXLXy2K2nUc4UQ4emyD/LvLx3A5zN44PYl\nMmNpnHx+P43t/ZQWZsr1IsPIsyFEHOob8PDQ8/uwOz1svHIOi2WNpXFr6RrA4/VTXpxpdikxRwJC\niDjj9vh4dPMBznT0c/XyMq5eXmZ2SXGtoTUw+FxRJAExnASEEHHE6/Pz0PP7ONrQw3Jl486rakiQ\npakjIgPUI5OAECJOeH1+Hnv5IEcberhoro1v37hQ9i2YAKfbAi2IMpu0IIaTgBAiDhiGwW/fOsae\nYx3Mr8zjWzcsiLkL4eKR329w4oyd4vx00lNliY3h5BUmRIwzDIMX/1TH9j1NlNky+eGti0lJtppd\n1pTQ0NbHoNuHKs8xu5SYJJEpRIzb8tEpXnz3BDmZyfyH25eQmixv24lytKEHgJoymSIcirzShIhh\nO4+0sfndExTmpvF3dy2TC+Em2NmAkGtIQpOAECJGvX+gmV9uqSU52cp/+cYKslOkW2kiGYbB0cYe\n8rJSKMyR4A1FxiCEiEG7dTtPvVZLekoif3PnMqqlC2TCNXX043B6UBW5MlV4BNKCECLGNLb38cst\nh0lOsvA3dy2T+fmTpPZUNwDzK/NMriR2SQtCiBjS0NbH//r1bgZcPr56rZJwmES19RIQ5yMBIUSM\naO1y8tBzexl0+7h3/XxWLZ5hdklTls/vRzd0Y8tNpTBH9uweiQSEEDGgo3eAf9m0h95+N1++ukbC\nYZKdauljwOVjfmW+2aXENAkIIUxm73fzk0176bK7uPWK2Vy9POTq+GIC1Z4KbDEq3Uujk4AQwkQD\nLi//9sI+WrsHuH5lJesvrTK7pGnhUHAP6nkSEKOSWUxCmMQ56OWh5/dystnB5YtncOsVs80uaVro\n7XOhG3qYU5pDTkay2eXENGlBCGECr8/Pwy/s48QZO5cuLOHr6+bJXPwo2aXbMQy4eH6R2aXEPAkI\nIaLM7zf45ZZa6hp7uXheEfeun4/FIuEQLR/XtpIALFcSEOcjASFEFPn9Bk++dpiPDrVSPTObb1w/\nT8Ihirrsg9Q19qIqcsnLSjG7nJgnASFElAwPh7/euFRWZo2ynUfaALh4frHJlcQHCQghosAwDJ57\np+4z4ZCWIuEQbZ/UtmFJSOAiZTO7lLggASHEJDMMg9+9dYw3dzVQnJfGj+6QcDBDU0c/J5vtzK/K\nIztdZi+FI+JXqVJqLfAwYAWe1Fo/GOKYR4B1gBP4utZ6T/D+esAO+ACP1npFpPUIEUsMw+BXW47w\n3oFmSgsz+OuNS2VrS5O8vasBgNVLS02uJH5E1IJQSlmBR4G1wALgLqXU/GHHXA/M0VrXAN8BHhvy\nsAGs1lovk3AQU9Ef3q/nvQPNzJqRxY/vXCoDoybpH/TwwcEWCrJTWVZTaHY5cSPSLqYVQJ3Wul5r\n7QE2ARuGHXMT8DSA1vpjIFcpNXSESKZwiClp+54mXn7vJIU5qTxw2wXkZko4mGXHvmbcXj9XXVQm\ns8bGINKAKAUahtxuDN4X7jEG8JZSapdS6tsR1iJEzNj60Sme2abJTEvigduWkC1X7JrG7zd459NG\nkhMtXL5EFkEci0g7Q40wjxspsi/XWp9RStmAN5VSR7TWO0b7RjZbfK+PL/WbKxr179jTxO+3H6cw\nN43/+d3LmGnLnJDvK8/9+Hx0sJmO3kGuvaSSWRXjX7013p//8Yg0IJqAoUtPlhNoIYx2TFnwPrTW\nZ4L/tiulXiLQZTVqQLS3OyIs2Tw2W5bUb6Jo1L/zSBuPv3KIlGQrf3XLYpIwJuRnynM/Pn7D4JnX\nDpMAfGFR8bhrmArP/3hE2sW0C6hRSlUppZKBjcCrw455FbgHQCm1EujRWrcqpdKVUlnB+zOAa4ED\nEdYjhGkO13fxxB8OkZxk4ccbl1JWNDEtBzF+u4600dDWx8qFxZROUEtuOokoILTWXuB+YBtwGHhO\na12rlLpPKXVf8JgtwAmlVB3wOPD94OklwA6l1F7gY+CPWus3IqlHCLOcbLbzs82Bv29+eOsS5pTm\nmFyR8Pn9vPTnE1gtCWy4fJbZ5cSliCdka623AluH3ff4sNv3hzjvBLA00p8vhNns/W4e3XwAt8fH\n929eJJvQxIj3D7TQ2j3A6mWlFOWlm11OXJIrdoSIQGN7H4+8sJ9uh4ubL5/FRbJCaEzweH288t5J\nkhIt3HhZldnlxC0JCCHGqbmzn//97G4GXD42XD6LG1dVmV2SIHD1+jOva7odLtZeUiEXJ0ZAAkKI\ncWju7OdfN+1lwOXjG9fP4wtLZppdkgjavqeJ9w+2MGtGNhtWydhDJCQghBijxrY+/nXTHuxOD7ev\nqZZwiCGnWx387u1jZKYl8YMvLSIl2Wp2SXFNAkKIMahvsfOTTXvpH/TylWvmctVFZWaXJIIG3V4e\ne+UQXp/Bt26YT352qtklxT0JCCHCtP94J4+/epBB6VaKOV6fn1++Vktrl5NrLy5nSbUsyDcRJCCE\nCMOO/Wd4eqvGak3gOzct5JIFsiNZrPD6/Pzb7/dxqL6bOaU53La62uySpgwJCCFG4TcMXvrzCV77\n8BQZqYn8hzsuoHqmXAQXKzxeP7949RCH6rtZUl3A925eRKJV9kGbKBIQQozA5fHxzOtH+PBQK0W5\nafzVbUuYWZhhdlkiaMDl5dHNB6g91Y0qz+V7Ny8iJUkGpSeSBIQQIbR2O/n55oM0tvcxa0YWP7pj\nKZlpSWaXJYL6Bjz89Pm9nGx2sKymkO9uWEhSooTDRJOAEGKYpo5+HvzNp/QNeFi9rJS7rqohKVG6\nLWKFw+nmX363l8b2PlYtLuHr6+Zhtcj/n8kgASHEEB8ebOGZNzQut4+7r53LlRfKNNZYcqajn58+\nv49O+yBrlpVy97VzSUiQHeImiwSEEATm0D/7xlE+ONhCarKV725YyIr5MlMplpxudfCT5/bicHq4\naVUVGy6fJeEwySQgxLR3rLEnMIe+e4BZM7K4b8MiinLTzC5LBHl9fl589zhv7mzEbxjcc51i9bLh\nOxuLySABIaatboeLZ9/Q7DnWAcDaFRXccsVsmSYZQ7odLh575SB1jb3YclO5ffUcls+TFXOjRQJC\nTDsuj49tn5xmy0encHv8zC3P5dYrZlNTlmt2aWKInUfa+PU2Td+AhxXzi/ja2nmkpchHVjTJsy2m\nDZ/fYMe+M7z83km6HS6yM5L58tWzuXzJDCzSlx0z3B4fL+04wbZPGkhOtHD3tXNZs6xUxhtMIAEh\npjyXx8enR9vZtrOB0y0OkhItrL+0kutXVspfpDFmz7F2nnld09vvpjg/nb+6dTEzCuTiRLPIu0NM\nWb19Ll55v54PD7XgcvuwJMDlS2Zw8+WzZKXPGNPS5eSF7cf59Gj7uQBfd0kF6alycaKZJCDElGEY\nBk0d/Rw80cWhk53ohl68Pj8F2Slcs7yMG6+YQ5JhmF2mGMLj9bP141P88YNTeH1+Kouz+Ob6+ZQX\nZZpdmkACQsQxr89Pb5+bw/Vd1DX1cvBkF90O17nHy2yZXHlhKV+4YAZWiwVbYSbt7Q4TKxZDHW3o\n4enXj9Dc6SQnM5mvXD2Xi5RNxhpiiASEGFX/oIfTLQ5SUxKx2bJMq8NvGLR0Ojne1EtTRz9nOvs5\n2tCD2+M/d0xmWhKXLChm0ax8Fs7KJzdT9iKORSfO2Hntw3r2HOsgAbjywlJu+WI16anycRRr5P+I\nOMc56KG500ldUy+N7X0ca+ylrXsAgLQUK88tnpwNcjxeH26vH5fbR3efi+YOJ44BN6db+zjd6sDe\n78ZvBFbvHGpGQTol+enMnpnNolkFlBdlYrHIX5+xqvZUN+/ubeKT2jYAKooz+ep1SpZPj2ERB4RS\nai3wMGAFntRaPxjimEeAdYAT+LrWek+454rJYRgGjgEP+nQPx5t6OdFs53hjL0N76NNTElk4K5+q\nkiyWVBeMu+lvd7rp6BnE5fbidPk4fqaXUy0OrJYEuh0uznT0M9LIQEqSlfzsFAwDls4poLo0h8qS\nLGy5aWSnJ4+rHhFd3Q4XL/z5BFs+qAegzJbBl6+ei6rIle6kGBdRQCilrMCjwNVAE7BTKfWq1rp2\nyDHXA3O01jVKqUuAx4CV4ZwrJpbH62fPsXaONfRyqL6Lli7nuccSgOqyHCqKMqkpy2VmYQaltoyw\nrw8wDIMuuyvQ/dPRz+FTXTj6PfQNuOlyuBhpbDgtxUp1aQ5Z6UkkJ1nJTk9mRmE6uRkp5GWlUFGc\nKR8icapvwMNLO06wY98ZvD6D4vx07r52LvMr8qSlFycibUGsAOq01vUASqlNwAZg6If8TcDTAFrr\nj5VSuUqpEmBWGOeKCHh9fg7Xd9HQ1sf7B1rosg/i9gb67BOtCSypLqCyOItFs/Mps2WO+ZqAboeL\nAyc6OXiik6MNPdidns88npJkJTMtkerSHKpnZpOWnEhykpVSWwZzSgPdCnIdwtTT2u3kxe3H2a3b\nMYCi3DQ2XqtYVJEry6bHmUjfnaVAw5DbjcAlYRxTCswM41wxRgMuL3uOtbP3WAdHG3ux97sBSE6y\nkJ+dytI5hVykbFQUZ45rg5W+AQ9v7Wpg77EOTrf1nbs/LyuF5cpGWVEmJfnp1JTlkpclg8TTybHG\nHrZ+dJp9dR0YQHlRJsvnFbHukgpmlOTIDLI4FGlAhDupfMLak2bOpJkIk1X/7iOtbHm/ntr6ThzB\nv+SzM5K5YdUsqstyWbGwhOyMyPrsPz3Sxr88u4u+AQ+JVgtL59pYPr+Yi+YVUWqLj66geH79xGLt\nhmGw+0gbL7xzjEMnOgGYW5HLzVfM4fILZn7mNRGL9Y9FvNc/HpEGRBNQPuR2OYGWwGjHlAWPSQrj\n3M+J579CbLasCa2/b8DDO7sb2Xe8g5PNge+bmZbE+ksruXRhCTMK0s+9QV1OF+1O12jfblQ79p/h\n/209QqLVwh1r5rB62UxSk//y8uno6Bvl7Ngw0c9/NMVa7V6fnz/taeLNnQ109A4CsKS6gOtXVjK3\nPLDo4dDXRKzVP1ZTof7xiDQgdgE1Sqkq4AywEbhr2DGvAvcDm5RSK4EerXWrUqozjHNFCINuL2/v\nbuTNnQ3YnR4sCQksrMrj9jVzqCie+L9yPF4fv33rGOmpSTxw25Jz4wdi+vH6/Gz75DTb95yh0z5I\nSrKVlQuKWXtJxaS89oS5IgoIrbVXKXU/sI3AVNWntNa1Sqn7go8/rrXeopS6XilVB/QD3xjt3Ejq\nmeoMw2CXbmfT28fodrhISrRw+5pqrrigdFIvMrJYEli1qIQrlldQni8b6UxH7T0DvPFJAx/XttI3\n4CE5ycI2jNGRAAASyUlEQVSVF5Zy0+WzZLrxFJZgxNfaNEa8N/PGW39bzwDPvH6Ew/XdJFoTWHdJ\nJdetKI/qYmZToZkdr/WbVXtH7wBbPjzFjv3N+PwGWelJXDjXxu2rq8f02ovn5x6mRP3jGiCUOYZx\n4FSLg59t3k+X3cXi2QV8+ZoaivPSzS5LTGHNnf1s+egUHx1qxecPXMNw06oqLp5XJDvuTSMSEDHM\nMAz++OEpXn3vJD6/wa1XzOb6lZVxMVtIxKfTrQ5e+/AUu460YRBYzuT6lZWsXFiM1SLBMN1IQMSw\nP3xQz8s7TpKfncLX181j0awCs0sSU9TJZjuvvneSfccDU1UrijO54dIqLlQ22W1vGpOAiFFv7Wrg\n5R0nKcxJ5T/dfZFcdCYmnGEYHDnVzUvvnaSusReAOWU53HBpFYtn50tLVUhAxKId+8/w27eOkZOR\nzI/vXCrhICaU3zDYrdvZvqeJ2lPdACysyuP6S6uYJwvoiSEkIGLMyWY7z7yuyUxL4sd3LpXBaDGh\nDp3s4vfb6zjdGriIbdGsfG5cVUVNWa7JlYlYJAERQ/yGwbNvHMXnN/juhoWU2WTbRTExWrudPPO6\npvZUNwnApQuLuW5FBeVF8bFEijCHBEQM+dOnTZxstnPxvCIWVOWbXY6YArrsg7yw/TgfH27FINBi\nuPWKaipL5KpncX4SEDGivWeAF7YfJyM1kS9fXWN2OSLO9Q962PZJA298chq318/MwgzWXVLBqsUz\nzC5NxBEJiBjx7BtHcXl83HPdAnJkL2UxToZhsK+uk6deO0z/oJeczGS+ekU1ly4qkemqYswkIGLA\niTN2DpzoZH5lHisXFptdjohTB0508vKOE5xsDmznetvqaq66sIyU5LHv+yEESEDEhNc+rAfgxsuq\nZMBQjJnd6ebX2zS7dTsAFykbN62aRXmRTHIQkZGAMFlTex97jnVQXZqNqpCphmJs9tZ18MvXaukb\n8DB7Zjb3XKdk2W0xYSQgTLb149MAssaSGJPGtj5efPc4+453kpQY2MTpuhXl8hoSE0oCwkTdDhcf\nH25lZmEGF8wpNLscEQdcHh9v7Wpg859PYBgwtzyXu66qkWmrYlJIQJhot27D5zdYs6xUZpiI82ps\n6+PnLx2gtXuA1GQr9920kCXVBdJqEJNGAsJEZwcVL5xrM7kSEct8fj8vv3ucX289jNvj58oLS7lm\neTnF+bIMi5hcEhAmsfe7OdrYw5zSHFmMT4zo7Npcp1odZKYl8e0bFnCRKjK7LDFNSECYZF9dB4Yh\nrQcR2oDLy1Ov1fLp0UAr88rl5Wy4rJIs2f9ZRJEEhEkOnOwC4II5sgmQ+KyGtj6e+MMhGtv7qZ6Z\nzS1XVPPF5RVxvSeyiE8SECbw+f3U1ndRkJ1KifQjiyC3x8fL751k2yenMQy48sJS7ryqRvaAFqaR\ngDDByWYH/YNels8rkhkoAoC6xl4ee+Ug3Q4XRblpfPmauSypltalMJcEhAlq6wPdS4tmyZLe053D\n6ea5d+r4+HArfsNg3SUV3HT5LFKSZP0kYb5xB4RSKh94DqgE6oE7tNY9IY5bCzwMWIEntdYPBu//\nr8C3gPbgof9Ja/36eOuJJ/Utgb7k6tIckysRZmrq6Ofnmw/Q0uVkZmEGt14xm2U1MmlBxI5IWhB/\nD7yptf4/Sqm/C97++6EHKKWswKPA1UATsFMp9arWuhYwgIe01g9FUENcOt3qICcjmVxZ1nta8vsN\nXnz3OG/sbMDnN7huRTm3r5kjF0uKmBNJQNwEXBH8+mlgO8MCAlgB1Gmt6wGUUpuADUBt8PFp947o\nG/DQaXexeLb0L09HHT0D/PqNoxw40UlRbhp3Xl3DBXI1tIhRkQREsda6Nfh1KxBqI4NSoGHI7Ubg\nkiG3f6iUugfYBfw4VBfVVHOqNdC9VFEsSzFPJ16fnzd3NvDKeydxe/0sqMrj+zcvJj1VhgFF7Br1\n1amUehMoCfHQPwy9obU2lFJGiONC3XfWY8B/D379T8BPgHtHqwfAZovvRcm6+twALK4pisvfJR5r\nHsqM+uub7Tz24n4On+wiJzOZ+29axOoLy8bcapDn3lzxXv94jBoQWutrRnpMKdWqlCrRWrcopWYA\nbSEOawLKh9wuJ9CKQGt97nil1JPAH8IpOJ4vFrLZsjh8ohOA3DRr3P0uNltW3NU8VLTrd3t8vLW7\nkRffPY5hwHJl456188hMS6Kjo29M30uee3NNhfrHI5L27avA14AHg/++HOKYXUCNUqoKOANsBO4C\nUErN0Fo3B4/7EnAgglriRmN7HynJVgpz08wuRUyi/cc7+dXWWnr73GSlJ3Hv+vksni1jDSK+RBIQ\n/ww8r5S6l+A0VwCl1EzgCa31eq21Vyl1P7CNwDTXp4IzmAAeVEotJdANdRK4L4Ja4oLH66el00ll\nSZbMWJmiXG4fL2w/ztufNmK1JLBuZQXXLC+XGWsiLo07ILTWXQSmrw6//wywfsjtrcDWEMfdM96f\nHa/OdPTh8xuUFmaYXYqYYIZhsO94J7/epul2uJhZmMF3blwg23+KuCZTKKLodPACuVKbzGCaShxO\nN7949RCH6rtJtCaw/tJKbrysimS5GlrEOQmIKDrVYgeg1CYtiKnAOejh3b1neP2T0zicHqpLs7nz\nyhq5Ql5MGRIQUXS2BVEmXUxxzTAM9h/v5LdvHaW9Z5DkJAt3rJnDtReXY7HI2JKYOiQgouh0i4OM\n1ESyM2TTl3h1/Ewvz71TR11jLwnAuksquP7SSjJSk8wuTYgJJwERJYZh0N4zQEl+mkx1jEOdvYP8\n4YOT7NjXjAEsqynkS1+cTZmMJ4kpTAIiSvoHvbg9PvKzUs0uRYyB3zD45HArT2/TuNw+ZhSkc891\nClWRZ3ZpQkw6CYgo6bIPApCfLfPh44FhGOzW7by04wTNnU5Skqx8fd08Vi0uwWqRHd7E9CABESVd\ndhcA+dnSgoh1J5vtbHr7GMcae7FaErhsUQk3XFYl28OKaUcCIkq6HYEWRF6WtCBiVbfDxR8/qGf7\nnqZz4wy3r5kjwSCmLQmIKOntD6zimiszmGKOy+3jnT2NvPp+PS63j8KcVL6xbh7zq2RLWDG9SUBE\nydmAyJY1eWKG3enm7V2NvPNpI/2DXjJSE9m4VnH54hkkWmWcQQgJiCixBwMiZ5wtCL9h4HL7SLRa\n8Pr8+PwGloQEnC4PmWlJWBISZGmHMLV1O9m2s4H39jfj8frJTEviplVVXL28nMw0uZ5BiLMkIKLE\n3u/GakkIuYOY1xdY5bXLMcjRhl4MDLodLtp7Bugb8DLo9uL1+ukf9I76M9JSrFgtFhISAkGUaLWQ\nlpJIYU4qRXlpJFotlNkyyc1MJj01adqMhxiGQV1TL3/86DR/3tNIR29gPKggO5XrVpTzhSUzSUmW\ncBViOAmIKOntd5OblYKj382nxzrodriob7FzurUP56AXr8//uXOslgQslgTSkq0kJ1kpLcwgKdFC\notVCQkICg24veVkpdPQOkmi14HB68Pn9GAZ02gfx+Q3cns9/37OSEi1YLAnkZaZgAPlZKeRnpVCQ\nk0qZLZOs9CSK8tJJSrTEzV/WhmFgd3ro7B3kVIud2lPdnG7to61nAIDUZCtLqgtYuaCYi+cXyZRV\nIUYhAREl9n43bq+fHz36/mfuL8hOoSQ/ncqSTHIzU6gpy8FqtVCUm0Z+dgqWhISIrrwecHnpdrho\n6XLi8xvUt9jp7B1k0O07V1OnfZAkq4XWLueI3yc/O4W87FR8Xj9Z6cmkpVhJSbKSkZpEemoiGamJ\nZKQlkZuZgmEYDLp9lOSn4/X5SUm20j/gJS87Ba/Xz4DbR1KihW77IP2DXlKSrfh8Bk6XB5fbR0JC\nAs5BL+mpiXh9fvx+g54+NxmpiXj9Bv7gf7397nOB2NEzQG+/m06763Nhm2hN4NKFxVy5opKKgjSS\nEqW1IEQ4JCCiZPHsAlq6neRnpbJoVj4zCzMoL84kO31yZzWlpSSSlpLIzOACgRfPKxrxWI/XR7fD\nRXOnk7bugXPB4jcMTrU6ONPeh89n4PbG3taLCUBmehJltgwKclIpyE6lpCCdBZV52HIDy5vE+7aR\nQkSbBESU/OCWxTH/AZWUaKUoL52ivNDz/s/W3+0IXPTn8vhwDnrpH/QE/hsItFZ8fj9pKYmc6egn\nLSURV7DF0D/oxTAMcjJT8Hh9pCUHWh2BAXfISk8mPTURwzCwWBIYdPlIS0lk0O2lMCcNx4Abq+Uv\n3V25mclYrRYMv0FOZjKpyfJyFmIiyTtKjNl0GdwWYrqTETohhBAhSUAIIYQISQJCCCFESBIQQggh\nQhr3ILVSKh94DqgE6oE7tNY9IY77JbAeaNNaLx7r+UIIIcwRSQvi74E3tdZzgbeDt0P5FbA2gvOF\nEEKYIJKAuAl4Ovj108DNoQ7SWu8Ausd7vhBCCHNEEhDFWuvW4NetQHGUzxdCCDGJRh2DUEq9CZSE\neOgfht7QWhtKKWO8RUR6vhBCiIk3akBora8Z6TGlVKtSqkRr3aKUmgG0jfFnj+f8BJsta4w/JrZI\n/eaK5/rjuXaQ+uNRJF1MrwJfC379NeDlKJ8vhBBiEkUSEP8MXKOUOgpcGbyNUmqmUuq1swcppX4H\nfADMVUo1KKW+Mdr5QgghYkOCYUjXvxBCiM+TK6mFEEKEJAEhhBAiJAkIIYQQIcX0hkFjWa9JKWUF\ndgGNWusbo1bkKMKpXylVDjwDFAEG8Aut9SNRLnVoPWuBhwEr8KTW+sEQxzwCrAOcwNe11nuiW+XI\nzle/UuorwN8S2KXUAXxPa70/6oWOIJznP3jcxcCHBF5Tm6NY4qjCfP2sBn4KJAEdWuvV0axxNGG8\nfgqBZwlcH5YI/KvW+v9Fu85QRlr3btgxY3rvxnoLYizrNT0AHCbwIRsrwqnfA/xIa70QWAn8QCk1\nP4o1nhMM2UcJrJ21ALhreC1KqeuBOVrrGuA7wGNRL3QE4dQPnAC+qLVeAvwT8IvoVjmyMOs/e9yD\nwOsEgi4mhPn6yQV+DtyotV4E3Bb1QkcQ5vN/P7BHa70UWA38RCkVK39oj7TuHTC+926sB0RY6zUp\npcqA64EniaE3DGHUr7Vu0VrvDX7dB9QCM6NW4WetAOq01vVaaw+wCdgw7Jhzv5PW+mMgVykVK8uk\nnLd+rfWHWuve4M2PgbIo1ziacJ5/gB8CLwDt0SwuDOHU/2XgRa11I4DWuiPKNY4mnPqbgezg19lA\np9baG8UaRzTKundnjfm9G+sBEe56TT8F/gbwR6Wq8I1pvSmlVBWwjMAHlxlKgYYhtxuD953vmFj5\nkA2n/qHuBbZMakVjc976lVKlBD60zv71F0st5nCe/xogXyn1J6XULqXUV6NW3fmFU/8TwEKl1Blg\nH4Gei3gx5veu6U2jSNd7UkrdQKDPbU+wbzOqJmq9KqVUJoG/Ch8ItiTMEO6HzfBWWqx8SIVdh1Jq\nDfBNYNXklTNm4dT/MPD3wddTArHVYg6n/iTgQuAqIB34UCn1kdb62KRWFp5w6v/PwF6t9WqlVDXw\nplLqAq21Y5Jrmyhjeu+aHhATsN7TZcBNwf61VCBbKfWM1vqeSSr5MyZivSqlVBLwIvCs1trMJUea\ngPIht8sJ/JUx2jFlwftiQTj1o5RaQuAvwbVa69Ga5NEWTv0XAZuUUgCFwDqllEdr/Wp0ShxVOPU3\nEBiYHgAGlFJ/Bi4AYiEgwqn/MuB/AmitjyulTgKKwASZWDfm967pAXEeZ9drepAR1mvSWv9nAqmO\nUuoK4D9GKxzCcN76g38FPgUc1lo/HN3yPmcXUBPs6joDbATuGnbMqwQG6jYppVYCPUO60cx23vqV\nUhXAZuBurXVd1Csc3Xnr11rPPvu1UupXwB9iJBwgvNfPK8CjwQHhFOAS4KFoFjmKcOo/AlwNvB/s\nv1cEJj7EgzG/d2N9DCKs9Z6GiZXuDgiv/lXA3cAapdSe4H8jzkSYTMHBtvuBbQRmhD2nta5VSt2n\nlLoveMwW4IRSqg54HPi+GbWGEk79wD8CecBjwef6E5PK/Zww649ZYb5+jhCYfbWfwFjbE1rrw2bV\nPFSYz///ApYrpfYBbwF/q7XuMqfizxqy7p0Krnv3zUjfu7IWkxBCiJBivQUhhBDCJBIQQgghQpKA\nEEIIEZIEhBBCiJAkIIQQQoQkASGEECIkCQghxkkpVRW8knb4/bG2JpgQ4yIBIYQQIiQJCCGEECFJ\nQAghhAhJAkKI8fvcWENw8UVZv0ZMCRIQQoxfN5Az7L4iRt/VS4i4IQEhxDgFN4k5ppS6Zcjd3wHe\nNKkkISaUrOYqRASUUjUEtv8sBJIJbEP5g1hZAlqISEhACCGECEm6mIQQQoQkASGEECIkCQghhBAh\nSUAIIYQISQJCCCFESBIQQgghQpKAEEIIEZIEhBBCiJD+PxbKT9xVwAq+AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8c5d0f0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Leervoltagram.plot()\n",
"plt.xlim([-0.4,1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment