Created
March 24, 2017 18:35
-
-
Save AashishTiwari/b070128993a2740f6d750187d0ce5f75 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Modern NLP on NewsAPI dataset" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Credits:\n", | |
"(http://pydata.org/dc2016/schedule/presentation/11/). To view the video of the presentation on YouTube, see [here](https://www.youtube.com/watch?v=6zm9NC9uRkk)._" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Our Trail Map\n", | |
"An end-to-end data science & natural language processing pipeline, starting with **raw data** and running through **preparing**, **modeling**, **visualizing**, and **analyzing** the data. We'll touch on the following points:\n", | |
"1. A tour of the dataset\n", | |
"1. Introduction to text processing with spaCy\n", | |
"1. Automatic phrase modeling\n", | |
"1. Topic modeling with LDA\n", | |
"1. Visualizing topic models with pyLDAvis\n", | |
"1. Word vector models with word2vec\n", | |
"1. Visualizing word2vec with t-SNE" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## The NewsAPI Org Dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"author,description,publishedAt,source,title,url,urlToImage,category,scraping_date\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"import os\n", | |
"import codecs\n", | |
"\n", | |
"data_directory = os.path.join('post2')\n", | |
"\n", | |
"businesses_filepath = os.path.join(data_directory,\n", | |
" 'news.csv')\n", | |
"\n", | |
"with codecs.open(businesses_filepath, encoding='utf_8') as f:\n", | |
" first_business_record = f.readline() \n", | |
"\n", | |
"print(first_business_record)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"['general' 'technology' 'sport' 'business' 'entertainment' 'gaming' 'music'\n", | |
" 'science-and-nature']\n" | |
] | |
} | |
], | |
"source": [ | |
"import pandas as pd\n", | |
"df = pd.read_csv(businesses_filepath)\n", | |
"categories = df.category.unique()\n", | |
"print(categories)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"intermediate_directory = os.path.join('d:', 'news_api_intermediate')\n", | |
"\n", | |
"desc_txt_filepath = os.path.join(intermediate_directory,\n", | |
" 'news_desc_all.txt')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df1 = pd.DataFrame(df.description)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"df1.to_csv(desc_txt_filepath, header=None, index=None, sep=' ', encoding='utf-8')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## spaCy — Industrial-Strength NLP in Python" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"[**spaCy**](https://spacy.io) is an industrial-strength natural language processing (_NLP_) library for Python. spaCy's goal is to take recent advancements in natural language processing out of research papers and put them in the hands of users to build production software.\n", | |
"\n", | |
"spaCy handles many tasks commonly associated with building an end-to-end natural language processing pipeline:\n", | |
"- Tokenization\n", | |
"- Text normalization, such as lowercasing, stemming/lemmatization\n", | |
"- Part-of-speech tagging\n", | |
"- Syntactic dependency parsing\n", | |
"- Sentence boundary detection\n", | |
"- Named entity recognition and annotation\n", | |
"\n", | |
"In the \"batteries included\" Python tradition, spaCy contains built-in data and models which you can use out-of-the-box for processing general-purpose English language text:\n", | |
"- Large English vocabulary, including stopword lists\n", | |
"- Token \"probabilities\"\n", | |
"- Word vectors\n", | |
"\n", | |
"spaCy is written in optimized Cython, which means it's _fast_. According to a few independent sources, it's the fastest syntactic parser available in any language. Key pieces of the spaCy parsing pipeline are written in pure C, enabling efficient multithreading (i.e., spaCy can release the _GIL_)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import spacy\n", | |
"import pandas as pd\n", | |
"import itertools as it\n", | |
"\n", | |
"nlp = spacy.load('en')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's grab a sample review to play with." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\"Latest GTX 1060 laptop is more portable than its big ol’ butt might suggest.\"\r\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"with codecs.open(desc_txt_filepath, encoding='utf_8') as f:\n", | |
" sample_news = list(it.islice(f, 8, 9))[0]\n", | |
" sample_news = sample_news.replace('\\\\n', '\\n')\n", | |
" \n", | |
"print(sample_news)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Hand the review text to spaCy, and be prepared to wait..." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 6 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"parsed_news = nlp(sample_news)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\"Latest GTX 1060 laptop is more portable than its big ol’ butt might suggest.\"\r\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"print(parsed_news)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks the same! What happened under the hood?\n", | |
"\n", | |
"What about sentence detection and segmentation?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sentence 1:\n", | |
"\"Latest GTX 1060 laptop is more portable than its big ol’ butt might suggest.\"\r\n", | |
"\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"for num, sentence in enumerate(parsed_news.sents):\n", | |
" print('Sentence {}:'.format(num + 1))\n", | |
" print(sentence)\n", | |
" print('')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What about named entity detection?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"for num, entity in enumerate(parsed_news.ents):\n", | |
" print('Entity {}:'.format(num + 1), entity, '-', entity.label_)\n", | |
" print('')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What about part of speech tagging?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>token_text</th>\n", | |
" <th>part_of_speech</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>\"</td>\n", | |
" <td>PUNCT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Latest</td>\n", | |
" <td>ADJ</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>GTX</td>\n", | |
" <td>PROPN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1060</td>\n", | |
" <td>NUM</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>laptop</td>\n", | |
" <td>NOUN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>is</td>\n", | |
" <td>VERB</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>more</td>\n", | |
" <td>ADV</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>portable</td>\n", | |
" <td>ADJ</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>than</td>\n", | |
" <td>ADP</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>its</td>\n", | |
" <td>ADJ</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>big</td>\n", | |
" <td>ADJ</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>ol’</td>\n", | |
" <td>ADJ</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>butt</td>\n", | |
" <td>NOUN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>might</td>\n", | |
" <td>VERB</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>suggest</td>\n", | |
" <td>VERB</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>.</td>\n", | |
" <td>PUNCT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>\"</td>\n", | |
" <td>PUNCT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>\\r\\n</td>\n", | |
" <td>SPACE</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" token_text part_of_speech\n", | |
"0 \" PUNCT\n", | |
"1 Latest ADJ\n", | |
"2 GTX PROPN\n", | |
"3 1060 NUM\n", | |
"4 laptop NOUN\n", | |
"5 is VERB\n", | |
"6 more ADV\n", | |
"7 portable ADJ\n", | |
"8 than ADP\n", | |
"9 its ADJ\n", | |
"10 big ADJ\n", | |
"11 ol’ ADJ\n", | |
"12 butt NOUN\n", | |
"13 might VERB\n", | |
"14 suggest VERB\n", | |
"15 . PUNCT\n", | |
"16 \" PUNCT\n", | |
"17 \\r\\n SPACE" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"token_text = [token.orth_ for token in parsed_news]\n", | |
"token_pos = [token.pos_ for token in parsed_news]\n", | |
"\n", | |
"pd.DataFrame(list(zip(token_text, token_pos)),\n", | |
" columns=['token_text', 'part_of_speech'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What about text normalization, like stemming/lemmatization and shape analysis?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>token_text</th>\n", | |
" <th>token_lemma</th>\n", | |
" <th>token_shape</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>\"</td>\n", | |
" <td>\"</td>\n", | |
" <td>\"</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Latest</td>\n", | |
" <td>late</td>\n", | |
" <td>Xxxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>GTX</td>\n", | |
" <td>gtx</td>\n", | |
" <td>XXX</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1060</td>\n", | |
" <td>1060</td>\n", | |
" <td>dddd</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>laptop</td>\n", | |
" <td>laptop</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>is</td>\n", | |
" <td>be</td>\n", | |
" <td>xx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>more</td>\n", | |
" <td>more</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>portable</td>\n", | |
" <td>portable</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>than</td>\n", | |
" <td>than</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>its</td>\n", | |
" <td>its</td>\n", | |
" <td>xxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>big</td>\n", | |
" <td>big</td>\n", | |
" <td>xxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>ol’</td>\n", | |
" <td>ol’</td>\n", | |
" <td>xx’</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>butt</td>\n", | |
" <td>butt</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>might</td>\n", | |
" <td>may</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>suggest</td>\n", | |
" <td>suggest</td>\n", | |
" <td>xxxx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>.</td>\n", | |
" <td>.</td>\n", | |
" <td>.</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>\"</td>\n", | |
" <td>\"</td>\n", | |
" <td>\"</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>\\r\\n</td>\n", | |
" <td>\\r\\n</td>\n", | |
" <td>\\r\\n</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" token_text token_lemma token_shape\n", | |
"0 \" \" \"\n", | |
"1 Latest late Xxxxx\n", | |
"2 GTX gtx XXX\n", | |
"3 1060 1060 dddd\n", | |
"4 laptop laptop xxxx\n", | |
"5 is be xx\n", | |
"6 more more xxxx\n", | |
"7 portable portable xxxx\n", | |
"8 than than xxxx\n", | |
"9 its its xxx\n", | |
"10 big big xxx\n", | |
"11 ol’ ol’ xx’\n", | |
"12 butt butt xxxx\n", | |
"13 might may xxxx\n", | |
"14 suggest suggest xxxx\n", | |
"15 . . .\n", | |
"16 \" \" \"\n", | |
"17 \\r\\n \\r\\n \\r\\n" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"token_lemma = [token.lemma_ for token in parsed_news]\n", | |
"token_shape = [token.shape_ for token in parsed_news]\n", | |
"\n", | |
"pd.DataFrame(list(zip(token_text, token_lemma, token_shape)),\n", | |
" columns=['token_text', 'token_lemma', 'token_shape'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What about token-level entity analysis?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>token_text</th>\n", | |
" <th>entity_type</th>\n", | |
" <th>inside_outside_begin</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>\"</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Latest</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>GTX</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1060</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>laptop</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>is</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>more</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>portable</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>than</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>its</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>big</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>ol’</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>butt</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>might</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>suggest</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>.</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>\"</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>\\r\\n</td>\n", | |
" <td></td>\n", | |
" <td>O</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" token_text entity_type inside_outside_begin\n", | |
"0 \" O\n", | |
"1 Latest O\n", | |
"2 GTX O\n", | |
"3 1060 O\n", | |
"4 laptop O\n", | |
"5 is O\n", | |
"6 more O\n", | |
"7 portable O\n", | |
"8 than O\n", | |
"9 its O\n", | |
"10 big O\n", | |
"11 ol’ O\n", | |
"12 butt O\n", | |
"13 might O\n", | |
"14 suggest O\n", | |
"15 . O\n", | |
"16 \" O\n", | |
"17 \\r\\n O" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"token_entity_type = [token.ent_type_ for token in parsed_news]\n", | |
"token_entity_iob = [token.ent_iob_ for token in parsed_news]\n", | |
"\n", | |
"pd.DataFrame(list(zip(token_text, token_entity_type, token_entity_iob)),\n", | |
" columns=['token_text', 'entity_type', 'inside_outside_begin'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"What about a variety of other token-level attributes, such as the relative frequency of tokens, and whether or not a token matches any of these categories?\n", | |
"- stopword\n", | |
"- punctuation\n", | |
"- whitespace\n", | |
"- represents a number\n", | |
"- whether or not the token is included in spaCy's default vocabulary?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>text</th>\n", | |
" <th>log_probability</th>\n", | |
" <th>stop?</th>\n", | |
" <th>punctuation?</th>\n", | |
" <th>whitespace?</th>\n", | |
" <th>number?</th>\n", | |
" <th>out of vocab.?</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>\"</td>\n", | |
" <td>-5.026776</td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Latest</td>\n", | |
" <td>-14.270922</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>GTX</td>\n", | |
" <td>-11.719471</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1060</td>\n", | |
" <td>-16.522951</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>laptop</td>\n", | |
" <td>-10.292619</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>is</td>\n", | |
" <td>-4.457749</td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>more</td>\n", | |
" <td>-6.081598</td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>portable</td>\n", | |
" <td>-12.061860</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>than</td>\n", | |
" <td>-6.512254</td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>its</td>\n", | |
" <td>-7.321458</td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>big</td>\n", | |
" <td>-7.880736</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>ol’</td>\n", | |
" <td>-19.502029</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>butt</td>\n", | |
" <td>-10.587015</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>might</td>\n", | |
" <td>-7.490108</td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>suggest</td>\n", | |
" <td>-9.402390</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>.</td>\n", | |
" <td>-3.067898</td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>\"</td>\n", | |
" <td>-5.026776</td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>\\r\\n</td>\n", | |
" <td>-10.518562</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" <td>Yes</td>\n", | |
" <td></td>\n", | |
" <td></td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" text log_probability stop? punctuation? whitespace? number? \\\n", | |
"0 \" -5.026776 Yes \n", | |
"1 Latest -14.270922 \n", | |
"2 GTX -11.719471 \n", | |
"3 1060 -16.522951 Yes \n", | |
"4 laptop -10.292619 \n", | |
"5 is -4.457749 Yes \n", | |
"6 more -6.081598 Yes \n", | |
"7 portable -12.061860 \n", | |
"8 than -6.512254 Yes \n", | |
"9 its -7.321458 Yes \n", | |
"10 big -7.880736 \n", | |
"11 ol’ -19.502029 \n", | |
"12 butt -10.587015 \n", | |
"13 might -7.490108 Yes \n", | |
"14 suggest -9.402390 \n", | |
"15 . -3.067898 Yes \n", | |
"16 \" -5.026776 Yes \n", | |
"17 \\r\\n -10.518562 Yes \n", | |
"\n", | |
" out of vocab.? \n", | |
"0 \n", | |
"1 \n", | |
"2 \n", | |
"3 \n", | |
"4 \n", | |
"5 \n", | |
"6 \n", | |
"7 \n", | |
"8 \n", | |
"9 \n", | |
"10 \n", | |
"11 Yes \n", | |
"12 \n", | |
"13 \n", | |
"14 \n", | |
"15 \n", | |
"16 \n", | |
"17 " | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"token_attributes = [(token.orth_,\n", | |
" token.prob,\n", | |
" token.is_stop,\n", | |
" token.is_punct,\n", | |
" token.is_space,\n", | |
" token.like_num,\n", | |
" token.is_oov)\n", | |
" for token in parsed_news]\n", | |
"\n", | |
"df = pd.DataFrame(token_attributes,\n", | |
" columns=['text',\n", | |
" 'log_probability',\n", | |
" 'stop?',\n", | |
" 'punctuation?',\n", | |
" 'whitespace?',\n", | |
" 'number?',\n", | |
" 'out of vocab.?'])\n", | |
"\n", | |
"df.loc[:, 'stop?':'out of vocab.?'] = (df.loc[:, 'stop?':'out of vocab.?']\n", | |
" .applymap(lambda x: 'Yes' if x else ''))\n", | |
" \n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"If the text you'd like to process is general-purpose English language text (i.e., not domain-specific, like medical literature), spaCy is ready to use out-of-the-box.\n", | |
"\n", | |
"I think it will eventually become a core part of the Python data science ecosystem — it will do for natural language computing what other great libraries have done for numerical computing." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Phrase Modeling" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"_Phrase modeling_ is another approach to learning combinations of tokens that together represent meaningful multi-word concepts. We can develop phrase models by looping over the the words in our reviews and looking for words that _co-occur_ (i.e., appear one after another) together much more frequently than you would expect them to by random chance. The formula our phrase models will use to determine whether two tokens $A$ and $B$ constitute a phrase is:\n", | |
"\n", | |
"$$\\frac{count(A\\ B) - count_{min}}{count(A) * count(B)} * N > threshold$$\n", | |
"\n", | |
"...where:\n", | |
"* $count(A)$ is the number of times token $A$ appears in the corpus\n", | |
"* $count(B)$ is the number of times token $B$ appears in the corpus\n", | |
"* $count(A\\ B)$ is the number of times the tokens $A\\ B$ appear in the corpus *in order*\n", | |
"* $N$ is the total size of the corpus vocabulary\n", | |
"* $count_{min}$ is a user-defined parameter to ensure that accepted phrases occur a minimum number of times\n", | |
"* $threshold$ is a user-defined parameter to control how strong of a relationship between two tokens the model requires before accepting them as a phrase\n", | |
"\n", | |
"Once our phrase model has been trained on our corpus, we can apply it to new text. When our model encounters two tokens in new text that identifies as a phrase, it will merge the two into a single new token.\n", | |
"\n", | |
"Phrase modeling is superficially similar to named entity detection in that you would expect named entities to become phrases in the model (so _new york_ would become *new\\_york*). But you would also expect multi-word expressions that represent common concepts, but aren't specifically named entities (such as _happy hour_) to also become phrases in the model.\n", | |
"\n", | |
"We turn to the indispensible [**gensim**](https://radimrehurek.com/gensim/index.html) library to help us with phrase modeling — the [**Phrases**](https://radimrehurek.com/gensim/models/phrases.html) class in particular." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\utils.py:855: UserWarning: detected Windows; aliasing chunkize to chunkize_serial\n", | |
" warnings.warn(\"detected Windows; aliasing chunkize to chunkize_serial\")\n" | |
] | |
} | |
], | |
"source": [ | |
"from gensim.models import Phrases\n", | |
"from gensim.models.word2vec import LineSentence" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As we're performing phrase modeling, we'll be doing some iterative data transformation at the same time. Our roadmap for data preparation includes:\n", | |
"\n", | |
"1. Segment text of complete reviews into sentences & normalize text\n", | |
"1. First-order phrase modeling $\\rightarrow$ _apply first-order phrase model to transform sentences_\n", | |
"1. Second-order phrase modeling $\\rightarrow$ _apply second-order phrase model to transform sentences_\n", | |
"1. Apply text normalization and second-order phrase model to text of complete reviews\n", | |
"\n", | |
"We'll use this transformed data as the input for some higher-level modeling approaches in the following sections." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"First, let's define a few helper functions that we'll use for text normalization. In particular, the `lemmatized_sentence_corpus` generator function will use spaCy to:\n", | |
"- Iterate over the 1M reviews in the `review_txt_all.txt` we created before\n", | |
"- Segment the reviews into individual sentences\n", | |
"- Remove punctuation and excess whitespace\n", | |
"- Lemmatize the text\n", | |
"\n", | |
"... and do so efficiently in parallel, thanks to spaCy's `nlp.pipe()` function." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def punct_space(token):\n", | |
" \"\"\"\n", | |
" helper function to eliminate tokens\n", | |
" that are pure punctuation or whitespace\n", | |
" \"\"\"\n", | |
" \n", | |
" return token.is_punct or token.is_space\n", | |
"\n", | |
"def line_review(filename):\n", | |
" \"\"\"\n", | |
" generator function to read in reviews from the file\n", | |
" and un-escape the original line breaks in the text\n", | |
" \"\"\"\n", | |
" \n", | |
" with codecs.open(filename, encoding='utf_8') as f:\n", | |
" for review in f:\n", | |
" yield review.replace('\\\\n', '\\n')\n", | |
" \n", | |
"def lemmatized_sentence_corpus(filename):\n", | |
" \"\"\"\n", | |
" generator function to use spaCy to parse reviews,\n", | |
" lemmatize the text, and yield sentences\n", | |
" \"\"\"\n", | |
" \n", | |
" for parsed_reason in nlp.pipe(line_review(filename),\n", | |
" batch_size=10000, n_threads=4):\n", | |
" \n", | |
" for sent in parsed_reason.sents:\n", | |
" yield u' '.join([token.lemma_ for token in sent\n", | |
" if not punct_space(token)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"unigram_sentences_filepath = os.path.join(intermediate_directory,\n", | |
" 'unigram_sentences_all.txt')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's use the `lemmatized_sentence_corpus` generator to loop over the original review text, segmenting the reviews into individual sentences and normalizing the text. We'll write this data back out to a new file (`unigram_sentences_all`), with one normalized sentence per line. We'll use this data for learning our phrase models." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 44.9 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute data prep yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" with codecs.open(unigram_sentences_filepath, 'w', encoding='utf_8') as f:\n", | |
" for sentence in lemmatized_sentence_corpus(desc_txt_filepath):\n", | |
" f.write(sentence + '\\n')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"If your data is organized like our `unigram_sentences_all` file now is — a large text file with one document/sentence per line — gensim's [**LineSentence**](https://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.LineSentence) class provides a convenient iterator for working with other gensim components. It *streams* the documents/sentences from disk, so that you never have to hold the entire corpus in RAM at once. This allows you to scale your modeling pipeline up to potentially very large corpora." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"unigram_sentences = LineSentence(unigram_sentences_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's take a look at a few sample sentences in our new, transformed file." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"new orleans ap a man who allegedly plow into a crowd enjoy the krewe of endymion parade on saturday in the mid city section of new orleans be be investigate for drive while intoxicated police say\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"for unigram_sentence in it.islice(unigram_sentences, 24, 25):\n", | |
" print(' '.join(unigram_sentence))\n", | |
" print('')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Next, we'll learn a phrase model that will link individual words into two-word phrases. We'd expect words that together represent a specific concept, like \"`ice cream`\", to be linked together to form a new, single token: \"`ice_cream`\"." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"bigram_model_filepath = os.path.join(intermediate_directory, 'bigram_model_all')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 4.03 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute modeling yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" bigram_model = Phrases(unigram_sentences)\n", | |
"\n", | |
" bigram_model.save(bigram_model_filepath)\n", | |
" \n", | |
"# load the finished model from disk\n", | |
"bigram_model = Phrases.load(bigram_model_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now that we have a trained phrase model for word pairs, let's apply it to the review sentences data and explore the results." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"bigram_sentences_filepath = os.path.join(intermediate_directory,\n", | |
" 'bigram_sentences_all.txt')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\models\\phrases.py:274: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n", | |
" warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 6.58 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute data prep yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" with codecs.open(bigram_sentences_filepath, 'w', encoding='utf_8') as f:\n", | |
" \n", | |
" for unigram_sentence in unigram_sentences:\n", | |
" \n", | |
" bigram_sentence = ' '.join(bigram_model[unigram_sentence])\n", | |
" \n", | |
" f.write(bigram_sentence + '\\n')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"bigram_sentences = LineSentence(bigram_sentences_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"new_orleans ap a man_who allegedly plow_into a crowd enjoy the krewe of endymion parade on_saturday in the mid city section of new_orleans be be investigate for drive while intoxicated police_say\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"for bigram_sentence in it.islice(bigram_sentences, 24, 25):\n", | |
" print(' '.join(bigram_sentence))\n", | |
" print('')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks like the phrase modeling worked! We now see two-word phrases, such as \"`ice_cream`\" and \"`apple_pie`\", linked together in the text as a single token. Next, we'll train a _second-order_ phrase model. We'll apply the second-order phrase model on top of the already-transformed data, so that incomplete word combinations like \"`vanilla_ice cream`\" will become fully joined to \"`vanilla_ice_cream`\". No disrespect intended to [Vanilla Ice](https://www.youtube.com/watch?v=rog8ou-ZepE), of course." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_model_filepath = os.path.join(intermediate_directory,\n", | |
" 'trigram_model_all')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 4.01 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute modeling yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" trigram_model = Phrases(bigram_sentences)\n", | |
"\n", | |
" trigram_model.save(trigram_model_filepath)\n", | |
" \n", | |
"# load the finished model from disk\n", | |
"trigram_model = Phrases.load(trigram_model_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We'll apply our trained second-order phrase model to our first-order transformed sentences, write the results out to a new file, and explore a few of the second-order transformed sentences." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_sentences_filepath = os.path.join(intermediate_directory,\n", | |
" 'trigram_sentences_all.txt')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\models\\phrases.py:274: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n", | |
" warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 6.12 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute data prep yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" with codecs.open(trigram_sentences_filepath, 'w', encoding='utf_8') as f:\n", | |
" \n", | |
" for bigram_sentence in bigram_sentences:\n", | |
" \n", | |
" trigram_sentence = ' '.join(trigram_model[bigram_sentence])\n", | |
" \n", | |
" f.write(trigram_sentence + '\\n')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_sentences = LineSentence(trigram_sentences_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"new_orleans ap a man_who_allegedly plow_into a crowd enjoy the krewe of endymion parade on_saturday in the mid city section of new_orleans be be investigate for drive while intoxicated police_say\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"for trigram_sentence in it.islice(trigram_sentences, 24, 25):\n", | |
" print(' '.join(trigram_sentence))\n", | |
" print('')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks like the second-order phrase model was successful. We're now seeing three-word phrases, such as \"`vanilla_ice_cream`\" and \"`cinnamon_ice_cream`\"." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The final step of our text preparation process circles back to the complete text of the reviews. We're going to run the complete text of the reviews through a pipeline that applies our text normalization and phrase models.\n", | |
"\n", | |
"In addition, we'll remove stopwords at this point. _Stopwords_ are very common words, like _a_, _the_, _and_, and so on, that serve functional roles in natural language, but typically don't contribute to the overall meaning of text. Filtering stopwords is a common procedure that allows higher-level NLP modeling techniques to focus on the words that carry more semantic weight.\n", | |
"\n", | |
"Finally, we'll write the transformed text out to a new file, with one review per line." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_reviews_filepath = os.path.join(intermediate_directory,\n", | |
" 'trigram_transformed_reviews_all.txt')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\models\\phrases.py:274: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n", | |
" warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 52.7 s\n" | |
] | |
} | |
], | |
"source": [ | |
" %%time\n", | |
"# %debug\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute data prep yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" with codecs.open(trigram_reviews_filepath, 'w', encoding='utf_8') as f:\n", | |
" \n", | |
" for parsed_desc in nlp.pipe(line_review(desc_txt_filepath),\n", | |
" batch_size=10000, n_threads=4):\n", | |
" \n", | |
" # lemmatize the text, removing punctuation and whitespace\n", | |
" unigram_review = [token.lemma_ for token in parsed_desc\n", | |
" if not punct_space(token)]\n", | |
" \n", | |
" # apply the first-order and second-order phrase models\n", | |
" bigram_review = bigram_model[unigram_review]\n", | |
" trigram_review = trigram_model[bigram_review]\n", | |
" \n", | |
" # remove any remaining stopwords\n", | |
" trigram_review = [term for term in trigram_review\n", | |
" if term not in spacy.en.stop_words.STOP_WORDS]\n", | |
" \n", | |
" \n", | |
" # write the transformed review as a line in the new file\n", | |
" trigram_review = ' '.join(trigram_review)\n", | |
" f.write(trigram_review + '\\n')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's preview the results. We'll grab one review from the file with the original, untransformed text, grab the same review from the file with the normalized and transformed text, and compare the two." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Original:\n", | |
"\n", | |
"\"The American coach of Olympic champion Mo Farah may have broken anti-doping rules to boost the performance of some of his athletes, says a leaked report.\"\r\n", | |
"\n", | |
"----\n", | |
"\n", | |
"Transformed:\n", | |
"\n", | |
"american coach olympic_champion mo_farah break anti_doping rule boost performance athlete leak report\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"print('Original:' + '\\n')\n", | |
"\n", | |
"for desc in it.islice(line_review(desc_txt_filepath), 23, 24):\n", | |
" print(desc)\n", | |
"\n", | |
"print('----' + '\\n')\n", | |
"print('Transformed:' + '\\n')\n", | |
"\n", | |
"with codecs.open(trigram_reviews_filepath, encoding='utf_8') as f:\n", | |
" for desc in it.islice(f, 23, 24):\n", | |
" print(desc)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"You can see that most of the grammatical structure has been scrubbed from the text — capitalization, articles/conjunctions, punctuation, spacing, etc. However, much of the general semantic *meaning* is still present. Also, multi-word concepts such as \"`friday_night`\" and \"`above_average`\" have been joined into single tokens, as expected. The review text is now ready for higher-level modeling. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Topic Modeling with Latent Dirichlet Allocation (_LDA_)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"*Topic modeling* is family of techniques that can be used to describe and summarize the documents in a corpus according to a set of latent \"topics\". For this demo, we'll be using [*Latent Dirichlet Allocation*](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf) or LDA, a popular approach to topic modeling.\n", | |
"\n", | |
"In many conventional NLP applications, documents are represented a mixture of the individual tokens (words and phrases) they contain. In other words, a document is represented as a *vector* of token counts. There are two layers in this model — documents and tokens — and the size or dimensionality of the document vectors is the number of tokens in the corpus vocabulary. This approach has a number of disadvantages:\n", | |
"* Document vectors tend to be large (one dimension for each token $\\Rightarrow$ lots of dimensions)\n", | |
"* They also tend to be very sparse. Any given document only contains a small fraction of all tokens in the vocabulary, so most values in the document's token vector are 0.\n", | |
"* The dimensions are fully indepedent from each other — there's no sense of connection between related tokens, such as _knife_ and _fork_.\n", | |
"\n", | |
"LDA injects a third layer into this conceptual model. Documents are represented as a mixture of a pre-defined number of *topics*, and the *topics* are represented as a mixture of the individual tokens in the vocabulary. The number of topics is a model hyperparameter selected by the practitioner. LDA makes a prior assumption that the (document, topic) and (topic, token) mixtures follow [*Dirichlet*](https://en.wikipedia.org/wiki/Dirichlet_distribution) probability distributions. This assumption encourages documents to consist mostly of a handful of topics, and topics to consist mostly of a modest set of the tokens." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"LDA is fully unsupervised. The topics are \"discovered\" automatically from the data by trying to maximize the likelihood of observing the documents in your corpus, given the modeling assumptions. They are expected to capture some latent structure and organization within the documents, and often have a meaningful human interpretation for people familiar with the subject material.\n", | |
"\n", | |
"We'll again turn to gensim to assist with data preparation and modeling. In particular, gensim offers a high-performance parallelized implementation of LDA with its [**LdaMulticore**](https://radimrehurek.com/gensim/models/ldamulticore.html) class." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from gensim.corpora import Dictionary, MmCorpus\n", | |
"from gensim.models.ldamulticore import LdaMulticore\n", | |
"\n", | |
"import pyLDAvis\n", | |
"import pyLDAvis.gensim\n", | |
"import warnings\n", | |
"import _pickle as pickle" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The first step to creating an LDA model is to learn the full vocabulary of the corpus to be modeled. We'll use gensim's [**Dictionary**](https://radimrehurek.com/gensim/corpora/dictionary.html) class for this." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_dictionary_filepath = os.path.join(intermediate_directory,\n", | |
" 'trigram_dict_all.dict')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 1.94 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to learn the dictionary yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" trigram_reviews = LineSentence(trigram_reviews_filepath)\n", | |
"\n", | |
" # learn the dictionary by iterating over all of the reviews\n", | |
" trigram_dictionary = Dictionary(trigram_reviews)\n", | |
" \n", | |
" # filter tokens that are very rare or too common from\n", | |
" # the dictionary (filter_extremes) and reassign integer ids (compactify)\n", | |
" trigram_dictionary.filter_extremes(no_below=10, no_above=0.4)\n", | |
" trigram_dictionary.compactify()\n", | |
"\n", | |
" trigram_dictionary.save(trigram_dictionary_filepath)\n", | |
" \n", | |
"# load the finished dictionary from disk\n", | |
"trigram_dictionary = Dictionary.load(trigram_dictionary_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Like many NLP techniques, LDA uses a simplifying assumption known as the [*bag-of-words* model](https://en.wikipedia.org/wiki/Bag-of-words_model). In the bag-of-words model, a document is represented by the counts of distinct terms that occur within it. Additional information, such as word order, is discarded. \n", | |
"\n", | |
"Using the gensim Dictionary we learned to generate a bag-of-words representation for each review. The `trigram_bow_generator` function implements this. We'll save the resulting bag-of-words reviews as a matrix.\n", | |
"\n", | |
"In the following code, \"bag-of-words\" is abbreviated as `bow`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"trigram_bow_filepath = os.path.join(intermediate_directory,\n", | |
" 'trigram_bow_corpus_all.mm')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def trigram_bow_generator(filepath):\n", | |
" \"\"\"\n", | |
" generator function to read reviews from a file\n", | |
" and yield a bag-of-words representation\n", | |
" \"\"\"\n", | |
" \n", | |
" for reason in LineSentence(filepath):\n", | |
" yield trigram_dictionary.doc2bow(reason)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 3.18 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to build the bag-of-words corpus yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" # generate bag-of-words representations for\n", | |
" # all reviews and save them as a matrix\n", | |
" MmCorpus.serialize(trigram_bow_filepath,\n", | |
" trigram_bow_generator(trigram_reviews_filepath))\n", | |
" \n", | |
"# load the finished bag-of-words corpus from disk\n", | |
"trigram_bow_corpus = MmCorpus(trigram_bow_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"With the bag-of-words corpus, we're finally ready to learn our topic model from the reviews. We simply need to pass the bag-of-words matrix and Dictionary from our previous steps to `LdaMulticore` as inputs, along with the number of topics the model should learn. For this demo, we're asking for 50 topics." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"lda_model_filepath = os.path.join(intermediate_directory, 'lda_model_all')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 1min 6s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to train the LDA model yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" with warnings.catch_warnings():\n", | |
" warnings.simplefilter('ignore')\n", | |
" \n", | |
" # workers => sets the parallelism, and should be\n", | |
" # set to your number of physical cores minus one\n", | |
" lda = LdaMulticore(trigram_bow_corpus,\n", | |
" num_topics=20,\n", | |
" id2word=trigram_dictionary,\n", | |
" workers=1)\n", | |
" \n", | |
" lda.save(lda_model_filepath)\n", | |
" \n", | |
"# load the finished LDA model from disk\n", | |
"lda = LdaMulticore.load(lda_model_filepath)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Our topic model is now trained and ready to use! Since each topic is represented as a mixture of tokens, you can manually inspect which tokens have been grouped together into which topics to try to understand the patterns the model has discovered in the data." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def explore_topic(topic_number, topn=20):\n", | |
" \"\"\"\n", | |
" accept a user-supplied topic number and\n", | |
" print out a formatted list of the top terms\n", | |
" \"\"\"\n", | |
" \n", | |
" print('{:20} {}'.format(u'term', u'frequency') + '\\n')\n", | |
"\n", | |
" for term, frequency in lda.show_topic(topic_number, topn=20):\n", | |
" print('{:20} {:.3f}'.format(term, round(frequency, 3)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"term frequency\n", | |
"\n", | |
"'s 0.030\n", | |
"world 0.007\n", | |
"time 0.006\n", | |
"turn 0.006\n", | |
"sevilla 0.006\n", | |
"on_wednesday 0.006\n", | |
"big 0.006\n", | |
"decision 0.006\n", | |
"house_intelligence_committee 0.005\n", | |
"northeast 0.005\n", | |
"asia 0.005\n", | |
"work 0.005\n", | |
"force 0.005\n", | |
"champion 0.005\n", | |
"say_he 0.005\n", | |
"short 0.005\n", | |
"economy 0.005\n", | |
"blame 0.005\n", | |
"hack 0.005\n", | |
"use 0.004\n" | |
] | |
} | |
], | |
"source": [ | |
"explore_topic(topic_number=19)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The first topic has strong associations with words like *taco*, *salsa*, *chip*, *burrito*, and *margarita*, as well as a handful of more general words. You might call this the **Mexican food** topic!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 71, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"topic_names = {\n", | |
" 0: 'Soccer - EPL',\n", | |
" 1: 'US Elections',\n", | |
" 2: 'US Budget',\n", | |
" 3: 'US Politics',\n", | |
" 4: 'Travel Ban',\n", | |
" 5: 'Online Stores',\n", | |
" 6: 'Executive Order',\n", | |
" 7: 'UNK1',\n", | |
" 8: 'UNK2',\n", | |
" 9: 'sports',\n", | |
" 10: 'Europe',\n", | |
" 11: 'Crime',\n", | |
" 12: 'UNK3',\n", | |
" 13: 'UNK4',\n", | |
" 14: 'Entertainment',\n", | |
" 15: 'TV series',\n", | |
" 16: 'social',\n", | |
" 17: 'World Politics',\n", | |
" 18: 'UNK5',\n", | |
" 19: 'UNK6' \n", | |
"}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 72, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"topic_names_filepath = os.path.join(intermediate_directory, 'topic_names.pkl')\n", | |
"\n", | |
"with open(topic_names_filepath, 'wb') as f:\n", | |
" pickle.dump(topic_names, f)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 58, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"LDAvis_data_filepath = os.path.join(intermediate_directory, 'ldavis_prepared')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 59, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 1min 6s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to execute data prep yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" LDAvis_prepared = pyLDAvis.gensim.prepare(lda, trigram_bow_corpus,\n", | |
" trigram_dictionary)\n", | |
"\n", | |
" with open(LDAvis_data_filepath, 'wb') as f:\n", | |
" pickle.dump(LDAvis_prepared, f)\n", | |
" \n", | |
"# load the pre-prepared pyLDAvis data from disk\n", | |
"with open(LDAvis_data_filepath, \"rb\") as f:\n", | |
" LDAvis_prepared = pickle.load(f)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"`pyLDAvis.display(...)` displays the topic model visualization in-line in the notebook." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
"<link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.css\">\n", | |
"\n", | |
"\n", | |
"<div id=\"ldavis_el768025710221694568148448306\"></div>\n", | |
"<script type=\"text/javascript\">\n", | |
"\n", | |
"var ldavis_el768025710221694568148448306_data = {\"R\": 30, \"tinfo\": {\"loglift\": [30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.7305, 2.7157, 2.715, 2.7111, 2.708, 2.7075, 2.7074, 2.7066, 2.7059, 2.7053, 2.7051, 2.7031, 2.7014, 2.7004, 2.6999, 2.6995, 2.6979, 2.6966, 2.6946, 2.6939, 2.6929, 2.6918, 2.6913, 2.6903, 2.6902, 2.6889, 2.6878, 2.6872, 2.687, 2.6868, 2.6853, 2.6816, 2.6844, 2.6626, 2.6866, 2.6318, 2.6772, 2.6377, 2.6498, 2.6571, 2.5398, 2.6404, 2.6597, 2.6231, 2.5393, 2.5645, 2.6431, 2.5094, 2.4029, 2.501, 2.4449, 2.4292, 2.4924, 2.3545, 2.116, 2.0908, 2.4806, 0.852, 1.9816, 1.5266, 1.7334, 1.5298, 1.3807, 1.9681, 1.5111, 0.8327, 1.106, 0.8459, 1.606, -0.59, 2.7753, 2.7724, 2.7644, 2.7643, 2.7627, 2.7622, 2.7592, 2.7564, 2.7554, 2.7552, 2.7533, 2.7533, 2.7523, 2.7517, 2.7517, 2.7474, 2.7471, 2.7459, 2.744, 2.7427, 2.7418, 2.7404, 2.74, 2.7378, 2.737, 2.7365, 2.7332, 2.7308, 2.7305, 2.73, 2.7257, 2.7296, 2.7046, 2.7171, 2.6932, 2.6832, 2.7159, 2.648, 2.7096, 2.5838, 2.5669, 2.5157, 2.6578, 2.6021, 2.5805, 2.5473, 2.3618, 2.1859, 2.3601, 2.3974, 2.3632, 2.4513, 2.1917, 2.2503, 1.4363, 1.7436, 1.3821, 0.7438, 1.8048, 1.1914, 1.4834, 1.398, 0.0048, 1.6529, 1.9298, 1.8037, 1.6276, 1.1737, 1.3872, 0.983, 1.031, 1.4917, 0.8884, 2.7976, 2.7973, 2.7852, 2.7831, 2.7808, 2.778, 2.7777, 2.7776, 2.7762, 2.7741, 2.7714, 2.7705, 2.7659, 2.7656, 2.7636, 2.7631, 2.7631, 2.7613, 2.7602, 2.7593, 2.7585, 2.7577, 2.7577, 2.757, 2.7561, 2.7534, 2.7521, 2.7512, 2.7505, 2.7505, 2.7453, 2.7489, 2.7403, 2.695, 2.7178, 2.6963, 2.7351, 2.6921, 2.4754, 2.5278, 2.714, 2.4963, 2.2996, 2.5139, 2.628, 2.5665, 2.3094, 2.4558, 2.043, 1.5038, 2.4654, 1.5333, 1.7885, 2.2244, 0.3481, 2.0901, 1.3485, 1.6877, 1.1923, 1.2989, 1.3903, 1.0137, 1.7385, 1.7316, 1.1563, 0.3574, -0.1609, 1.5702, 1.7234, 0.9172, 1.4213, 1.4301, 1.5479, 0.7124, 0.9114, 0.9248, 2.8451, 2.8431, 2.8426, 2.8412, 2.8408, 2.8383, 2.8314, 2.8311, 2.8306, 2.8287, 2.8284, 2.826, 2.825, 2.8243, 2.8241, 2.8229, 2.8193, 2.8188, 2.8179, 2.8174, 2.8129, 2.8096, 2.8094, 2.8071, 2.8062, 2.8058, 2.8054, 2.8036, 2.8032, 2.803, 2.7922, 2.7864, 2.7699, 2.754, 2.7151, 2.7593, 2.7669, 2.6673, 2.6342, 2.7524, 2.5042, 2.0969, 2.5212, 2.0338, 2.4798, 2.0641, 2.2343, 2.0867, 2.4302, 2.5573, 2.2726, 1.9931, 1.9282, 2.1202, 2.0463, 1.6373, 1.746, 1.1692, 1.4883, 0.9555, 1.1368, -0.3907, 1.0732, 1.6643, 0.6958, 1.2624, 0.443, 0.5088, -0.8681, 0.9521, -0.2279, 2.8788, 2.8725, 2.8619, 2.8586, 2.8578, 2.8549, 2.8542, 2.8538, 2.8536, 2.8527, 2.8505, 2.8498, 2.8496, 2.849, 2.8478, 2.8464, 2.8463, 2.8456, 2.8434, 2.8404, 2.839, 2.838, 2.8374, 2.8371, 2.8364, 2.8354, 2.8293, 2.829, 2.8288, 2.8276, 2.8257, 2.8269, 2.8074, 2.8133, 2.8199, 2.6931, 2.802, 2.7469, 2.7223, 2.7652, 2.5109, 2.4642, 2.7471, 2.1907, 2.0126, 2.4531, 2.3356, 2.2358, 2.564, 2.2, 2.452, 1.8973, 2.1625, 2.3887, 2.4478, 1.0077, 0.1188, 1.2533, 1.2307, 0.2224, 1.9591, 1.7356, 1.8681, 0.9927, 1.314, 1.1553, 0.7143, 0.8311, 0.5591, 2.911, 2.9065, 2.9017, 2.9007, 2.8993, 2.8987, 2.8959, 2.8946, 2.891, 2.8898, 2.8893, 2.8892, 2.8886, 2.8882, 2.8877, 2.8856, 2.8843, 2.8835, 2.8833, 2.8833, 2.8821, 2.8819, 2.8815, 2.8798, 2.8775, 2.8762, 2.8756, 2.8732, 2.8721, 2.8714, 2.8713, 2.8611, 2.8687, 2.8196, 2.7961, 2.8139, 2.826, 2.785, 2.5731, 2.5698, 2.775, 2.4872, 2.7843, 2.7091, 2.6843, 2.7402, 2.5143, 2.3646, 2.3431, 2.6835, 2.2471, 1.7204, 2.4833, 2.1972, 2.4748, 2.4713, 2.3789, 0.4631, 1.4769, 1.0352, 1.9351, 2.3768, 0.7385, -0.295, 1.9396, 1.8663, 0.0158, 1.7628, 0.9702, 0.4407, 0.8857, 1.2719, 0.2857, 0.6929, 0.6421, 2.9102, 2.9084, 2.904, 2.9008, 2.8977, 2.8942, 2.8933, 2.8862, 2.8844, 2.8841, 2.8817, 2.8805, 2.8787, 2.8761, 2.8738, 2.8728, 2.8716, 2.8713, 2.8708, 2.8674, 2.8674, 2.8667, 2.8635, 2.8632, 2.8626, 2.8608, 2.8604, 2.8581, 2.8575, 2.857, 2.8568, 2.8555, 2.8476, 2.8564, 2.8557, 2.822, 2.848, 2.7883, 2.8034, 2.779, 2.8112, 2.8464, 2.6685, 2.4806, 2.5469, 2.55, 2.6386, 2.529, 2.2485, 1.9958, 2.329, 2.0976, 2.1796, 2.2289, 1.626, 1.6512, 0.2951, 2.3098, 2.3084, 0.7402, -0.6055, 1.3834, 0.8073, 1.1203, 0.41, -0.2292, 0.6782, 2.9324, 2.9305, 2.9302, 2.9293, 2.9286, 2.9284, 2.9271, 2.9266, 2.9251, 2.9247, 2.9227, 2.9218, 2.9214, 2.9186, 2.9182, 2.9182, 2.9179, 2.9148, 2.9145, 2.9121, 2.91, 2.9082, 2.9082, 2.9054, 2.9013, 2.9007, 2.9002, 2.8991, 2.898, 2.8979, 2.8928, 2.8931, 2.8905, 2.8635, 2.8789, 2.8882, 2.8194, 2.8793, 2.8084, 2.7345, 2.8561, 2.8787, 2.7742, 2.8195, 2.7756, 2.8461, 2.806, 2.0702, 1.5723, 2.758, 2.3653, 1.9547, 2.2516, 2.1806, 0.4795, 2.2325, 1.6601, 1.3598, 2.2022, 2.6412, 1.6495, 1.5579, 1.7391, 0.885, 2.0842, 2.3319, 1.293, 2.005, -0.8439, 1.2098, 0.9503, 1.3682, 0.3676, 0.8788, 0.7359, 3.0063, 3.0032, 2.9958, 2.9957, 2.9933, 2.9899, 2.9898, 2.9896, 2.9869, 2.9849, 2.9832, 2.9804, 2.9774, 2.976, 2.9738, 2.9723, 2.9717, 2.9711, 2.9709, 2.9709, 2.9709, 2.9697, 2.9686, 2.968, 2.9677, 2.966, 2.966, 2.9638, 2.962, 2.9615, 2.949, 2.9593, 2.9328, 2.9524, 2.95, 2.9492, 2.8679, 2.8568, 2.9208, 2.9546, 2.9284, 2.9165, 2.6804, 2.803, 2.8737, 2.8222, 2.783, 2.4557, 2.4489, 2.4246, 2.5592, 2.4862, 2.2809, 0.7097, 2.2489, 2.3784, 1.8884, 2.5307, 2.6863, 1.3178, 1.6008, 1.6938, 0.9717, 1.1468, 1.895, 1.0067, 1.2969, 1.8028, 0.886, 0.8809, 1.6495, 0.7867, 0.4775, 3.0085, 2.9975, 2.9917, 2.9883, 2.9881, 2.9849, 2.9847, 2.9827, 2.9809, 2.9808, 2.9802, 2.979, 2.9788, 2.9787, 2.9784, 2.9774, 2.9772, 2.9771, 2.9763, 2.9739, 2.9717, 2.9706, 2.9695, 2.9694, 2.9688, 2.9674, 2.9671, 2.9662, 2.9637, 2.9632, 2.9596, 2.9515, 2.9488, 2.9497, 2.9146, 2.9541, 2.8829, 2.9343, 2.8863, 2.8872, 2.85, 2.7843, 2.9343, 2.7847, 2.8039, 2.8183, 2.6705, 2.8143, 2.6687, 2.807, 2.6484, 2.6034, 2.1608, 2.6439, 2.114, 0.5383, 1.9641, 1.9339, 1.3576, 1.3515, 2.1411, 2.0846, 1.054, 1.9785, 1.6301, 1.7311, 1.1229, 1.3929, -0.4392, 0.8955, 1.3706, 3.0049, 3.0034, 3.0018, 2.9996, 2.9963, 2.996, 2.9945, 2.9901, 2.9899, 2.9877, 2.9875, 2.9871, 2.9842, 2.9836, 2.981, 2.9765, 2.9762, 2.975, 2.9733, 2.9729, 2.9718, 2.971, 2.9704, 2.9673, 2.9673, 2.9672, 2.9669, 2.9665, 2.9648, 2.9636, 2.9605, 2.9618, 2.9363, 2.9454, 2.9566, 2.9559, 2.9509, 2.9043, 2.9455, 2.8658, 2.8985, 2.8579, 2.8046, 2.8407, 2.7816, 2.6346, 2.4253, 2.7541, 2.5659, 2.676, 2.6085, 2.451, 2.8089, 2.6459, 2.8075, 2.5529, 2.449, 2.121, 2.1244, 2.6707, 2.4163, 1.9213, 1.869, 2.0511, 1.674, 2.1835, 1.9916, 2.5181, 1.599, -0.3313, 1.0021, 1.4291, -0.9368, 1.2332, 0.9062, 1.7944, -0.1469, 0.3039, 3.0142, 3.0125, 3.0102, 3.0041, 3.0037, 3.0035, 2.9998, 2.9992, 2.9967, 2.9966, 2.9944, 2.9938, 2.9931, 2.9918, 2.9831, 2.9808, 2.9789, 2.9771, 2.9713, 2.9695, 2.9693, 2.9636, 2.9633, 2.9581, 2.957, 2.9555, 2.9531, 2.9521, 2.9513, 2.9498, 2.9479, 2.9414, 2.9347, 2.9359, 2.9449, 2.8334, 2.8706, 2.8693, 2.8165, 2.8636, 2.8722, 2.7805, 2.8566, 2.7135, 2.739, 2.5024, 2.6293, 2.4874, 2.5053, 2.6713, 2.7167, 2.7101, 2.5404, 2.1192, 2.6936, 1.9352, 2.4294, 1.5598, 2.0188, 1.3682, 1.4344, 2.5426, 1.4958, 1.0922, 1.9132, 0.4236, -0.127, 0.8762, 1.4581, 1.8822, -0.7424, 0.5541, 1.1356, 0.6446, 1.0071, 1.5538, 3.0236, 3.0197, 3.0178, 3.017, 3.0151, 3.0121, 3.0095, 3.0088, 3.0082, 3.0072, 3.0044, 3.0004, 2.9959, 2.9956, 2.9952, 2.995, 2.9948, 2.9946, 2.993, 2.9927, 2.9922, 2.9904, 2.99, 2.9898, 2.9893, 2.9884, 2.9878, 2.9873, 2.9847, 2.9818, 2.9752, 2.9641, 2.9705, 2.9736, 2.9303, 2.9276, 2.8004, 2.8763, 2.9174, 2.8189, 2.6943, 2.7453, 2.8867, 2.8218, 2.6855, 2.9022, 2.7301, 2.6143, 2.7882, 2.5873, 2.5629, 2.3419, 2.483, 1.3351, 2.4963, 0.8538, 1.8198, 1.9732, -0.1076, 2.6191, 1.6218, 2.2319, 2.0548, 1.4237, 0.9932, 1.9075, 1.0661, 0.7593, -0.6789, 1.0183, 0.7046, 3.0451, 3.0443, 3.0415, 3.0415, 3.0403, 3.0358, 3.0357, 3.0353, 3.0344, 3.0296, 3.029, 3.0273, 3.027, 3.0265, 3.0264, 3.0236, 3.0228, 3.0218, 3.0217, 3.0207, 3.0197, 3.0189, 3.0178, 3.0171, 3.0157, 3.0151, 3.0148, 3.0145, 3.0138, 3.0132, 3.0124, 3.0011, 2.9949, 2.8826, 2.9775, 2.9151, 3.0067, 2.9919, 2.9429, 2.9415, 2.8916, 2.9165, 2.7761, 2.4938, 2.4774, 2.7544, 2.9082, 2.6763, 2.6842, 2.7348, 2.6907, 2.3734, 2.5568, 2.6046, 2.2505, 2.638, 2.2103, 0.4636, 1.2168, 1.6832, -0.009, 0.6227, 1.8733, 0.967, 0.6672, 1.6655, 1.2344, 1.0979, 0.6703, 0.458, 1.897, 0.4688, 3.0615, 3.0615, 3.0605, 3.0583, 3.0581, 3.058, 3.0576, 3.0565, 3.0522, 3.0522, 3.0506, 3.0496, 3.0492, 3.0464, 3.0451, 3.0448, 3.0419, 3.04, 3.0399, 3.0389, 3.0386, 3.0373, 3.0362, 3.0335, 3.0334, 3.0323, 3.0317, 3.0313, 3.0304, 3.0296, 3.0262, 3.0144, 3.0122, 3.0095, 2.9915, 2.9768, 2.9791, 2.9932, 2.9664, 2.9715, 2.9234, 2.9654, 2.8735, 2.8296, 2.901, 2.879, 2.7678, 2.2744, 2.8481, 2.7473, 2.1771, 2.5632, 1.8135, 2.8025, 2.6125, 2.1574, 2.5591, 0.7224, 2.5397, 2.7734, 1.9023, 2.1142, 1.1977, 1.8516, -0.4564, 1.9496, 1.578, 0.7224, -0.053, 0.7771, 0.5642, 3.0801, 3.0772, 3.0706, 3.0706, 3.0676, 3.0673, 3.0655, 3.0642, 3.0617, 3.0601, 3.06, 3.059, 3.0567, 3.0541, 3.0536, 3.0519, 3.0519, 3.0519, 3.049, 3.0485, 3.047, 3.045, 3.0438, 3.0431, 3.0426, 3.0423, 3.0421, 3.0416, 3.0388, 3.0376, 3.0357, 3.0209, 2.9981, 3.0252, 2.9783, 2.9779, 2.9169, 2.9809, 2.7374, 2.7529, 2.9597, 2.9508, 2.7241, 2.8402, 2.8984, 2.435, 2.5774, 2.5313, 2.7394, 2.7769, 2.1326, 2.4309, 1.7508, 2.7966, 0.6665, 1.8529, 2.3012, 1.6911, 1.4325, 1.0497, -0.5998, -0.3445, 2.0437, 1.1455, 0.9077, 0.5584, 0.8447, 1.3202, 1.7532, 1.1646, 1.0567, 3.1193, 3.1077, 3.1058, 3.1052, 3.1033, 3.1019, 3.0994, 3.0978, 3.0969, 3.0942, 3.0938, 3.0925, 3.0922, 3.092, 3.0917, 3.0907, 3.0883, 3.0876, 3.0872, 3.0867, 3.0858, 3.0851, 3.0839, 3.0834, 3.0818, 3.0795, 3.0781, 3.0776, 3.0775, 3.0773, 3.0724, 3.0745, 3.0719, 3.0586, 2.9683, 3.029, 2.9694, 3.009, 3.0167, 2.9591, 2.9554, 2.8416, 2.7538, 2.9467, 2.614, 2.4863, 2.7904, 2.6123, 2.7217, 2.749, 2.722, 2.5221, 2.7401, 2.5864, 2.5133, 2.6718, 2.4258, 2.7805, 2.3513, 2.0063, 2.1469, 0.0293, 2.0806, 2.5611, 1.8807, 1.2685, 2.0916, -0.0558, 1.8146, 1.3859, 2.0292, -0.0791, 0.8734, 0.522, 3.2166, 3.1989, 3.1977, 3.1957, 3.1926, 3.1922, 3.1921, 3.1895, 3.1886, 3.1884, 3.1858, 3.1849, 3.1804, 3.1796, 3.1785, 3.1783, 3.178, 3.1765, 3.1761, 3.176, 3.1753, 3.174, 3.1732, 3.1714, 3.1703, 3.1699, 3.1627, 3.1615, 3.1614, 3.1592, 3.1487, 3.1343, 3.1263, 3.127, 3.1388, 3.0758, 3.1294, 3.0386, 3.0697, 2.9928, 3.0818, 2.9247, 3.0338, 2.8095, 2.5431, 2.3404, 2.3624, 1.8063, 2.2584, 2.17, 1.0226, 1.3325, 2.6572, 0.1518, 1.7459, 1.8767, 1.8518, 1.9573, 1.1006, 1.7352, -1.0283, 1.1257, 3.2154, 3.2135, 3.2123, 3.212, 3.2115, 3.2112, 3.2102, 3.2091, 3.207, 3.2036, 3.2005, 3.1976, 3.1976, 3.1974, 3.1951, 3.1922, 3.19, 3.1894, 3.1892, 3.1821, 3.1795, 3.178, 3.1773, 3.1771, 3.1767, 3.1737, 3.1683, 3.1651, 3.1616, 3.1599, 3.1568, 3.1585, 3.1549, 3.1309, 3.1264, 3.1502, 3.0044, 3.0142, 3.0302, 3.0287, 3.0774, 2.9124, 3.0163, 2.8863, 2.8537, 2.6626, 2.9558, 2.5763, 2.2991, 2.4414, 2.6832, 2.7792, 1.5137, 2.6984, 1.7922, 0.1262, 1.772, 1.262, -0.3208, 0.9992, 0.9685, 0.8045, 1.6356, 1.2422, 0.4182, 2.126, 3.233, 3.232, 3.2284, 3.2236, 3.22, 3.2172, 3.2155, 3.2121, 3.2047, 3.2034, 3.2013, 3.2009, 3.199, 3.1987, 3.1966, 3.1908, 3.1891, 3.1863, 3.1832, 3.1786, 3.1784, 3.178, 3.1779, 3.1756, 3.1739, 3.1736, 3.1726, 3.1725, 3.1719, 3.1701, 3.1555, 3.1535, 3.1644, 3.1445, 3.1066, 3.1431, 3.1462, 3.1444, 3.12, 2.8583, 2.6451, 3.063, 2.4677, 3.0561, 2.7921, 2.3327, 2.9192, 2.7831, 2.4895, 2.3703, 2.8523, 1.8666, 1.8438, 2.1411, 2.255, 2.5712, 1.1386, 1.5561, 2.5661, 1.5503, 1.2887, 1.1075, -0.7922, 1.5753, 0.4655], \"logprob\": [30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, -4.6932, -6.0101, -5.2329, -6.1967, -6.346, -6.2723, -6.358, -6.3943, -6.4192, -6.431, -6.3269, -6.4765, -6.5613, -6.5702, -6.6047, -5.6366, -6.204, -5.2747, -6.6675, -6.6395, -6.7854, -5.38, -6.5494, -6.8464, -6.8483, -6.8448, -6.7622, -6.9137, -5.9693, -5.6119, -5.9913, -5.7062, -6.1116, -4.5838, -6.6001, -4.6733, -6.2131, -4.9743, -5.6033, -5.7935, -4.6102, -5.8304, -6.1299, -5.7701, -5.0593, -5.3306, -5.9849, -5.175, -4.5832, -5.3171, -5.364, -5.3325, -5.6307, -5.2714, -4.7301, -4.7111, -5.7181, -3.3581, -5.0718, -4.4935, -4.8955, -4.9654, -4.9313, -5.3258, -5.2519, -5.1149, -5.288, -5.299, -5.4382, -5.1629, -5.724, -5.8933, -6.2504, -5.9262, -5.9935, -6.3283, -6.4269, -6.5145, -6.4828, -6.5483, -6.5993, -6.2544, -6.6274, -6.2299, -6.2756, -6.7481, -6.5742, -6.6478, -6.8, -6.8164, -6.7047, -6.2626, -6.9059, -6.3114, -6.605, -6.5545, -6.2591, -7.0754, -7.0816, -6.8529, -6.5036, -6.9087, -4.8697, -5.9565, -5.3759, -5.977, -6.4355, -5.7134, -6.4075, -5.503, -5.4811, -5.2036, -6.1643, -5.9461, -5.9205, -5.7985, -5.2069, -4.9732, -5.45, -5.5518, -5.4796, -5.7447, -5.3413, -5.4533, -4.507, -4.9708, -4.5737, -3.8292, -5.2893, -4.765, -5.0545, -5.0185, -4.2053, -5.3103, -5.4927, -5.4336, -5.3672, -5.1773, -5.3129, -5.1874, -5.257, -5.4524, -5.3787, -4.9594, -5.081, -5.9693, -6.0569, -6.1637, -6.2704, -6.1543, -6.2855, -6.3334, -6.4046, -6.4729, -6.0886, -6.4276, -6.5478, -6.6958, -6.6701, -6.2746, -6.7484, -6.6074, -6.7952, -6.6256, -6.7331, -6.8285, -6.8428, -6.8087, -5.96, -6.7877, -6.1902, -6.9536, -6.9728, -5.7149, -6.3335, -6.382, -5.6279, -6.2298, -5.9576, -6.5555, -6.2658, -4.8464, -5.5433, -6.4627, -5.7034, -5.0399, -5.7795, -6.2152, -6.0476, -5.5891, -5.9123, -5.2568, -4.4526, -5.9815, -4.7563, -5.1157, -5.6995, -3.862, -5.6065, -4.9054, -5.2627, -4.8749, -5.1177, -5.1876, -4.9297, -5.4643, -5.4886, -5.1948, -4.9201, -4.7339, -5.5013, -5.6188, -5.4041, -5.5681, -5.5955, -5.6194, -5.5757, -5.5986, -5.6131, -5.6829, -5.8012, -5.8253, -5.8996, -5.9107, -6.0315, -6.295, -6.3074, -5.4922, -6.3838, -6.2924, -6.4642, -6.4924, -6.1133, -6.2627, -6.549, -6.5184, -6.4844, -6.3706, -6.0692, -6.7441, -6.5234, -6.6786, -6.1247, -6.9089, -6.812, -6.6976, -6.9623, -6.9695, -6.9727, -6.2776, -6.0776, -5.7927, -5.7854, -5.1498, -6.0987, -6.1954, -5.1976, -5.345, -6.1568, -5.3121, -4.1927, -5.6001, -4.2719, -5.589, -4.7421, -5.1224, -4.908, -5.5683, -5.8046, -5.3932, -5.0129, -5.2964, -5.5466, -5.5317, -5.2388, -5.3249, -4.9907, -5.2367, -4.9878, -5.2143, -4.6008, -5.235, -5.5017, -5.2606, -5.4377, -5.3383, -5.4469, -5.4411, -5.5212, -5.5054, -5.0207, -5.5891, -6.1169, -6.235, -5.6925, -6.2763, -6.3781, -6.3885, -6.2844, -6.4209, -6.119, -6.5018, -6.264, -6.4897, -6.5134, -6.5031, -6.5911, -6.0982, -5.8716, -6.3219, -6.449, -6.7606, -6.7902, -6.5454, -6.7492, -6.6217, -6.9427, -5.6394, -6.9179, -6.9719, -5.5513, -6.2706, -5.5516, -6.2777, -6.4094, -4.3082, -6.1217, -5.3558, -5.077, -5.9301, -5.4929, -5.3873, -6.2216, -4.9853, -4.6537, -5.748, -5.5678, -5.5047, -5.9862, -5.5366, -5.8682, -5.3412, -5.6579, -5.8639, -5.927, -4.7736, -4.0913, -5.0347, -5.0351, -4.3505, -5.5496, -5.4208, -5.5774, -5.1731, -5.5851, -5.564, -5.4888, -5.5194, -5.6251, -5.5723, -5.739, -6.0108, -5.9035, -6.1337, -6.1229, -6.2495, -6.2919, -6.4, -6.1188, -6.4486, -6.45, -6.4667, -6.4512, -6.4824, -6.5446, -6.5598, -6.5937, -6.6003, -6.5524, -6.4199, -6.6321, -6.624, -6.6783, -6.7206, -6.2139, -6.7364, -6.6849, -6.8346, -6.6147, -6.4357, -6.0619, -6.5265, -5.3041, -5.4361, -5.8544, -6.1067, -5.7599, -4.2565, -4.6521, -5.9443, -4.3499, -6.033, -5.6602, -5.7067, -5.9824, -5.5344, -5.2868, -5.3169, -6.0849, -5.3661, -4.5855, -5.7794, -5.3849, -5.7688, -5.769, -5.6714, -3.7469, -4.7889, -5.0197, -5.5653, -5.8141, -5.218, -4.868, -5.6827, -5.6829, -5.2617, -5.6666, -5.5365, -5.4596, -5.5411, -5.686, -5.6619, -5.6793, -5.6855, -5.6663, -5.4153, -5.9833, -5.5807, -6.2175, -6.0185, -6.3462, -5.5142, -6.1993, -6.5965, -6.6574, -6.4439, -6.6658, -6.745, -6.8204, -6.5626, -6.8603, -6.8493, -6.8039, -6.9334, -6.9106, -6.187, -6.9405, -7.0052, -7.0134, -6.9743, -6.1593, -5.4814, -7.0851, -6.0601, -5.0077, -5.8224, -5.2648, -6.2389, -6.3116, -5.1779, -6.0305, -5.4396, -5.7642, -5.6738, -6.0842, -6.5072, -5.3928, -4.6871, -5.1642, -5.2208, -5.7507, -5.5747, -4.9206, -4.431, -5.3726, -5.1809, -5.492, -5.5915, -5.0883, -5.1504, -4.2778, -5.6919, -5.724, -5.2156, -4.8156, -5.4755, -5.4984, -5.546, -5.5333, -5.5068, -5.6098, -5.9162, -6.0137, -6.0143, -6.0604, -6.0878, -6.095, -6.0158, -6.1422, -6.1415, -6.1943, -6.1074, -6.3143, -6.3262, -6.406, -6.4176, -6.4187, -6.4272, -6.1877, -6.4691, -6.3107, -6.3895, -5.6865, -5.8065, -6.6574, -6.7813, -6.7947, -6.5779, -6.0172, -6.8607, -6.8616, -5.4523, -6.0423, -6.2038, -5.3201, -5.8619, -6.1767, -4.774, -5.9638, -5.0971, -4.6849, -5.9225, -6.1363, -5.4418, -5.7707, -5.5605, -5.9841, -5.9142, -4.9057, -4.209, -5.9741, -5.4764, -5.0783, -5.4392, -5.4001, -4.0935, -5.5257, -5.1001, -4.9678, -5.5759, -5.8714, -5.3604, -5.3579, -5.4625, -5.1699, -5.6605, -5.7539, -5.4528, -5.6681, -5.0539, -5.5373, -5.5616, -5.618, -5.5328, -5.5945, -5.5983, -5.2372, -5.4538, -5.855, -5.8593, -5.7261, -6.0731, -6.0909, -5.9904, -6.1905, -6.2503, -6.0054, -6.3461, -6.1997, -6.4708, -6.5064, -6.4231, -6.5878, -6.5991, -6.5868, -6.567, -6.48, -6.6313, -6.6529, -6.5241, -5.92, -6.6965, -6.7045, -6.747, -6.78, -6.0334, -5.7057, -6.5122, -5.2783, -6.24, -6.1613, -6.2923, -5.269, -5.1306, -6.0118, -6.4434, -6.261, -6.2985, -5.3549, -5.8763, -6.1871, -6.0374, -5.9923, -5.3361, -5.4368, -5.4013, -5.6387, -5.5207, -5.3959, -3.5004, -5.3675, -5.536, -5.0578, -5.7393, -5.9068, -5.0097, -5.1931, -5.3361, -5.0462, -5.1427, -5.5344, -5.1556, -5.3526, -5.5262, -5.3056, -5.425, -5.5903, -5.5346, -5.5774, -5.3305, -5.9283, -5.9879, -6.2505, -6.2328, -6.3456, -5.346, -6.405, -5.9763, -6.4298, -6.0558, -6.4971, -6.5023, -6.4953, -6.0166, -6.23, -6.4672, -6.5401, -6.0443, -5.5513, -6.6384, -6.6795, -6.6309, -6.6955, -6.7138, -6.6735, -6.7466, -6.2574, -6.8084, -6.5401, -6.2193, -5.7891, -5.8769, -6.0425, -5.1462, -6.4144, -5.316, -6.1246, -5.4994, -5.581, -5.3926, -4.8042, -6.1621, -5.2908, -5.4131, -5.7072, -5.092, -5.8108, -5.4116, -5.8264, -5.5004, -5.5182, -4.8832, -5.7244, -5.0235, -3.6717, -5.0893, -5.1059, -4.6624, -4.7157, -5.3438, -5.4202, -4.8936, -5.3974, -5.3715, -5.4224, -5.2493, -5.3466, -5.0122, -5.3076, -5.3924, -5.5422, -5.6106, -5.7964, -5.8949, -5.833, -6.0378, -5.8842, -6.236, -6.1884, -5.7778, -6.2928, -6.3219, -5.4639, -6.2571, -6.2245, -6.4855, -6.5837, -6.5888, -6.6526, -6.4026, -6.4879, -6.5037, -6.2575, -6.7582, -6.7685, -6.7687, -6.6371, -6.5409, -6.7771, -6.71, -6.1841, -6.3552, -4.7762, -5.4028, -5.9522, -6.3723, -6.2705, -5.4925, -6.2621, -5.5113, -5.905, -5.5938, -5.262, -5.7543, -5.4454, -5.0592, -4.5083, -5.6821, -5.1901, -5.5128, -5.3524, -5.0448, -5.8617, -5.5435, -5.8885, -5.4632, -5.3343, -4.9245, -4.9998, -5.6904, -5.5081, -5.1121, -5.1851, -5.3055, -5.185, -5.4634, -5.3913, -5.6255, -5.3472, -4.9043, -5.2649, -5.3837, -5.1469, -5.4066, -5.402, -5.4731, -5.4244, -5.4774, -5.5451, -5.6373, -5.2239, -5.8082, -6.0305, -5.8445, -6.1502, -6.0279, -5.996, -6.2641, -6.0362, -6.3428, -6.3614, -6.3297, -6.5983, -6.649, -6.1213, -6.7228, -6.62, -6.7815, -6.8606, -6.8559, -6.7683, -7.0332, -6.1467, -7.0532, -7.0799, -6.5354, -7.1255, -6.6044, -6.4952, -6.324, -6.1061, -6.1744, -6.5758, -5.1919, -5.67, -5.69, -5.3371, -5.9599, -6.0409, -5.5306, -6.0128, -5.348, -5.5354, -4.5503, -5.3173, -4.9134, -5.017, -5.5192, -5.6522, -5.7035, -5.5659, -5.0247, -5.7879, -4.8921, -5.5279, -4.6244, -5.1628, -4.7782, -4.8697, -5.7055, -5.0161, -4.8082, -5.3881, -4.854, -4.7, -5.0714, -5.2877, -5.4295, -4.9524, -5.2271, -5.4213, -5.3733, -5.5029, -5.5116, -5.2455, -5.6831, -5.7756, -5.8117, -5.8951, -6.0073, -5.7995, -5.7475, -5.762, -5.9653, -6.1728, -6.3762, -6.4325, -6.4958, -6.4051, -5.8189, -6.3634, -6.3559, -6.4727, -6.4787, -6.5725, -5.8826, -6.4767, -6.5906, -6.6113, -6.6191, -6.4166, -6.3054, -6.5292, -6.6513, -5.8817, -5.6155, -6.1194, -6.3034, -5.5004, -5.9038, -5.0276, -5.6634, -5.9788, -5.4598, -4.7983, -5.2114, -5.9008, -5.7253, -5.2961, -6.0546, -5.5771, -5.3173, -5.7928, -5.3652, -5.3844, -5.0981, -5.4198, -4.5653, -5.5786, -4.4237, -5.2048, -5.3034, -4.3177, -5.6957, -5.3236, -5.5817, -5.5482, -5.4277, -5.341, -5.5429, -5.4458, -5.4065, -5.2519, -5.4818, -5.4986, -5.8918, -5.9222, -5.8033, -4.4361, -6.0695, -5.7718, -6.1675, -5.583, -6.256, -6.3841, -6.3999, -6.4249, -6.2463, -6.4607, -6.4454, -6.5257, -6.4832, -6.564, -6.553, -6.5484, -6.5764, -6.6246, -6.646, -6.6606, -6.6448, -6.6282, -6.6656, -6.5168, -6.6724, -6.7059, -5.6518, -6.0974, -6.1115, -5.0654, -6.1914, -5.5146, -6.5352, -6.4151, -6.059, -6.1656, -5.9166, -6.0629, -5.4906, -4.2918, -4.2621, -5.4882, -6.1116, -5.4123, -5.6389, -5.7809, -5.7491, -5.2386, -5.5886, -5.7006, -5.2752, -5.7781, -5.2923, -4.1094, -4.9282, -5.2724, -4.219, -4.6548, -5.6534, -5.4051, -5.3506, -5.6284, -5.5486, -5.531, -5.5139, -5.5621, -5.7077, -5.697, -5.4568, -5.8215, -5.9582, -6.0505, -6.0682, -6.0665, -6.0915, -6.1261, -6.2563, -6.0105, -6.301, -6.3261, -6.1518, -6.4084, -6.4331, -6.0182, -6.4315, -6.5517, -6.1589, -6.5119, -6.3699, -6.5188, -5.5729, -6.6814, -6.6244, -6.6975, -6.5956, -6.7072, -6.7204, -6.7518, -6.2842, -5.2977, -5.4683, -5.7859, -5.5293, -5.2938, -5.3992, -5.776, -5.6948, -5.8931, -5.6425, -5.9836, -5.5028, -5.3695, -5.7016, -5.6062, -5.4457, -4.0376, -5.7053, -5.6074, -4.6423, -5.3493, -4.3315, -5.7777, -5.564, -5.0717, -5.5098, -3.8506, -5.5776, -5.7682, -5.2488, -5.3952, -5.1181, -5.3611, -4.6664, -5.4948, -5.4462, -5.2977, -5.3305, -5.5951, -5.6015, -5.2219, -5.5647, -5.6663, -5.8349, -5.8626, -4.4698, -6.0671, -6.1098, -6.1484, -6.2329, -6.235, -5.9352, -6.3257, -6.3925, -6.023, -6.4446, -5.845, -6.0388, -6.4923, -6.2367, -6.5125, -6.5686, -6.0261, -6.6309, -6.2142, -5.7398, -6.5806, -6.5727, -6.6894, -6.6686, -6.1494, -5.6942, -5.5338, -6.2593, -5.3922, -5.6984, -5.1693, -5.8808, -4.8151, -5.0068, -6.0262, -6.0357, -5.5221, -5.7882, -5.9154, -5.0445, -5.3244, -5.3133, -5.7264, -5.7799, -5.0365, -5.5765, -5.1081, -5.8587, -4.611, -5.4171, -5.6344, -5.4014, -5.3691, -5.2716, -4.8098, -4.9175, -5.5723, -5.3497, -5.2955, -5.3892, -5.466, -5.555, -5.5896, -5.5547, -5.55, -5.3292, -5.8967, -5.9759, -5.5985, -5.793, -6.1034, -6.1803, -6.1758, -6.1794, -6.3199, -6.3308, -6.0522, -6.3707, -6.3706, -6.2994, -6.3707, -6.2978, -6.3319, -6.4504, -5.7017, -6.4538, -6.5198, -6.1704, -5.8502, -6.3659, -6.6267, -6.6558, -6.6608, -6.6158, -6.4914, -6.2422, -6.5149, -6.4511, -6.149, -4.6857, -6.0037, -5.4205, -5.8208, -5.9886, -5.6817, -5.7975, -5.3501, -5.0919, -5.9188, -4.928, -4.5853, -5.5122, -5.0688, -5.3699, -5.4592, -5.4126, -5.0586, -5.5122, -5.2431, -5.2048, -5.4965, -5.1903, -5.6803, -5.3145, -5.0183, -5.2582, -4.1807, -5.3528, -5.5946, -5.2729, -5.0657, -5.4147, -4.6288, -5.3761, -5.2964, -5.4974, -5.3566, -5.4307, -5.4256, -3.5925, -5.7496, -5.7037, -5.9471, -6.0204, -6.0554, -5.6856, -6.1137, -5.9958, -6.165, -6.0681, -6.2235, -6.1918, -6.2285, -6.4001, -6.2941, -6.3975, -6.4045, -6.45, -6.4528, -3.5845, -3.5444, -3.5629, -6.5407, -6.5614, -6.569, -6.6925, -6.6187, -6.6909, -6.7461, -5.2078, -5.3292, -5.2591, -5.5722, -6.0606, -5.2137, -5.9781, -5.5206, -5.7477, -5.3048, -5.8581, -5.5549, -5.9198, -5.3941, -4.9263, -4.9362, -5.0418, -4.5018, -5.081, -5.033, -4.2549, -4.8298, -5.701, -4.4212, -5.264, -5.4246, -5.4977, -5.5521, -5.4094, -5.5487, -5.2384, -5.5406, -5.5594, -5.4518, -5.6973, -5.6349, -5.6219, -5.6047, -5.7767, -5.8241, -5.0104, -6.0113, -5.6539, -6.1809, -6.1808, -6.0532, -6.0737, -5.6124, -6.3072, -6.3688, -6.3814, -6.5243, -6.5663, -6.5999, -6.6122, -6.0784, -6.518, -6.1047, -6.7585, -6.5027, -6.7468, -6.5778, -5.3447, -5.5559, -5.9692, -5.154, -5.1461, -6.3045, -5.1543, -5.3674, -5.5168, -5.5191, -5.9006, -5.3285, -5.805, -5.4546, -5.3775, -4.9924, -5.6586, -5.1303, -4.856, -5.2321, -5.4865, -5.6201, -4.652, -5.5716, -5.0672, -4.4468, -5.1859, -5.0593, -4.5309, -5.1458, -5.2231, -5.2626, -5.3869, -5.4073, -5.4822, -5.534, -3.2762, -3.2758, -4.3707, -3.1505, -5.2472, -5.4406, -5.2936, -5.6714, -5.7555, -5.9499, -6.0693, -5.9227, -5.4339, -5.5775, -6.178, -6.3555, -6.3929, -6.4344, -5.866, -6.0549, -6.5979, -6.6043, -6.5998, -6.26, -5.5479, -6.6778, -6.5777, -6.6961, -6.6992, -6.6583, -5.8544, -5.9242, -6.3395, -5.8864, -5.1881, -5.923, -6.2488, -6.2337, -5.9884, -4.2284, -4.0227, -5.9732, -4.1693, -5.9901, -5.3251, -4.5107, -5.7526, -5.6117, -5.3223, -5.2594, -5.734, -4.9606, -5.1174, -5.3, -5.4488, -5.6285, -5.0078, -5.3028, -5.6506, -5.3656, -5.406, -5.4494, -5.3652, -5.5686, -5.5523], \"Term\": [\"internet\", \"most_awesome_image_on\", \"imgur\", \"point_and\", \"reddit\", \"wednesday\", \"comment_so_far_on\", \"on_wednesday\", \"play\", \"champions_league\", \"'s\", \"$\", \"game\", \"stop\", \"order\", \"billion\", \"juventus\", \"party\", \"monaco\", \"need\", \"test\", \"manchester_united\", \"dutch\", \"geert_wilders\", \"a_federal_judge\", \"manchester_city\", \"win\", \"u.s.\", \"it_'\", \"hawaii\", \"dutch\", \"hour_before\", \"yahoo\", \"luke\", \"second_half\", \"aitor_karanka\", \"game_of_thrones\", \"marcus_rashford\", \"advantage\", \"gary\", \"alexander\", \"paul_pogba\", \"go_head\", \"punjab\", \"thought\", \"tottenham\", \"harry_kane\", \"jose_mourinho\", \"motivation\", \"luis_enrique\", \"antonio\", \"atletico_madrid\", \"diego_simeone\", \"lineup\", \"bruce\", \"script\", \"edin_dzeko\", \"marcus\", \"head_coach\", \"romelu_lukaku\", \"window\", \"ease\", \"inspire\", \"manchester_united\", \"proud\", \"chelsea\", \"antonio_conte\", \"premier_league\", \"everton\", \"victory_over\", \"manchester_city\", \"williams\", \"trail\", \"literally\", \"coach\", \"pep_guardiola\", \"middlesbrough\", \"striker\", \"club\", \"south\", \"liverpool\", \"arsenal\", \"leicester_city\", \"david\", \"star\", \"player\", \"legend\", \"'s\", \"england\", \"win\", \"season\", \"man\", \"play\", \"goal\", \"return\", \"good\", \"follow\", \"game\", \"fan\", \"\\u2019s\", \"escalate\", \"right_wing\", \"allegation_that\", \"muslims\", \"establishment\", \"palace\", \"4_2\", \"charge_against\", \"stem\", \"2016_election\", \"cycle\", \"figure_out\", \"naval\", \"foreign_aid\", \"closely_watch\", \"proper\", \"an_early\", \"steady\", \"of_fame\", \"joe_hart\", \"hedge_fund\", \"fate\", \"pub\", \"ocean\", \"suicide\", \"$_54_billion\", \"moderate\", \"pile\", \"seoul_south_korea_ap\", \"north_carolina\", \"westminster\", \"health_care_law\", \"thursday\", \"spokesman\", \"do_n't\", \"setback\", \"permanent\", \"islamic_state\", \"chief_executive_officer\", \"populist\", \"prepare\", \"affordable_care_act\", \"repeal\", \"reform\", \"south_korean\", \"his_own\", \"fed\", \"europe\", \"board\", \"debate\", \"possible\", \"conduct\", \"program\", \"push\", \"president\", \"vote\", \"plan\", \"\\u2019s\", \"eu\", \"u.s.\", \"white_house\", \"expect\", \"'s\", \"cut\", \"republican\", \"raise\", \"campaign\", \"president_donald_trump\", \"election\", \"trump\", \"government\", \"power\", \"leave\", \"congressional_budget_office\", \"take_effect\", \"46\", \"tab\", \"resignation\", \"electricity\", \"desperate\", \"statue\", \"second_season\", \"2016_presidential_campaign\", \"depict\", \"revise_travel_ban\", \"big_news\", \"reassure\", \"petition\", \"injunction\", \"five_month\", \"swing\", \"fiscal\", \"sheldon\", \"to_start_your\", \"human_rights\", \"treaty\", \"20th\", \"rachel\", \"interested_in\", \"know_how\", \"generate\", \"hammer\", \"jr.\", \"eliminate\", \"republican_senator\", \"mirror\", \"supply\", \"have_agree_to\", \"knock\", \"team_mate\", \"tactic\", \"federal_reserve\", \"voice\", \"jeremy_corbyn\", \"overhaul\", \"strong\", \"cia\", \"immediately\", \"tell_cnbc\", \"update\", \"wall_street\", \"2017\", \"u.s.\", \"progress\", \"on_wednesday\", \"budget\", \"estimate\", \"'s\", \"on_friday\", \"company\", \"judge\", \"day\", \"expect\", \"announce\", \"president\", \"trade\", \"remain\", \"president_donald_trump\", \"new\", \"\\u2019s\", \"seek\", \"likely\", \"late\", \"continue\", \"close\", \"increase\", \"government\", \"release\", \"white_house\", \"canadian\", \"tillerson\", \"perk\", \"bracket\", \"widely\", \"violate\", \"treasurer\", \"requirement\", \"wind\", \"news_conference\", \"withdrawal\", \"2019\", \"propaganda\", \"opec\", \"freeze\", \"phoenix\", \"birth\", \"legal_action\", \"pursue\", \"initiative\", \"french_presidential_candidate_francois\", \"suddenly\", \"victor\", \"presidential_election\", \"fundamental\", \"120\", \"argue_that\", \"50%\", \"strict\", \"consulate\", \"of_state_rex\", \"source_say\", \"\\u20ac\", \"email\", \"opposition\", \"beautiful\", \"mexican\", \"massive\", \"wave\", \"mid\", \"round\", \"on_wednesday\", \"halt\", \"party\", \"lie\", \"right\", \"snow\", \"campaign\", \"syria\", \"vow\", \"center\", \"president_donald_trump_'s\", \"meet\", \"rally\", \"russia\", \"political\", \"president_trump\", \"face\", \"leader\", \"president\", \"president_donald_trump\", \"'s\", \"find\", \"reach\", \"u.s.\", \"election\", \"people\", \"plan\", \"\\u2019s\", \"include\", \"new\", \"bjp\", \"msnbc\", \"pittsburgh\", \"concrete\", \"teenager\", \"filmmaker\", \"most_recent\", \"alert\", \"watson\", \"soldier\", \"indictment\", \"sa\", \"relief\", \"spicer\", \"sergeant\", \"ankle\", \"feminist\", \"temporarily\", \"repeat\", \"thank\", \"swap\", \"self_drive_car\", \"portland\", \"tell_him\", \"defiant\", \"lesson\", \"hey\", \"easily\", \"finance_minister\", \"discriminatory\", \"chancellor\", \"uncover\", \"negotiation\", \"gang\", \"pakistan\", \"stop\", \"disaster\", \"popular\", \"train\", \"u.n.\", \"revised_travel_ban\", \"position\", \"satellite\", \"tax\", \"police\", \"fact\", \"april\", \"pick\", \"website\", \"student\", \"2005\", \"final\", \"blow\", \"breach\", \"texas\", \"people\", \"'s\", \"government\", \"state\", \"\\u2019s\", \"prime_minister\", \"accuse\", \"spend\", \"do_not\", \"donald_trump\", \"head\", \"woman\", \"accord_to\", \"want\", \"independence\", \"spring\", \"south_australia\", \"remake\", \"seed\", \"identity\", \"u.k.\", \"european_parliament\", \"resume\", \"500_million\", \"equal\", \"pollution\", \"traveller\", \"icc\", \"gender\", \"congressional\", \"glenn\", \"scottish_independence\", \"live_action\", \"successor\", \"monster\", \"permit\", \"a_whole_lot\", \"vicious\", \"liken\", \"construction\", \"pleased\", \"jonathan\", \"louisville\", \"prometheus\", \"closure\", \"sanction\", \"on_board\", \"store\", \"chairman\", \"management\", \"eric\", \"rachel_maddow\", \"order\", \"australia\", \"do_not_think\", \"test\", \"cricket\", \"regulation\", \"in_2014\", \"ga\", \"turkish\", \"online\", \"gop\", \"there_\\u2019\", \"india\", \"use\", \"easy\", \"global\", \"protect\", \"american_health_care_act\", \"prevent\", \"'s\", \"state\", \"report\", \"department\", \"site\", \"u.s.\", \"\\u2019s\", \"datum\", \"propose\", \"new\", \"cause\", \"lead\", \"come\", \"country\", \"service\", \"good\", \"start\", \"world\", \"austin\", \"bayer_leverkusen\", \"mile\", \"central_bank\", \"map\", \"spell\", \"federico_bernardeschi\", \"hacker\", \"repeal_obamacare\", \"verify\", \"kong\", \"swear\", \"day_before\", \"coin\", \"troll\", \"preliminary\", \"inappropriate\", \"wonderful\", \"destination\", \"joy\", \"mario\", \"100,000\", \"enforcement\", \"frustrate\", \"personality\", \"get_ready_for\", \"phase\", \"replace_obamacare\", \"multi\", \"seven_year\", \"storm\", \"raise_interest_rate\", \"to_repeal_and\", \"iraqi\", \"winger\", \"federal_government\", \"they_'re\", \"executive_order\", \"atalanta\", \"fiorentina\", \"new_travel_ban\", \"thrilling\", \"refugee\", \"block\", \"2018\", \"turkey\", \"tension\", \"thousand_of\", \"hawaii\", \"country\", \"travel_ban\", \"conservative\", \"european_union\", \"blow\", \"vote\", \"bill\", \"\\u2019s\", \"gun\", \"unveil\", \"plan\", \"'s\", \"warn\", \"party\", \"police\", \"president\", \"new\", \"government\", \"samir\", \"just_hour_before\", \"go_through\", \"grave\", \"nationwide\", \"devil\", \"dutch_election\", \"roundup\", \"headphone\", \"civil_war\", \"clothes\", \"universe\", \"blair\", \"absolutely\", \"zelda\", \"standalone\", \"human_right\", \"hundred_of_million\", \"columnist\", \"david_davis\", \"wealthy\", \"vr\", \"singh\", \"move_forward\", \"speedy\", \"russell\", \"tokyo\", \"legion\", \"vital\", \"election_victory\", \"boston\", \"barrier\", \"jamie_vardy\", \"cancer\", \"republican_leader\", \"spotlight\", \"facebook\", \"husband\", \"wall\", \"look_at\", \"sleep\", \"auto\", \"kid\", \"modern\", \"standard\", \"fully\", \"contest\", \"great\", \"people\", \"alternative\", \"far\", \"hit\", \"germany\", \"account\", \"\\u2019s\", \"-PRON-_\\u2019s\", \"support\", \"world\", \"parliament\", \"pretty\", \"thing\", \"high\", \"video\", \"report\", \"comment\", \"maker\", \"pay\", \"message\", \"'s\", \"try_to\", \"change\", \"law\", \"come\", \"include\", \"like\", \"house_intelligence_committee\", \"new_york_city\", \"sean_spicer_say\", \"traveler\", \"storage\", \"experiment\", \"15-year_old\", \"clarke\", \"roger\", \"historically\", \"heroine\", \"academic\", \"shoe\", \"since_2012\", \"free_trade\", \"walter\", \"explosion\", \"guidance\", \"cultural\", \"skeptical\", \"frustration\", \"generally\", \"what_happen_when\", \"bring_back\", \"18\", \"sideline\", \"spare\", \"college_basketball\", \"jessica\", \"upset\", \"footballer\", \"who_die\", \"asia\", \"rush\", \"especially\", \"light_on\", \"northeast\", \"sevilla\", \"housing\", \"bedroom\", \"earlier_this_month\", \"craig_shakespeare\", \"short\", \"cabinet\", \"punch\", \"particularly\", \"domestic\", \"champion\", \"goalkeeper\", \"hack\", \"nuclear\", \"view\", \"blame\", \"'s\", \"economy\", \"save\", \"turn\", \"experience\", \"britain_'s\", \"world\", \"decision\", \"force\", \"time\", \"on_wednesday\", \"cause\", \"big\", \"say_he\", \"problem\", \"work\", \"use\", \"month\", \"late\", \"report\", \"champions_league_quarter_final\", \"theft\", \"sturgeon\", \"tennessee\", \"health_care_bill\", \"brexit_negotiation\", \"nicola_sturgeon\", \"interest_rate_hike\", \"rangers\", \"lad\", \"their_place\", \"steven_smith\", \"cook\", \"10th\", \"3_0\", \"a_second_independence\", \"badly\", \"monroe\", \"clean\", \"quarter_final\", \"ranking\", \"independence_referendum\", \"workplace\", \"header\", \"brilliant\", \"addiction\", \"chant\", \"contender\", \"ncaa\", \"brussels\", \"colin\", \"jump\", \"concede\", \"broadcaster\", \"porto\", \"warriors\", \"appeal\", \"mandate\", \"river\", \"ryan\", \"president_trump_\\u2019s\", \"scotland\", \"sweet\", \"finish\", \"30\", \"guarantee\", \"injury\", \"intel\", \"coverage\", \"civil\", \"minute\", \"penalty\", \"post\", \"meeting_with\", \"fight\", \"'s\", \"england\", \"record\", \"win\", \"day\", \"match\", \"tie\", \"good\", \"miss\", \"second\", \"milan\", \"start\", \"champions_league\", \"\\u2019s\", \"woman\", \"return\", \"blizzard\", \"horse\", \"microwave\", \"ambassador\", \"pax_east\", \"across_europe\", \"arrow\", \"luck\", \"spain\", \"robert_e._kelly\", \"flash\", \"berlin\", \"9\", \"crush\", \"verizon\", \"egypt\", \"polish\", \"sign_up\", \"beware\", \"singapore\", \"nightmare\", \"cooper\", \"lawyer_say\", \"carrier\", \"rotterdam\", \"graduate\", \"games\", \"court_hear\", \"blind\", \"bind\", \"external\", \"ruin\", \"flight\", \"expense\", \"teacher\", \"twist\", \"healthy\", \"crisis\", \"n\\u2019t\", \"dark\", \"kim_jong_nam\", \"malaysia\", \"fly\", \"comeback\", \"man_who\", \"murder\", \"it_'\", \"yes\", \"inc.\", \"stream\", \"study\", \"google\", \"san_francisco\", \"failure\", \"september\", \"north\", \"girl\", \"kill\", \"death\", \"steal\", \"debut\", \"mean\", \"question\", \"snow\", \"launch\", \"energy\", \"base\", \"six_year\", \"turn\", \"\\u2019s\", \"leave\", \"lose\", \"'s\", \"end\", \"find\", \"event\", \"new\", \"people\", \"conviction\", \"each_other\", \"europa_league\", \"comic_book\", \"legal_challenge\", \"pen\", \"second_referendum\", \"rapoport_report\", \"fin\", \"twin\", \"miller\", \"adventure\", \"prisoner\", \"julie\", \"defy\", \"la\", \"we_look_back\", \"everyone_else\", \"sebastian\", \"tonight_\\u2019s\", \"every_year\", \"hint_that\", \"object\", \"nut\", \"venezuela\", \"presentation\", \"shopper\", \"2008\", \"-PRON-_will_see\", \"offset\", \"wireless\", \"planet\", \"dna\", \"prime_minister_theresa_may\", \"2013\", \"daughter\", \"radio\", \"attention\", \"lawsuit\", \"comic\", \"pregnant\", \"general\", \"forget\", \"doctor\", \"be_able_to\", \"film\", \"friend\", \"new_york\", \"that_'\", \"novel\", \"station\", \"michael\", \"fill\", \"mp\", \"sex\", \"old\", \"five_year\", \"want\", \"live\", \"year\", \"way\", \"16\", \"change\", \"come\", \"cost\", \"new\", \"\\u2019s\", \"good\", \"pay\", \"-PRON-_\\u2019\", \"'s\", \"people\", \"million\", \"time\", \"release\", \"court\", \"freedom\", \"religious\", \"tony\", \"missile\", \"viral\", \"i_\\u2019ve\", \"inch\", \"u.s._secretary_of\", \"state_rex_tillerson\", \"weak\", \"frame\", \"stretch\", \"raise_$\", \"reagan\", \"strategic\", \"hijack\", \"planned_parenthood\", \"banker\", \"spur\", \"fraud\", \"racing\", \"trigger_article_50\", \"old_man\", \"route\", \"gonzaga\", \"serial\", \"her_own\", \"hint\", \"occasion\", \"gen.\", \"oust\", \"warner_bros.\", \"remote\", \"panic\", \"come_out\", \"direction\", \"mr\", \"treasury\", \"x\", \"suggest_that\", \"can_not\", \"mind\", \"stefano_pioli\", \"v\", \"when_it\", \"22\", \"south_korea\", \"japan\", \"its_own\", \"region\", \"fear\", \"episode\", \"deal_with\", \"come\", \"different\", \"new\", \"china\", \"netherlands\", \"'s\", \"self\", \"american\", \"character\", \"struggle\", \"job\", \"like\", \"feature\", \"change\", \"do_not\", \"\\u2019s\", \"claim\", \"woman\", \"strip\", \"don\", \"killer\", \"monaco\", \"season_1\", \"compromise\", \"clock\", \"paulo_dybala\", \"lok_sabha\", \"corp\", \"tank\", \"medhi_benatia\", \"famine\", \"gop_health\", \"pat\", \"n'golo_kante\", \"rate_hike\", \"discipline\", \"ligue_1\", \"treasure\", \"at_twickenham\", \"three_point\", \"reboot\", \"stick_with\", \"low_level\", \"gregg_rosenthal\", \"red_devils\", \"decisive\", \"48\", \"demarcus\", \"tired\", \"clinton\", \"saturday_'s\", \"a_lot_of\", \"upgrade\", \"jack\", \"robust\", \"thriller\", \"talent\", \"jeff\", \"paper\", \"250\", \"60\", \"juventus\", \"champions_league\", \"approve\", \"revised\", \"tax_return\", \"next_month\", \"festival\", \"summer\", \"line\", \"3\", \"they_can\", \"decide\", \"kind_of\", \"justice\", \"\\u2019s\", \"game\", \"believe\", \"'s\", \"new\", \"napoli\", \"start\", \"time\", \"goal\", \"on_thursday\", \"season\", \"want\", \"win\", \"2\", \"do_not\", \"gaming\", \"nationalism\", \"grade\", \"tall\", \"birthday\", \"tight_end\", \"obtain\", \"detainee\", \"austin_texas\", \"jan\", \"leonardo\", \"no_problem\", \"let_you\", \"stuart\", \"resist\", \"elizabeth\", \"orbit\", \"new_book\", \"sassuolo\", \"2017_season\", \"ballot\", \"mvp\", \"nintendo\", \"match_against\", \"mph\", \"clinic\", \"proceed\", \"refuse\", \"funeral\", \"martellus_bennett\", \"sand\", \"beauty_and\", \"tomorrow\", \"go_into\", \"clarify\", \"deputy\", \"wait\", \"own_by\", \"wait_for\", \"skill\", \"report_suggest\", \"nasa\", \"smith\", \"beast\", \"lazio\", \"battery\", \"second_time\", \"play\", \"nice\", \"version_of\", \"deal\", \"surprise\", \"game\", \"era\", \"secret\", \"bad\", \"income\", \"\\u2019s\", \"m\", \"sampdoria\", \"inter\", \"-PRON-_will\", \"team\", \"roma\", \"'s\", \"form\", \"\\u00a3\", \"win\", \"new\", \"start\", \"do_not\", \"far_right\", \"revelation\", \"maryland\", \"indicator\", \"on_people.com\", \"a_federal_judge\", \"an_hour\", \"snub\", \"christopher\", \"exxon_mobil\", \"humiliating\", \"do_you\", \"wayne\", \"airbnb\", \"hate\", \"no_matter\", \"21\", \"borrow\", \"midnight\", \"master\", \"ammunition\", \"gossip\", \"tv_series\", \"emmanuel_macron\", \"israeli\", \"ride\", \"proclaim\", \"lake\", \"repair\", \"milk\", \"90\", \"temporary\", \"how_much\", \"restore\", \"this_article_originally_appear\", \"robert\", \"florida\", \"cheap\", \"love\", \"1\", \"your_daily_look_at\", \"late_break_news_upcoming\", \"veteran\", \"microsoft\", \"thomas\", \"stock\", \"plus\", \"process\", \"crucial\", \"iconic\", \"hawaii\", \"french\", \"launch\", \"total\", \"new\", \"story\", \"discover\", \"case\", \"bill\", \"late\", \"'s\", \"\\u2019s\", \"dozen\", \"man\", \"woman\", \"good\", \"set\", \"this_week\", \"host\", \"head\", \"hold\", \"go_into_effect\", \"sentiment\", \"pyongyang\", \"sister\", \"here_'_how\", \"matthew\", \"illness\", \"president_barack_obama\", \"yield\", \"provision\", \"mainstream\", \"no_evidence\", \"first_trip\", \"landslide\", \"ugly\", \"hostile\", \"bottle\", \"judgment\", \"nominate\", \"oh\", \"twitter_user\", \"toilet\", \"explode\", \"meal\", \"come_amid\", \"rein\", \"equip\", \"mum\", \"howard\", \"chicken\", \"narrow\", \"collaboration\", \"keen\", \"largely\", \"-PRON-_\\u2019re\", \"nascar\", \"eat\", \"how_do\", \"harm\", \"end_up\", \"mess\", \"morning\", \"white\", \"house_gop\", \"race\", \"provide\", \"deserve\", \"photo\", \"check_out\", \"medical\", \"rutte\", \"hear\", \"slam\", \"food\", \"parent\", \"johnson\", \"dozen\", \"17\", \"driver\", \"china\", \"percent\", \"'s\", \"health\", \"eye\", \"milan\", \"like\", \"upcoming\", \"\\u2019s\", \"tweet\", \"today\", \"napoli\", \"new\", \"way\", \"good\", \"wednesday\", \"irish\", \"jewish\", \"delivery\", \"plow\", \"drag\", \"bury\", \"fbi_director_james_comey\", \"controller\", \"diego\", \"29\", \"we_can_not\", \"juan\", \"making\", \"charlie\", \"norman\", \"hit_back_at\", \"it_turn_out\", \"revise\", \"solo\", \"comment_so_far_on\", \"point_and\", \"reddit\", \"oregon\", \"seoul\", \"unidentified\", \"sugar\", \"gianluigi_donnarumma\", \"slap\", \"assembly_election\", \"camera\", \"credit\", \"status\", \"bane\", \"south_africa\", \"comedy\", \"spin\", \"free_agent\", \"remember\", \"scandal\", \"celebration\", \"adviser\", \"hill\", \"president_trump_'s\", \"movie\", \"netherlands\", \"tv\", \"find\", \"action\", \"officer\", \"new\", \"big\", \"remove\", \"\\u2019s\", \"thing\", \"cost\", \"chief\", \"-PRON-_will\", \"release\", \"challenge\", \"'s\", \"police\", \"congressman\", \"balance\", \"we_can\", \"prosecution\", \"necessary\", \"seattle\", \"snatch\", \"resort\", \"this_season\", \"conclude\", \"i_can\", \"bull\", \"911\", \"brexit_secretary\", \"65\", \"his_side\", \"donate\", \"retro\", \"eden_hazard\", \"resign_from\", \"adam_bate\", \"childhood\", \"starter\", \"allen\", \"raw\", \"both_party\", \"soil\", \"rugby\", \"opposite\", \"knowledge\", \"horror\", \"scrap\", \"dramatically\", \"ireland\", \"fee\", \"deposit\", \"decline\", \"barack_obama\", \"brother\", \"difficult\", \"conversation\", \"scheme\", \"generation\", \"coalition\", \"fuel\", \"huge\", \"coast\", \"read\", \"ban\", \"wear\", \"catch\", \"justice_department\", \"do_not\", \"sequel\", \"offer\", \"\\u2019s\", \"service\", \"late\", \"'s\", \"game\", \"work\", \"day\", \"appear\", \"say_he\", \"come\", \"gop\", \"most_awesome_image_on\", \"imgur\", \"geert_wilders\", \"internet\", \"anti_islam\", \"royal\", \"respond_to\", \"asylum\", \"season_2\", \"later_this_year\", \"east_coast\", \"continent\", \"finale\", \"a_new_contract\", \"mom\", \"belgian\", \"job_report\", \"passage\", \"drink\", \"pacific\", \"may.\", \"mainly\", \"trademark\", \"diesel\", \"here_'_what_you\", \"estate\", \"snake\", \"nato\", \"southwest\", \"walking_dead\", \"palermo\", \"mislead\", \"ian\", \"zero\", \"interest_rate\", \"marine\", \"teaser\", \"donald_trump_\\u2019\", \"expand\", \"billion\", \"$\", \"split\", \"need\", \"beach\", \"prime_minister_mark_rutte\", \"know\", \"loan\", \"immigrant\", \"investor\", \"risk\", \"inflation\", \"child\", \"on_tuesday\", \"legal\", \"project\", \"quickly\", \"year\", \"warn\", \"agree\", \"high\", \"more_than\", \"million\", \"\\u2019s\", \"mp\", \"time\"], \"Total\": [491.0, 429.0, 429.0, 348.0, 342.0, 317.0, 334.0, 534.0, 522.0, 340.0, 4277.0, 366.0, 617.0, 262.0, 311.0, 240.0, 325.0, 526.0, 162.0, 377.0, 309.0, 205.0, 171.0, 144.0, 153.0, 226.0, 699.0, 745.0, 280.0, 221.0, 171.9769670345286, 46.76798177054757, 101.81763988894495, 38.989713192701146, 33.68602702412023, 36.28160330617771, 33.30397638562239, 32.1417651512565, 31.374002123606676, 31.022976101236743, 34.43524007502235, 29.709401324189184, 27.339357318974056, 27.125163308968247, 26.217985919070813, 69.06017154047922, 39.21929838281137, 99.4622912780321, 24.754563892982446, 25.475377668695458, 22.037993613213388, 89.95346601731717, 27.947972374424285, 20.78975445835632, 20.75151749763483, 20.849713848215124, 22.671425621108412, 19.496878427315114, 50.14227997632856, 71.68850449743061, 49.131215488230225, 65.5786524559112, 43.603193689939445, 205.3519821497532, 26.691216292280252, 193.63173438789153, 39.67818307407822, 142.45342515727694, 75.03874998956853, 61.588814118676645, 226.11991041923034, 60.36045540178531, 43.879722764389456, 65.22555967658249, 144.3811439379326, 107.3321810488317, 51.57516143496576, 132.51370386183237, 266.4031505119144, 115.92082771075829, 116.98963951113191, 122.65128693866558, 85.45685910379217, 140.50359660299887, 306.43013167961857, 320.28657906867784, 79.23674790204167, 4277.080777837924, 249.0502951950631, 699.9691362476083, 380.7556068743802, 435.212177301735, 522.7473913641172, 195.8288510516793, 332.9844864435195, 752.555356477174, 481.5835862082608, 617.7763190687297, 251.35324969126114, 2975.32980755364, 58.66097904756854, 49.66772064228634, 35.03265770933615, 48.452192770839446, 45.370998660313134, 32.477575718792416, 29.514658558415096, 27.117181724263798, 28.01863366709116, 26.24908331781958, 24.989312085244062, 35.28164773495971, 24.32170786704577, 36.21315272445277, 34.59943945247604, 21.662366352216214, 25.785691068367786, 23.983332630229665, 20.635160181929074, 20.327524552601865, 22.750251760887227, 35.449938075738174, 18.636338353466364, 33.848614187217606, 25.256126201153116, 26.57803413941968, 35.8304644002617, 15.87657062321022, 15.783857130712128, 19.849230104329393, 28.26864294325019, 18.779530227446788, 147.93548845065635, 49.27735507790302, 90.19637875376895, 49.94407904748946, 30.55923970030492, 67.33728815759744, 31.626104770394072, 88.61200181687212, 92.11805470812291, 127.96940659511003, 42.47864425168115, 55.86423817727952, 58.560619891176366, 68.39625191736074, 148.75421838573308, 224.07195623538468, 116.85425208886805, 101.69076261398739, 113.10297135125846, 79.4452919249941, 154.17672307470988, 129.9846114516216, 755.7727184215876, 349.5700147066017, 746.4125195585322, 2975.32980755364, 239.11411440949814, 745.9445227655776, 417.0331007761977, 470.85284844304044, 4277.080777837924, 272.553427281431, 172.1797371584387, 207.20931677551405, 264.0991447530326, 502.71331077239233, 354.5863209550783, 602.2352773128872, 535.4187969226364, 277.8186602477143, 546.7881624125617, 123.23233154393716, 109.16314004142826, 45.45226806345588, 41.723894778086176, 37.58459310299714, 33.87586097202052, 38.05459815927777, 33.37967258041144, 31.863417637873404, 29.737238217526247, 27.847889977078648, 40.93502246089428, 29.298588793427186, 25.98854661350695, 22.459645061833452, 23.05469222906064, 34.23901030923039, 21.356701270944104, 24.61695696103845, 20.42260938965334, 24.21579885875442, 21.762557584658378, 19.783259684581825, 19.515625306978382, 20.212095520224146, 47.352393843373385, 20.723596417818747, 37.70148281951194, 17.58297983470634, 17.250160744785884, 60.99437382055058, 32.740791711650374, 31.462783251320747, 69.97758463989041, 37.46804233394017, 50.25834689769273, 26.58869823528892, 37.08276683707481, 190.42327577978483, 90.01674541370858, 29.794692865460995, 79.14808745129959, 187.08879238907093, 72.07179576264993, 41.593497031957575, 52.30025019312337, 106.97156678456636, 66.88527217789995, 194.65782996673573, 745.9445227655776, 61.815819001621165, 534.6100577193109, 289.14146025000485, 104.28874735130178, 4277.080777837924, 130.90435545569883, 554.0263413210876, 276.07765206202924, 667.7365633736126, 470.85284844304044, 400.65867481566437, 755.7727184215876, 214.48637487134587, 210.78237521888016, 502.71331077239233, 1470.7884705383326, 2975.32980755364, 244.58437294046016, 186.56817663525302, 517.8953996660232, 265.51984125103075, 256.08959416844084, 222.25087661503818, 535.4187969226364, 428.84840683761485, 417.0331007761977, 57.00231246689557, 50.74262041683529, 49.555576728810856, 46.07720060020463, 45.58559320429054, 40.497686520017545, 31.332446692400495, 30.95811451096671, 69.98387981712698, 28.749799678486372, 31.50735483258113, 26.5995911348136, 25.88575103726366, 37.84321425008995, 32.595768156258934, 24.51331212397476, 25.363279724760588, 26.25664196449403, 29.444619528866863, 39.82296117259682, 20.370025882399936, 25.483778872711017, 21.826085061541804, 38.065332217363526, 17.392617826605907, 19.16716206868545, 21.50193125113677, 16.528734942685986, 16.4173148423318, 16.368153685493574, 33.15754782395921, 40.73247841248603, 55.06255196257476, 56.35206898514416, 110.63001361478013, 40.98033543478908, 36.91928333717043, 110.63500000491084, 98.6835484136855, 38.93327697216473, 116.14221867395257, 534.6100577193109, 85.6041953116221, 526.0248367271541, 90.21963420628471, 318.91690654040355, 183.90012521893402, 264.0991447530326, 96.79753742953862, 67.3060030790917, 135.00552284093044, 261.14534719524727, 209.86938242023854, 134.8630195111711, 147.39057275663336, 297.3649022685959, 244.74021980792352, 608.6177267534532, 345.8525010289242, 755.7727184215876, 502.71331077239233, 4277.080777837924, 524.7456111493001, 222.54275970093175, 745.9445227655776, 354.5863209550783, 888.7267174092644, 746.4125195585322, 2975.32980755364, 444.8655648514143, 1470.7884705383326, 106.87106196377496, 60.91685737415383, 36.31938064995924, 32.37563806638257, 55.74300090982091, 31.18229859640385, 28.1858162863462, 27.901683489048615, 30.9707675817055, 27.042951996987913, 36.65574027909915, 25.014214968987947, 31.736200661476122, 25.339606408904736, 24.77529112366851, 25.065299584113756, 22.95599556753715, 37.61015475169482, 47.27771659950527, 30.227593761300778, 26.65755741231858, 19.539757130290738, 18.981053348787572, 24.254638615393443, 19.796322916611835, 22.50905162276708, 16.42819827483142, 60.501640893677994, 16.85125795966082, 15.982821480412747, 66.29013534750537, 32.25176892518539, 67.49581784084569, 32.46205179657202, 28.26792804889267, 262.3689722631872, 38.3719380593962, 87.21217617482026, 118.11875270034388, 48.220492120829725, 96.28195274657186, 112.12261262992693, 36.68786148780416, 220.30670009100996, 366.7810314848295, 79.0419795330795, 106.4496307112975, 125.2819827879642, 55.752019251652996, 125.77049740484459, 70.16970282080379, 206.97168414640097, 115.65910744906718, 75.07236457041478, 66.43779904443491, 888.7267174092644, 4277.080777837924, 535.4187969226364, 547.4464807787089, 2975.32980755364, 157.9768086515982, 224.69886232303142, 168.27682965989163, 605.0528435861655, 290.6049255852652, 347.862495998389, 582.8495271656484, 503.00676039097186, 593.9733282045504, 59.608805827254635, 50.686043873475946, 38.80714194472711, 43.241854075526724, 34.40314714685113, 34.796031115674, 30.740911293522185, 29.5053631750435, 26.578350395118054, 35.24931706916711, 25.360958526401674, 25.32739862697997, 24.92239393077455, 25.320507100047784, 24.556225641073027, 23.124401451372176, 22.804194126413247, 22.06142614833136, 21.92213554767982, 22.997835796576716, 26.288161968202477, 21.26615312269513, 21.44807386507131, 20.34681862200191, 19.550260042650578, 32.489558533826056, 19.28041641540227, 20.34803008370322, 17.537811184071423, 21.8661195072253, 26.155152792583163, 38.40040649728942, 23.948676007004078, 85.40371379905974, 76.61597073184132, 49.542241696264945, 38.02922577827129, 56.04492048164526, 311.5133341542716, 210.42095194528835, 47.073807912727915, 309.2087461977726, 42.6814796282377, 66.81073673440909, 65.37263706961097, 46.92251134970183, 92.05635493645869, 136.963651544566, 135.7847934868708, 44.82276858435595, 142.2920311365845, 525.9388249091901, 74.31701828290807, 146.79200626654358, 75.75026607453684, 75.99918985063024, 91.91138591906572, 4277.080777837924, 547.4464807787089, 675.9715861750462, 159.2894023726026, 79.85178373117333, 745.9445227655776, 2975.32980755364, 140.99108375761455, 151.68913141324063, 1470.7884705383326, 171.00184059259473, 430.227083449163, 788.9493913332627, 466.027636824655, 274.0150693378826, 752.555356477174, 492.2069945562901, 514.6618048273232, 54.30130328997214, 69.9238228436013, 39.797594276999774, 59.71447092125954, 31.685004083294277, 38.79895141047325, 27.98165016451824, 64.76437308379424, 32.69744132502455, 21.987499956698503, 20.738279795840064, 25.704104732262767, 20.626926331242522, 19.105496083900498, 17.758627442503236, 23.00360240727181, 17.100485836085138, 17.29728726419735, 18.108927956903194, 15.96164779768214, 16.330383915429376, 33.69688383326409, 15.9111586665428, 14.919476182928662, 14.80647436725926, 15.423762964956785, 34.86264238009854, 68.82490654238845, 13.852616016698247, 38.6261328301705, 110.67830679889525, 49.064959109123436, 86.37315839026414, 32.32264256969212, 30.07705249783504, 96.65497034930848, 40.14815213789845, 76.95245954990165, 54.78986126080624, 61.45435347448137, 39.47656584407841, 24.965369962978446, 90.90610483301437, 222.16524449606885, 129.0121457106993, 121.53951323073005, 65.48236747900339, 87.12510795405896, 221.83652991576614, 466.027636824655, 130.24830742626372, 198.85370987235385, 134.214830349608, 115.65910744906718, 349.5700147066017, 320.3648399008403, 2975.32980755364, 96.48196245602912, 93.56013705260595, 746.4125195585322, 4277.080777837924, 302.52399763518395, 526.0248367271541, 366.7810314848295, 755.7727184215876, 1470.7884705383326, 535.4187969226364, 41.36600240776356, 37.59782460022173, 37.58551296126089, 35.92230636365128, 34.97738451026435, 34.73333961149921, 37.642742874676, 33.19023152241171, 33.262890137739575, 31.565929936933138, 34.49992015795924, 28.07597235186087, 27.75524973476878, 25.699784127825524, 25.412938118513065, 25.384991815748844, 25.179950092552257, 32.08922790015824, 24.22717676624749, 28.45566774532631, 26.352390560406644, 53.32393340414534, 47.293259821982424, 20.252226634142435, 17.96511554821372, 17.737824081808444, 22.04278226799375, 38.65622118950637, 16.64929782421866, 16.63495198486751, 68.4446325559369, 37.92810351872944, 32.352751706322906, 80.43259788636105, 46.0717488801963, 33.31982873675607, 145.13445867230547, 41.59243446361144, 106.23099681831884, 172.71422390996085, 44.36567509942928, 35.024239700352176, 77.87025118999765, 53.56655113370496, 69.05889166986069, 42.13756770911582, 47.03448333477823, 269.133086226972, 888.7267174092644, 46.47576479424934, 113.22476663905145, 254.17427024458314, 131.67271462334196, 146.9852088064528, 2975.32980755364, 123.08489541577411, 333.89383672591686, 514.6618048273232, 120.65902887372746, 57.88649134702748, 260.12074256368834, 285.7929116074696, 214.75915624201113, 675.9715861750462, 124.75990082237234, 88.70539747753976, 338.7398175624881, 134.01585465323288, 4277.080777837924, 338.3009753062042, 427.99890161332286, 266.3661595582238, 788.9493913332627, 444.8655648514143, 511.2360018142385, 75.76289887610723, 61.19219039976282, 41.27488401210041, 41.100370057817244, 47.071043526197315, 33.384222992173086, 32.79609593668714, 36.27280142701201, 29.777617767324145, 28.102506552797085, 35.96244350712122, 25.65187501779624, 29.784418093550695, 22.742526809910267, 21.99695356197412, 23.943825734511197, 20.319045548520204, 20.10363664649487, 20.355929502704875, 20.762590380994013, 22.649564064277026, 19.49439693472214, 19.097888710075072, 21.735759531922966, 39.7792819191946, 18.32968901224176, 18.184936502750194, 17.465465433456878, 16.930146993951677, 35.739451250629955, 50.221157179400315, 22.189554350463162, 78.25258424800263, 29.332428805457536, 31.809355674632044, 27.92729149781394, 84.2772697401697, 97.88154170980434, 38.03212805253408, 23.881207433265388, 29.418886416139554, 28.67587983985001, 93.2949078746079, 48.996059674593006, 33.45603878020738, 40.91438259109875, 44.5140367396939, 119.02036523624433, 108.34288227039904, 115.02625625303831, 79.30143921284528, 95.98231413837517, 133.5250417578077, 4277.080777837924, 141.83645439681737, 105.28558196386962, 277.2300311328134, 73.77842997162641, 53.410970308882895, 514.6618048273232, 322.83267039045967, 254.98878370314816, 701.4936386969671, 534.6100577193109, 171.00184059259473, 607.1604209540544, 373.02018226631253, 189.057766702953, 589.6263129925884, 525.9388249091901, 206.6949944746871, 517.8953996660232, 675.9715861750462, 68.85943465789838, 38.29418043568144, 36.2881323866676, 28.003172897334572, 28.506156487353174, 25.547234131409482, 69.43912278032573, 24.126787598887528, 37.10806315277505, 23.58073668330781, 34.29859141006507, 22.086636765772326, 21.97720267094743, 22.13167679852602, 35.73133637526638, 28.89408119415747, 22.798804490335844, 21.195976600506526, 34.827075075057785, 57.15898915066807, 19.3167359159245, 18.560619193979115, 19.50480097413132, 18.286929468424837, 17.965979696732134, 18.729985281487366, 17.415314470540842, 28.42981567753709, 16.427871071527267, 21.49393778343502, 29.728450685992335, 46.08052017455551, 42.32615490264313, 35.8351021504944, 90.94282476659687, 24.59516195627453, 79.21985597242539, 33.520566648122916, 65.7179761945679, 60.517936554402105, 75.8231503830628, 145.85026704202807, 32.28781760277406, 89.62269159411518, 77.79086432645455, 57.14303911953015, 122.55508546215034, 51.72336245456027, 89.19493066493196, 51.30174465964389, 83.28552042834612, 85.58501219108949, 251.39407064979346, 66.87398819215755, 228.9803042600968, 4277.080777837924, 249.0502951950631, 252.4785631576, 699.9691362476083, 667.7365633736126, 161.76431394423173, 158.5735253408528, 752.555356477174, 180.38777155387814, 262.3025477376444, 225.3247114926261, 492.2069945562901, 340.90987060777326, 2975.32980755364, 582.8495271656484, 332.9844864435195, 55.91999152320377, 52.30212838919231, 43.50565594341552, 39.510490057061226, 42.17196516855997, 34.373282503013, 40.139408063171885, 28.36097600509027, 29.74813940519601, 44.95321788869632, 26.863577228440516, 26.102177756404473, 61.7433739352255, 27.948276409291058, 28.950778761828374, 22.399786693033136, 20.311896837445747, 20.232153367837522, 19.014327358377276, 24.422018040231777, 22.452560266626612, 22.117380101459926, 28.310366750046143, 17.211035285458596, 17.036550851651754, 17.03211086762376, 19.436473569537895, 21.40698426207502, 16.93126005556014, 18.128916152976647, 30.768794011537512, 25.896332052926663, 128.84110509881518, 68.22715984476382, 38.95266514522599, 25.60655033759749, 28.493007020089305, 64.99410935079472, 28.889356102340937, 66.28786010874693, 43.276524803096656, 61.52262270021556, 90.41843878397428, 53.30701333095662, 77.02193480147997, 131.2797061008676, 280.74049178962457, 62.47994867817299, 123.35234944500512, 80.01960472899519, 100.49932758281744, 160.01506990557093, 49.42588081541189, 79.97124332023176, 48.18755270990995, 95.09635319622684, 120.04429775056077, 251.02797220959218, 232.03437400966678, 67.35387481020503, 104.23562079344268, 254.10577325920488, 248.89034446614104, 183.90012521893402, 302.5138424676137, 137.57132053297167, 179.14317042881936, 83.72062757385962, 277.2300311328134, 2975.32980755364, 546.7881624125617, 316.7846058394937, 4277.080777837924, 376.63370578594987, 524.7456111493001, 201.0434250965413, 1470.7884705383326, 888.7267174092644, 55.24732100761245, 50.46084095275412, 76.47464820687095, 42.895526848095905, 34.35820092687925, 41.39306813682668, 30.602903449713313, 34.60188259774898, 35.81565350085754, 27.395297835807572, 34.48120721498379, 25.392991572094175, 24.940521015456742, 25.778177901226684, 19.879671817545894, 18.939231742197787, 32.16428907452356, 17.657770738548855, 19.68318860561137, 16.778614345273155, 15.50535464101611, 15.667724841323732, 17.106092627644884, 13.19423403419254, 32.052467957244204, 12.966713786650471, 12.656313222194239, 21.835184985909144, 12.112884715688518, 20.426946660624807, 22.828026571614267, 27.267555129852983, 34.13124320552307, 31.840671255056765, 21.122608784655753, 94.23713793137097, 56.29009992795601, 55.24391627079323, 82.88910432332062, 42.41770498566609, 38.78199596869375, 70.80650160309273, 40.5142516899529, 90.886753068249, 73.4517074171132, 249.22720600216192, 101.9479146562532, 175.96920645356244, 155.84016712579523, 79.88209134360149, 66.82997482213997, 63.910281552517205, 86.89992563855662, 227.51350301658798, 59.71580795451494, 312.24512249003016, 100.85780352501357, 593.9733282045504, 219.0895405448374, 616.8308933518153, 526.8865724664064, 75.41383490118947, 427.99890161332286, 788.9493913332627, 194.37112950551864, 1470.7884705383326, 2975.32980755364, 752.555356477174, 338.7398175624881, 192.37035951845232, 4277.080777837924, 888.7267174092644, 409.1745690244543, 701.4936386969671, 428.84840683761485, 246.07644342160103, 73.84245409700462, 47.85960331208554, 43.71306584441871, 42.196634695937654, 38.89718283713107, 34.874333071494924, 43.03623985979886, 45.36556471321787, 44.7399749379676, 36.54464601523664, 29.7809375813325, 24.39680004750528, 23.167085117558262, 21.75109401825009, 23.8267829084512, 42.8282701796692, 24.850935831904266, 25.042857766013928, 22.31673444693323, 22.19025733409782, 20.212914107681133, 40.369332389978894, 22.2942255967197, 19.897590544599318, 19.50066806076298, 19.365314620112752, 23.727954100443817, 26.532862094801466, 21.268030533282964, 18.877908104974264, 41.02766689147041, 54.13489232280575, 32.499194628723636, 26.952052769383986, 62.8255305420081, 42.083540810507735, 114.79300100319064, 56.34279007677028, 39.44328519862944, 73.14335072727567, 160.5338065449512, 100.92781181541608, 43.97372427838434, 55.91848785526959, 98.44326928542729, 37.12669901200228, 71.0854930696396, 103.49461812993344, 54.05808396695594, 101.34152162591573, 101.87711102793867, 169.1976312541855, 106.51513125082394, 788.9493913332627, 89.6780804617745, 1470.7884705383326, 256.3351586337015, 199.23898543680684, 4277.080777837924, 70.54841187782932, 277.47150159212106, 116.44552251980974, 143.74418176759983, 304.8039753301725, 511.2360018142385, 167.44062039889732, 427.99890161332286, 605.0528435861655, 2975.32980755364, 433.09063349223493, 582.8495271656484, 37.87095589014013, 36.76435238288798, 41.52506693866274, 162.9680678666362, 31.8553480568752, 43.09784819400625, 29.014177899285862, 52.07803985616282, 26.593994673871503, 23.508016819884237, 23.154101846262233, 22.620435424428443, 27.05173427512652, 21.84416238599732, 22.181860253945967, 20.52704236771949, 21.436753115138337, 19.791312405018456, 20.01435216873472, 20.125710499383672, 19.589464880338134, 18.681678038987076, 18.306201464468913, 18.054001301085812, 18.367689932757223, 18.68471662580979, 18.00536189660373, 20.900504985313955, 17.90209694186138, 17.320547793455464, 49.742858386812, 32.2172883171546, 31.96574777640776, 101.809018655022, 30.029065098312206, 62.88795282660697, 20.680694201595703, 23.666639842833348, 35.48521047797555, 31.944839040534248, 43.068892992336266, 36.297295099473644, 74.01831882440558, 325.538040727037, 340.90987060777326, 75.82531797355189, 34.85954574586309, 88.45326743998021, 69.96289946681182, 57.70605926065833, 62.256286768729005, 142.45572493831395, 83.56384092260052, 71.2248162636129, 155.299358959142, 63.74946015065631, 158.93916633768688, 2975.32980755364, 617.7763190687297, 274.64011928254945, 4277.080777837924, 1470.7884705383326, 155.15066566878448, 492.2069945562901, 701.4936386969671, 195.8288510516793, 326.39672045466443, 380.7556068743802, 593.9733282045504, 699.9691362476083, 143.50258531247613, 605.0528435861655, 57.5560026637907, 39.968768436282076, 34.89483000771519, 31.889291903723752, 31.337148824255607, 31.39241124721411, 30.62872589433356, 29.618381651126207, 26.116682238323612, 33.39548759141037, 25.015403955647784, 24.417397160169532, 29.08068115106187, 22.563410058143145, 22.04069260995476, 33.38689239300187, 22.14457495811612, 19.673855295360507, 29.14665583773372, 20.495546982287355, 23.62967883676351, 20.389469969242136, 52.55588530253941, 17.394424122663704, 18.41590242772832, 17.137964864415135, 18.9871935699742, 16.990012837252515, 16.781592153406898, 16.274636319256725, 26.068123267587655, 70.73954346774971, 59.773215677293635, 43.62735150853473, 57.414074665420934, 73.73433602521106, 66.20754123164228, 44.78272522361317, 49.89185496283407, 40.70800534802793, 54.88082150941488, 37.41685013413311, 66.33426570947586, 79.19828305277845, 52.9035419348143, 59.49800551511619, 78.06865423370598, 522.7473913641172, 55.572832231607265, 67.79334303950897, 314.7124866062195, 105.47987909880325, 617.7763190687297, 54.10137140540915, 81.01325907663583, 208.9188492225464, 90.2125656064547, 2975.32980755364, 85.95271287642933, 56.234300426724026, 225.88109164728996, 157.85298331493848, 520.750241849972, 212.3910484157913, 4277.080777837924, 168.4559841791317, 256.4189030800595, 699.9691362476083, 1470.7884705383326, 492.2069945562901, 605.0528435861655, 71.45041739532584, 50.8639567141626, 46.251040782364974, 39.07589670315818, 38.12246216964296, 153.54167494693448, 31.13966010146731, 29.87787841742763, 28.816573036508352, 26.523944683902904, 26.470018328009566, 35.761662592001734, 24.2556574947858, 22.749496252387413, 32.932931125563236, 21.64006683975468, 39.418169898966845, 32.472514272426245, 20.69206590512287, 26.73148045237103, 20.319288577941485, 19.24809951571612, 33.1510267732018, 18.12014931844333, 27.502702895968028, 44.212924377787466, 19.074420815238003, 19.23640431908695, 17.164801918672154, 17.545963867209494, 29.548130625344406, 47.272706758986025, 56.77470358794398, 26.751913794646825, 66.72580709676579, 49.14356830706163, 88.66667373270597, 40.82971928151653, 151.2005091504216, 122.90550125951674, 36.05935765588834, 36.03746161272851, 75.55382971336377, 51.557597021031775, 42.83160948922651, 162.6492875234427, 106.61748198583291, 112.89201952851131, 60.6568135550886, 55.38259869568363, 221.83652991576614, 95.9343778843867, 302.5138424676137, 50.1862210424616, 1470.7884705383326, 200.55260024061633, 103.07756989067767, 239.49804622889727, 320.3648399008403, 517.8953996660232, 4277.080777837924, 2975.32980755364, 141.88386782658523, 435.212177301735, 582.8495271656484, 752.555356477174, 523.404148013948, 297.63319071797287, 186.47497466599825, 347.862495998389, 389.28879802190596, 61.71645967984406, 35.39856368697687, 32.767114303882295, 47.819747638220086, 39.438946084199486, 28.954216053274312, 26.881164147014147, 27.043037336968183, 26.97166768902354, 23.498570794007534, 23.25388704321224, 30.764398818913563, 22.380409604652694, 22.386496183934934, 24.044094239732576, 22.413433657598258, 24.16650581730073, 23.373077348093382, 20.76746459859408, 43.93459281609633, 20.726254496342406, 19.41637738535501, 27.571971836865526, 37.996609989497415, 22.722462921655296, 17.547896588311037, 17.06836194918492, 16.989910837639417, 17.77584855935199, 20.13161635267538, 25.958177624614205, 19.720807014463947, 21.073420870692217, 28.890320059536737, 136.5974782186444, 34.41122013614897, 65.44589359750542, 42.15230040835836, 35.36593638126628, 50.921483555047665, 45.51813410307951, 79.78952863254312, 112.77048235793036, 40.672180721065544, 152.78363277059267, 244.55982585020124, 71.41454147154435, 132.95842648944776, 88.19027310722036, 78.48166847467762, 84.47207446923001, 146.99058642199967, 75.0985382033657, 114.60632808953108, 128.11422009604348, 81.6701385649515, 141.88386782658523, 60.962945094120805, 135.01010094688746, 256.3351586337015, 175.20412137820156, 4277.080777837924, 170.3290531676095, 82.71510992891382, 225.3247114926261, 511.2360018142385, 158.33786642315616, 2975.32980755364, 217.10093030904238, 360.9755574730114, 155.15066566878448, 1470.7884705383326, 526.8865724664064, 752.555356477174, 317.9907495505089, 37.43429737876002, 39.23905688032127, 30.821715944982135, 28.733024944088577, 27.753980032628093, 40.180348865700715, 26.255873952437334, 29.566840219706705, 24.972161374606653, 27.581012391359327, 23.633534686012975, 24.505207749650822, 23.64046491786916, 19.935422450138557, 22.169837706277818, 19.997059417614444, 19.887058033009414, 19.01021711852114, 18.95991476589018, 334.03956789024716, 348.1576834040487, 342.0490120834681, 17.443052797155445, 17.104069228243716, 16.98239594906077, 15.117819852676368, 16.29473297282392, 15.160733985810477, 14.379024242296081, 67.66609461783138, 60.8003160615649, 65.73984015984239, 48.033108843164385, 29.12733843847415, 72.35478120796901, 31.930113613077594, 55.25099608963576, 42.67733555686404, 71.76562012146341, 37.757217459400024, 59.828715999535355, 37.24262678906622, 78.84979308591366, 164.28867620179804, 199.23898543680684, 175.35907113113794, 524.7456111493001, 187.10567775270255, 214.43885857053675, 1470.7884705383326, 607.1604209540544, 67.54831619792573, 2975.32980755364, 260.12074256368834, 194.37112950551864, 185.22465431409086, 157.85298331493848, 428.84840683761485, 197.78428436999178, 4277.080777837924, 366.7810314848295, 44.533145988384504, 49.688296361224495, 38.91712869084993, 41.43666958144199, 42.002630964634164, 42.7417129975351, 36.0235436437694, 34.393681006217385, 77.76558626217358, 28.680134385166415, 41.1263493562614, 24.350172212080277, 24.35524562811886, 27.67370293353827, 27.173530827616666, 43.224598592016676, 21.624565784289583, 20.345468231823496, 20.094708030136175, 17.543300630575196, 16.865437779604235, 16.33337186062123, 16.14529332887086, 27.53993233992266, 17.750590489152927, 26.91273278994067, 14.073480455602686, 18.233543562294045, 14.334322612791192, 17.00350249731143, 58.53163606284511, 47.30842604556469, 31.402939557077964, 72.69095190728073, 73.5950724381805, 22.563940064045564, 82.47032462005421, 65.98796685823658, 55.93064086023, 55.88823749718035, 36.345816054620066, 75.95848941579405, 42.51213110099246, 68.72888336027634, 76.70197499609453, 136.46078914194186, 52.28752601997681, 129.60269689544015, 224.9656620897123, 133.95249273449647, 81.56407081049073, 64.82818045609876, 605.0528435861655, 73.77823231774686, 302.37598587380296, 2975.32980755364, 274.0150693378826, 517.8953996660232, 4277.080777837924, 617.7763190687297, 589.6263129925884, 667.7365633736126, 256.86298896453224, 373.02018226631253, 788.9493913332627, 135.7847934868708, 429.1701246525367, 429.74383787422283, 144.3025737837023, 491.25319862049116, 60.57607549680039, 50.06042333906, 58.089620642098, 39.94915183182501, 36.99986021205903, 30.50197911571177, 27.125201956113525, 31.422569920165508, 51.3245449554871, 44.475277759166985, 24.44696950745943, 20.588337900575358, 19.868066411916203, 19.11399633401966, 33.847427996585125, 28.14838085438168, 16.359369026597182, 16.26056770191724, 16.336152849225, 23.000335547810177, 46.9611607021754, 15.173853854066515, 16.79053612395754, 14.9161420566331, 14.880665328531707, 15.528087215318942, 35.20237363127241, 32.896575665030596, 21.48081007056338, 34.472830095420065, 71.97781645288549, 33.27745735098743, 23.952998198645982, 24.361522389415924, 31.901894425606187, 240.88284557964474, 366.22251107665875, 34.290495840085306, 377.66579490521036, 33.95192833485685, 85.95682843935633, 307.2643644222692, 49.36892900331392, 65.12325369697452, 116.66410830858672, 139.95885833869244, 53.773296841242505, 312.25807198138443, 273.1174458505472, 169.000288087362, 129.96627690062937, 79.15450084846069, 616.8308933518153, 302.52399763518395, 77.8194859995931, 285.7929116074696, 356.5045768860337, 409.1745690244543, 2975.32980755364, 227.51350301658798, 701.4936386969671], \"Category\": [\"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Default\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic1\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic2\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic3\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic4\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic5\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic6\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic7\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic8\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic9\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic10\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic11\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic12\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic13\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic14\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic15\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic16\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic17\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic18\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic19\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\", \"Topic20\"], \"Freq\": [491.0, 429.0, 429.0, 348.0, 342.0, 317.0, 334.0, 534.0, 522.0, 340.0, 4277.0, 366.0, 617.0, 262.0, 311.0, 240.0, 325.0, 526.0, 162.0, 377.0, 309.0, 205.0, 171.0, 144.0, 153.0, 226.0, 699.0, 745.0, 280.0, 221.0, 171.04725819700215, 45.83155625096868, 99.70667405219976, 38.03072949711472, 32.75735897449353, 35.26319436900303, 32.36498855565028, 31.2130970979756, 30.44533406861523, 30.087420338217566, 33.38988968262909, 28.74994797114573, 26.410689260279433, 26.177807263808578, 25.289317854158124, 66.5886299343678, 37.754019991944325, 95.62295339393884, 23.75158179130853, 24.425289928998417, 21.109325560311554, 86.06841230711372, 26.728636174129896, 19.861086406631205, 19.82248795806038, 19.891354866675673, 21.605700075813704, 18.568210364789742, 47.74436515864259, 68.24929172312247, 46.70479604388754, 62.11062151831416, 41.41132712865936, 190.81897482887769, 25.40545939528679, 174.48087148863223, 37.412577416158356, 129.1268264653588, 68.8412331612212, 56.91841698321528, 185.85008054503342, 54.857013336903606, 40.6597182433964, 58.26399163134634, 118.60982557864226, 90.42076692954289, 47.00298989243047, 105.6457005616465, 190.93927487809682, 91.65037105109649, 87.45075226661271, 90.24877254057932, 66.9841503567782, 95.94272291160556, 164.85214900288324, 168.00760152127668, 61.378227663647685, 650.0511396280247, 117.13586322602667, 208.8542900572048, 139.71778920679063, 130.2832213698384, 134.80351310303163, 90.86282560571063, 97.8307343581606, 112.19219854367233, 94.35724083106768, 93.32309380122493, 81.20009637976611, 106.93146830046676, 57.728812797908176, 48.73517266305694, 34.10049146322517, 47.15740647504914, 44.08814421018444, 31.545409463546928, 28.582492297216035, 26.185015026172742, 27.02821063112887, 25.316917065580693, 24.057145831976207, 33.96405553109515, 23.38954161396446, 34.806857352196005, 33.25387825272984, 20.730200063614543, 24.669762775399555, 22.91825350905792, 19.681736449661024, 19.36164687619711, 21.651353824933054, 33.68816023261938, 17.704172101627446, 32.08343281990898, 23.91995177377072, 25.159678747429158, 33.80613150164079, 14.944404370053425, 14.851690876933864, 18.668292163112984, 26.472858472132447, 17.65582996456459, 135.64379107273868, 45.75102592871919, 81.76349039553773, 44.822949923059056, 28.33935349479256, 58.34387851056149, 29.144535499903476, 72.00491207402473, 73.6021175785293, 97.14114686483381, 37.16885011966951, 46.23124062307416, 47.42983462508513, 53.58364006154621, 96.81383051114926, 122.31123463623572, 75.92342543273708, 68.57803307159786, 73.7103470286726, 56.54433647653938, 84.64249906083917, 75.67299106283434, 194.94513749575808, 122.60006178985051, 182.3626564785486, 383.966182512367, 89.15921898759382, 150.60815710327475, 112.75586863898673, 116.88831494384922, 263.61000860632885, 87.30717995143517, 72.74744323995338, 77.17905999990546, 82.47878814972242, 99.72488724065468, 87.08070060434156, 98.7192783107912, 92.0826461470583, 75.74188960456537, 81.53838171133994, 122.23046405349199, 108.23438354688562, 44.52351159546149, 40.78830585035108, 36.65583665257785, 32.94710452582409, 37.001678104907434, 32.45091610788647, 30.93466119143675, 28.80848175756736, 26.90624024017213, 39.51519558627178, 28.15228548600555, 24.96385945826805, 21.53088855550151, 22.09135319486435, 32.80817545326053, 20.42794482591492, 23.52063080145128, 19.493852498683673, 23.096346348295945, 20.741467618254525, 18.854503231691485, 18.586607733296457, 19.232533657758356, 44.93631606285069, 19.639843513524227, 35.69840596354076, 16.636974116879596, 16.321404294821587, 57.41589083223203, 30.930895821766857, 29.467542533489475, 62.638870709544655, 34.31080261090569, 45.04423622077109, 24.77323049591853, 33.097320694985946, 136.84898699848898, 68.17054337199465, 27.182343194672562, 58.081854295537106, 112.77049717333347, 53.82566001642095, 34.81671706864785, 41.169429330064155, 65.11739779176985, 47.135056077742625, 90.7786819180681, 202.88335490942333, 43.98047435206571, 149.75664995030962, 104.53967463670764, 58.31198894069771, 366.24156190700035, 63.99495658566915, 129.00777474835158, 90.25086834542225, 133.0074575988776, 104.3358684867223, 97.28440984840371, 125.91616935570973, 73.76861596341092, 71.99842929700034, 96.59268710844519, 127.12630536467847, 153.14383095386526, 71.09442973216441, 63.208590071830095, 78.34758804578748, 66.4985465202644, 64.70144058616432, 63.17283093988258, 65.99734291812116, 64.50205362446458, 63.57215388833604, 56.07168539422826, 49.81199334814218, 48.62494964085814, 45.14657303124813, 44.64800397786251, 39.56705945904146, 30.40181961863067, 30.02748744050619, 67.85212518054782, 27.81917260453764, 30.479441388276665, 25.66896406633789, 24.95512396969218, 36.45989502093777, 31.398130403822186, 23.582685050093644, 24.313952985029474, 25.156502844448177, 28.18683637034727, 38.10125655465676, 19.4023260767097, 24.193876337026797, 20.715851847578215, 36.045072379820034, 16.455103192070002, 18.128035420450484, 20.32662115652593, 15.598107874605473, 15.48668777692524, 15.437526591627115, 30.93347436314368, 37.78290740602941, 50.236737215326144, 50.605993549674864, 95.55658368349981, 36.99638001710019, 33.58536659706515, 91.09558857871684, 78.61006439546894, 34.90729458981408, 81.24203758461026, 248.84297210188956, 60.90684437871009, 229.87735697539992, 61.58872270030946, 143.65676458594652, 98.21233804006474, 121.6913705196395, 62.87776663662241, 49.6468794876288, 74.91213188233735, 109.57209934001068, 82.52450531136472, 64.25866990508544, 65.22359081444613, 87.41887083189157, 80.20774847861414, 112.03134055811046, 87.59710668781383, 112.35571120880095, 89.58556160642138, 165.45927449812476, 87.75006961291959, 67.20818419799932, 85.52882680657365, 71.64969723393659, 79.13515230988678, 70.99013749325181, 71.40736847130111, 65.91192507089346, 66.95807984250557, 105.89288410931611, 59.98145206296339, 35.38397605428871, 31.440233469487325, 54.08848221130435, 30.168164801372324, 27.250411739973153, 26.96627897543575, 29.92517700182015, 26.107547482193368, 35.30874698449918, 24.078762352911184, 30.542078906276505, 24.37102123714972, 23.800520994349448, 24.046239762971975, 22.020591044701376, 36.04986291235712, 45.218414708840385, 28.824260042643203, 25.383214772369783, 18.588471603960343, 18.045648826681884, 23.052359389562078, 18.801058533637686, 21.35757667163142, 15.4927937643077, 57.03929662522055, 15.882980463705664, 15.047416965103972, 62.28861080039335, 30.34208529194195, 62.27048000727514, 30.125980970041095, 26.40951413462076, 215.91362546579435, 35.211620951706436, 75.7380920734064, 100.0909875006754, 42.65176946428134, 66.03714901133374, 73.39309129263508, 31.866573977263304, 109.70792392624611, 152.8435461607917, 51.168785900502705, 61.270779368868105, 65.26181390055785, 40.3235033204567, 63.21116507747402, 45.37487290031792, 76.85739976214815, 55.992502192888395, 45.56714864593413, 42.78388609738269, 135.58092419728212, 268.2282119030843, 104.42237042242128, 104.37709469548642, 206.97317485799192, 62.40002797840498, 70.97809379396897, 60.68918407775153, 90.92733425831443, 60.220214227095525, 61.506990408777135, 66.30613145669918, 64.31325703498753, 57.85850419738813, 58.67572458348637, 49.667485890438336, 37.84711535047783, 42.13153441442666, 33.47006590539613, 33.83289691479552, 29.807830065174233, 28.572281944744024, 25.64526916994174, 33.97165295352463, 24.427877304920678, 24.394317407379024, 23.989312691054785, 24.363894843513528, 23.614603380584338, 22.191320228990556, 21.855809928750723, 21.128236096358222, 20.98905432665743, 22.018760185969874, 25.139474059905655, 20.333071899343224, 20.498489758449377, 19.413737361145614, 18.6108727732197, 30.88819918588888, 18.3182053352118, 19.287057943112323, 16.604729955174413, 20.68824688993299, 24.74506448113457, 35.96142862782932, 22.59778113157978, 76.72497998644357, 67.23417854370798, 44.25308374908876, 34.3856403061016, 48.639507801296475, 218.72870270736493, 147.25575291129638, 40.447636956838, 199.2237473764226, 37.01534669658224, 53.740300150717495, 51.29785442671384, 38.93755519835962, 60.94153333602269, 78.06619310855068, 75.75099520521641, 35.143041276077675, 72.1096313660554, 157.40701772257515, 47.69950849479373, 70.76980101044093, 48.2053900201008, 48.19576289968997, 53.13952511421597, 364.0776137926221, 128.43451467348189, 101.9635799706452, 59.0883318746914, 46.07122022978641, 83.62581185965422, 118.67201595477741, 52.53997222843056, 52.530617133766974, 80.04758780190201, 53.395408244684525, 60.81162402325786, 65.67172736057614, 60.531878417031415, 52.370111513135825, 53.645914630414744, 52.72070626103395, 52.395972209432834, 53.361906121980404, 68.59006677067849, 38.86542488455243, 58.131594328106786, 30.75080135157393, 37.52113920327015, 27.035614242796726, 62.130566650870236, 31.313957935235308, 21.049408858862293, 19.80611039170966, 24.520390356155826, 19.640540612795974, 18.14461649639027, 16.826458051566842, 21.775022385745903, 16.168316416502524, 16.348411703932438, 17.10696698703878, 15.028720337132512, 15.375892394610592, 31.703923628512328, 14.922201770855303, 13.987306785195269, 13.874304969505696, 14.426630772128343, 32.59335506070506, 64.19657289422528, 12.913507183559437, 35.99089702061921, 103.1015184900804, 45.64806359256028, 79.7232195880662, 30.09885671891532, 27.989080143578462, 86.96549460920026, 37.073171512147574, 66.9382296977759, 48.38473743062725, 52.962654755335414, 35.136593557187744, 23.01666792842697, 70.14905470713667, 142.07236939207476, 88.16113003362743, 83.30874501387241, 49.04465014445638, 58.47971097651331, 112.48065915472071, 183.53389566293424, 71.58042831001389, 86.70600021445507, 63.5223848073361, 57.50786160863756, 95.11321192888458, 89.38989032889141, 213.91018761597672, 52.01345003030522, 50.36765520912296, 83.74409463671019, 124.93774485068013, 64.57985722745018, 63.1176474074731, 60.18061740869304, 60.95364784431823, 62.59258080245896, 56.46311260661435, 40.418640183737665, 36.66648034614677, 36.64394749638818, 34.99096211324323, 34.04604024549995, 33.801995350702356, 36.58855764159018, 32.243408096040696, 32.26534023281203, 30.605987194114494, 33.38443902610617, 27.144628112210736, 26.823905477498787, 24.768439887200405, 24.48159387928438, 24.453647557930154, 24.24860584929674, 30.80906789307939, 23.25195295635137, 27.244717266172486, 25.17911923021934, 50.85885963165933, 45.1058538361824, 19.26144828215218, 17.01696320956823, 16.791362838290055, 20.85639173756388, 36.53561909234456, 15.717953582815419, 15.70360773081382, 64.28112719272022, 35.632537225920586, 30.316476620739873, 73.35996807103376, 42.6737432058681, 31.151018251653042, 126.66143073169695, 38.539473102106726, 91.69435058785659, 138.46269397963184, 40.166276880664824, 32.43347271488639, 64.9569319661293, 46.752706771781405, 57.68433914081359, 37.767596354404496, 40.50001577709155, 111.03574373748701, 222.8587886426771, 38.145125202339905, 62.747463012098606, 93.43020023501052, 65.12646064521313, 67.71981852655516, 250.15299955057336, 59.72926409517227, 91.41553863476997, 104.34947437887783, 56.80664769424203, 42.27355624778534, 70.46725455110032, 70.63900936593878, 63.627330074747135, 85.25232365523622, 52.19947104277543, 47.54494088421864, 64.24708609049011, 51.80011426075631, 95.73490992961305, 59.03916336186751, 57.6211287454893, 54.464681570386574, 59.30826018210258, 55.75834308478342, 55.54493327838528, 74.82983462289428, 60.2519753026922, 40.341819748687634, 40.167305737102154, 45.891949512469935, 32.43734312191919, 31.86303168708351, 35.2338194972497, 28.84455353801189, 27.169442286666555, 34.70949857075524, 24.68789953101626, 28.579823941664017, 21.792647599851623, 21.030685655640433, 22.857340471063896, 19.385981326613965, 19.169415542350595, 19.4066655110123, 19.793452120572784, 21.592016507136087, 18.56133260433684, 18.164824484793623, 20.662056517470273, 37.80154098458856, 17.38950248618483, 17.251872282323596, 16.532401216526317, 15.99708276953871, 33.75125938259397, 46.83807058220346, 20.90939273356403, 71.81308799473915, 27.45138020422661, 29.696902702998, 26.0520050482355, 72.4821065110848, 83.24706382785394, 34.485771759663486, 22.398676221185585, 26.87998404506956, 25.889322297283016, 66.51634702934588, 39.48905859528821, 28.941291476042224, 33.613863968260446, 35.1656147684316, 67.78128633644879, 61.28448629988764, 63.50414720630279, 50.08471446851848, 56.35630631408712, 63.84520224265766, 424.9537459183574, 65.68314954681293, 55.50026491556545, 89.52927789339063, 45.290953729882666, 38.306509581568484, 93.93999679430635, 78.19730627520927, 67.78309363718623, 90.57693261107846, 82.23945840531381, 55.58913544687694, 81.18815800448773, 66.67370327337828, 56.045476993177644, 69.879696981718, 62.01367896264468, 52.563790297822656, 55.577160280752786, 53.249122095114025, 67.92701642856767, 37.36176221847315, 35.19977747925026, 27.070754698249004, 27.553257045718276, 24.614777765481062, 66.88624449262798, 23.194369371816883, 35.60921701526584, 22.626340082781514, 32.88968664913663, 21.15421856632796, 21.044784405156015, 21.192264724829656, 34.20291711680281, 27.631762934548174, 21.796508379059077, 20.263551997857004, 33.26843360148688, 54.46780010570696, 18.367541000508037, 17.62813164782269, 18.50571472363641, 17.34736120884335, 17.033561508912683, 17.73300916856905, 16.48289627779081, 26.884233254674434, 15.495452877865942, 20.263943434519554, 27.9272573940429, 42.940581916995214, 39.332154759876005, 33.331207306250015, 81.67134686352706, 22.97813273229122, 68.9222626003566, 30.703775919988747, 57.37282548971558, 52.87870185999771, 63.835777579313785, 114.97497919280923, 29.57338691706367, 70.68244278805734, 62.541536445610134, 46.60506728162952, 86.22023427472246, 42.01942071043824, 62.63954174785003, 41.3717190187662, 57.31678122752336, 56.30317673726172, 106.24054324117186, 45.813998327927195, 92.34166984132344, 356.8212633282587, 86.4536043283731, 85.03581205350788, 132.4945008092235, 125.62368041519882, 67.02970254363429, 62.09924214514585, 105.14416596441579, 63.530450752182, 65.2000604865, 61.962243630406014, 73.67637298233714, 66.84447409376929, 93.388417623052, 69.49938467043184, 63.85115142945534, 54.89310790743822, 51.26618313346874, 42.57401094837685, 38.57968753951415, 41.041753966183194, 33.442479400814456, 38.99290754373509, 27.430173481684594, 28.767907186328976, 43.37423359870671, 25.915629039029284, 25.17137520302431, 59.36554889018786, 26.856319956513435, 27.747629140655924, 21.373200957547507, 19.37439438707463, 19.276225944422272, 18.08352484179859, 23.219340331131427, 21.322645031313378, 20.987700722598813, 26.847397152063813, 16.27115729119411, 16.105728105088907, 16.101308346688192, 18.36732106221092, 20.22204651357634, 15.967078461317826, 17.07523363343301, 28.89157638314702, 24.348532896366745, 118.08744021820982, 63.10417961679192, 36.43256178319641, 23.93426496373436, 26.499953734370365, 57.692506339734116, 26.722218583964953, 56.61765899671692, 38.193180266216395, 52.13495409603736, 72.64891240059956, 44.4026392003005, 60.473734886557445, 88.98374544054242, 154.36543586087822, 47.72867262320087, 78.06447949302269, 56.53568322417155, 66.36788977849754, 90.2686454312789, 39.881394573941705, 54.82373686086607, 38.82829424982091, 59.40503416310344, 67.58415163767484, 101.8143780650022, 94.42390256966539, 47.33189302015667, 56.80094296112433, 84.40003000637566, 78.45835508074592, 69.55376075092104, 78.46389950800607, 59.39727002893127, 63.836312811269906, 50.506383482648594, 66.71411520060394, 103.88918218383208, 72.43574232268169, 64.32293968531252, 81.51132079712458, 62.86794892319282, 63.16008698547087, 58.82058628143233, 61.75822094894038, 58.571801293443805, 54.31797864405206, 49.531498625236146, 74.89109194777618, 41.75331451399722, 33.42885859039419, 40.26391686161603, 29.65964697115686, 33.5163682858071, 34.60364026421691, 26.465955504867047, 33.23898686466122, 24.463649248153065, 24.01117868522864, 24.784423766016396, 18.94689344696774, 18.00988941579177, 30.527485153652613, 16.728428415476635, 18.53962588021025, 15.775451682185745, 14.576012315974921, 14.644136910475117, 15.984202104485279, 12.264891711909062, 29.76132803719379, 12.022724566883785, 11.70585080725746, 20.177017531640605, 11.183542388789405, 18.832244904361193, 21.004249651033266, 24.928009779323414, 30.995223426065508, 28.948697745188138, 19.37819638572, 77.33044196743761, 47.94131057211083, 46.99037588455302, 66.87926685697751, 35.87552228466503, 33.0836302489096, 55.10833466741788, 34.02741348908286, 66.15483792771889, 54.845913881640975, 146.8862382037937, 68.21274937116617, 102.16586486522897, 92.10903722051793, 55.74111645184008, 48.80161032718388, 46.35972257203669, 53.197246081859234, 91.40324772995278, 42.60767338838183, 104.36376740683875, 55.259035283473374, 136.39611704102578, 79.61271763327042, 116.94513702457841, 106.72145760469517, 46.26943088135808, 92.1877282546229, 113.49546489681619, 63.548548426199126, 108.41773226074234, 126.46320067270928, 87.23336638569408, 70.26123361732594, 60.976730659899815, 98.25274569978029, 74.64972281925115, 61.47728635698435, 64.50011834731264, 56.6588068433095, 56.1686035864823, 72.69604900352782, 46.930325406352665, 42.78377628721558, 41.26735679454802, 37.96790491392712, 33.93855186975142, 41.775821610781314, 44.004887109296085, 43.370643988857296, 35.392310333604875, 28.760094054849176, 23.46752213398514, 22.183616229326738, 20.821816095654995, 22.79876754980064, 40.97314300398417, 23.769383840251837, 23.948924681228725, 21.3077424887745, 21.18116303736766, 19.283636205010897, 38.445508768647514, 21.223013316584556, 18.937718840692437, 18.549825476304466, 18.405719086593567, 22.537238892560993, 25.18846286603356, 20.13830076979549, 17.823250496297597, 38.48002062265233, 50.21492360546944, 30.33879010133338, 25.238357845119907, 56.342311931655395, 37.63592281823738, 90.39947414946218, 47.86767905218947, 34.91642460168481, 58.67657219851339, 113.6946597144954, 75.22068784698214, 37.74977508942481, 44.991748284055966, 69.10807137603871, 32.37040119221627, 52.180677195708654, 67.6626952369912, 42.056802557459505, 64.49413050940349, 63.26829049595156, 84.24612660943824, 61.071263735947575, 143.52775399684185, 52.10321886868235, 165.35264743056896, 75.71868363512012, 68.60913078761115, 183.85419122855166, 46.34562971900468, 67.23729308888865, 51.93941844529212, 53.70913391533556, 60.58734722359887, 66.07370397363565, 53.994403881834906, 59.50027025819831, 61.88764208544579, 72.23454496752007, 57.395048388314656, 56.4421229058648, 36.94122643922859, 35.83462292098379, 40.359297936316985, 158.39080498037316, 30.925618596452036, 41.64891827284232, 28.038431058123958, 50.305658925128974, 25.66426520741486, 22.578287364673752, 22.22437216307819, 21.6753133408397, 25.914639505478004, 20.914432743408582, 21.23616689354782, 19.59730959118645, 20.449099745569583, 18.86158293310258, 19.070836127767613, 19.157862251598452, 18.629516466028615, 17.751948566425604, 17.376472007217927, 17.124271840364127, 17.397170244379158, 17.688231331753265, 17.038669597714513, 19.773054994449495, 16.924047280351925, 16.365566406840696, 46.961243283289555, 30.074729071546287, 29.655273725045305, 84.41484304808381, 27.377362283525102, 53.86455420143789, 19.413262057511147, 21.890253494357033, 31.252253324496962, 28.093924059595228, 36.035112082495374, 31.13234702184627, 55.1746786489645, 182.97726472210422, 188.48864668262664, 55.3057868456167, 29.652316896753923, 59.672307259696815, 47.571065534516336, 41.27308943743612, 42.60537492213602, 70.9891208992132, 50.02398045808575, 44.72480909811496, 68.43739107352353, 41.39019484496172, 67.27904527709146, 219.58049067228797, 96.82789180557445, 68.63093468320832, 196.78339080328882, 127.27176064081064, 46.885435711158685, 60.098606946134545, 63.46447843663, 48.074784541532686, 52.067603831623316, 52.99175399844497, 53.90279232259562, 51.370485157884886, 44.40805438026897, 44.887686084252344, 56.02754288500609, 38.90652808687801, 33.934757099132064, 30.944820961766016, 30.40186722072129, 30.45134253869892, 29.69994850442694, 28.689604213495965, 25.18790485703384, 32.20652772071568, 24.08662658495644, 23.48861977734491, 27.963536898159354, 21.634632691047027, 21.10585159022674, 31.960876212371264, 21.138983293905724, 18.745077933551585, 27.765386345781785, 19.505954549373694, 22.482208415823223, 19.37319783272108, 49.88478292174124, 16.4656467566325, 17.430663095492203, 16.203037395698185, 17.94055876853387, 16.04661583447072, 15.836127641377397, 15.345858938192189, 24.495063196878487, 65.69035903125477, 55.38785618100808, 40.317403182572804, 52.11115913260827, 65.94652803765158, 59.35125779365171, 40.71672984133688, 44.15994894769654, 36.21815700757697, 46.53449523315002, 33.08509614811646, 53.508277485967184, 61.13703200929281, 43.860854620681295, 48.25535904102827, 56.652887576267425, 231.6174481987393, 43.69965677552597, 48.19770537328544, 126.5153586189753, 62.386403345241746, 172.64094895231517, 40.647821655783716, 50.33511165572668, 82.3504936184798, 53.1370644475149, 279.23632041558125, 49.65280361402546, 41.03841164668382, 68.98544423463626, 59.58705441427546, 78.6153365612859, 61.65756174011282, 123.50238019609131, 53.94065326164173, 56.624645682012826, 65.69275399828106, 63.56839731241532, 48.791788591392645, 48.479847116288305, 70.341425332303, 49.926999819000315, 45.10290012617866, 38.10570354864578, 37.06490717802422, 149.23495383018226, 30.21033518040747, 28.94855347617584, 27.850435162117282, 25.594619763860916, 25.54069338530543, 34.469841324490154, 23.326332543663064, 21.82017131118925, 31.571990656543843, 20.710741913776996, 37.72421328652891, 31.07699349265224, 19.746246013893963, 25.498165999436104, 19.35263504604118, 18.295949147932657, 31.47330040661938, 17.190824391884817, 26.0789879561238, 41.910036643248525, 18.077606730898506, 18.22109955144887, 16.214056964584266, 16.55464639876549, 27.824157151501467, 43.86432573909135, 51.493547881779214, 24.92814311328381, 59.32823340188175, 43.68101297748256, 74.1439630072393, 36.397353926852716, 105.65726633906017, 87.22667263056672, 31.472560676115098, 31.173857577958618, 52.09995127229207, 39.928858982169466, 35.15987514108054, 83.9991854283434, 63.48777999462177, 64.19712977729608, 42.47406129632472, 40.26118461695552, 84.6682142076948, 49.342505165020214, 78.81928337895005, 37.21040796290813, 129.57811940456392, 57.869951319492884, 46.56803297982548, 58.78387837410934, 60.71478517115808, 66.93060392151334, 106.21659210156724, 95.3759930608002, 49.54804854220426, 61.90366544554706, 65.35362637901852, 59.50832530161926, 55.106536313794116, 50.414191331222796, 48.70247528288795, 50.432144046578564, 50.667303956671766, 60.792170689245076, 34.467785132200504, 31.84282528285869, 46.44372705904621, 38.23246724130266, 28.02992716436074, 25.956875259091916, 26.073365588562076, 25.98056427956935, 22.57428191253454, 22.32959816797168, 29.503316883410626, 21.456105264577978, 21.458205290971737, 23.040885179325677, 21.455816224043275, 23.079242774414947, 22.30581833774755, 19.811687264468127, 41.88999014256596, 19.744724989692116, 18.483631573739977, 26.213815944208292, 36.10731007732477, 21.55850192856223, 16.610425479818993, 16.13378012148327, 16.052650463841275, 16.792581144290164, 19.015619152339767, 24.39913778212927, 18.574614935996625, 19.79776616014879, 26.781006604344093, 115.69668502440231, 30.9704419589216, 55.49118356546992, 37.1859547340455, 31.440077251510953, 42.73466026214366, 38.061111649359965, 59.539930241256585, 77.0791646178891, 33.7123809987226, 90.8005032350455, 127.91992579259347, 50.6293995059784, 78.87964966175551, 58.37257195326558, 53.381428200951625, 55.927545737650675, 79.68419607940676, 50.63031717472568, 66.25952598657122, 68.84701152778274, 51.42715488239708, 69.85346322396299, 42.79547807750864, 61.69714089110658, 82.96276646213572, 65.26689259138426, 191.71047753134135, 59.37865341999055, 46.624739855113205, 64.31884622641945, 79.11992532186184, 55.81347258090152, 122.47609685099158, 58.011235841914655, 62.824189954174855, 51.38074158046135, 59.15185001603122, 54.92908452191471, 55.20962950796541, 314.85177316909227, 36.41545061231926, 38.127197818781156, 29.887491278126934, 27.775940384500718, 26.819755364226975, 38.823306212281615, 25.302985711388487, 28.468180249709146, 24.037936694099297, 26.482051037877486, 22.67179080536767, 23.401075853310694, 22.5576583298562, 19.00119778567341, 21.12643923559282, 19.050276073905227, 18.917791981476636, 18.075992442366985, 18.025690101941123, 317.3836872390179, 330.3615688386267, 324.3159179940594, 16.508449242799074, 16.16984456007194, 16.048171273431443, 14.183545905376764, 15.269830107345955, 14.205790170137979, 13.443076882571736, 62.60373563341834, 55.4450094384856, 59.470619344887275, 43.48546078460341, 26.68189167719923, 62.233040562248895, 28.976382650700472, 45.78595489099633, 36.483457763079564, 56.811297019963845, 32.67252734578154, 44.241279231045006, 30.715305006585773, 51.962371139584995, 82.95345801964397, 82.13861925914568, 73.90213415694092, 126.82087204078545, 71.06394872290313, 74.55765483594678, 162.3352522765659, 91.36067720223481, 38.22800431420567, 137.46877168962476, 59.179644388153385, 50.39933681172951, 46.84754505506241, 44.3667992538332, 51.17325334938627, 44.5165243670974, 60.716942176588894, 44.88018914842505, 43.605376674612664, 48.55963879722396, 37.989359387967696, 40.43670734325429, 40.965164832650714, 41.67550991372678, 35.088809314889154, 33.465911700362845, 75.50389233350272, 27.75236507437766, 39.67482696287146, 23.422402910207868, 23.425793754657498, 26.61428342969385, 26.07253946992889, 41.35355875193704, 20.64308805666386, 19.41011393188973, 19.16693870536081, 16.615531297965003, 15.9311679670693, 15.40560255797481, 15.21752358374763, 25.95142445462715, 16.720611427245085, 25.276310697320035, 13.145711143130557, 16.977502222234467, 13.300420611262922, 15.749570346149783, 54.05017582243052, 43.75942996600129, 28.943919494453255, 65.40602416611452, 65.92480399535097, 20.69905720376031, 65.387944758585, 52.83796725619534, 45.50529056583333, 45.401475649819346, 31.001109908709694, 54.93238130327767, 34.111557860464224, 48.42559126125835, 52.30728713716325, 76.87403717735016, 39.49009861738626, 66.97576159367661, 88.1109966174885, 60.48893647960998, 46.90438951456835, 41.03874031129611, 108.04926672345984, 43.07883845000686, 71.3366449602026, 132.66324395962516, 63.35412934224006, 71.90177808767524, 121.96395807614111, 65.94590727314215, 61.039597208893646, 58.671602035852715, 51.81680153771974, 50.77176901973194, 47.107824600632576, 44.72623458854086, 427.3081613411885, 427.4625656389735, 143.01948768034342, 484.55865676564446, 59.53354360272368, 49.06348362822048, 56.83467034008755, 38.953182004194026, 35.80984559141769, 29.482218450141094, 26.163905509299173, 30.2968587007753, 49.39076358614029, 42.78763377441859, 23.469717368438946, 19.651767033168017, 18.931495475166702, 18.1620030748997, 32.06397872201535, 26.54335119149547, 15.422798221132927, 15.323996873277189, 15.392548120660594, 21.62179289489055, 44.07338060602271, 14.237283049590902, 15.737019883053705, 13.97957125052895, 13.937182945350125, 14.517649721791383, 32.43612655987718, 30.25107777050723, 19.969674712359268, 31.416870825776638, 63.15313504690445, 30.28533817356304, 21.864970233127696, 22.19819227562161, 28.368093121404854, 164.88762256939182, 202.54628223517906, 28.802524098944772, 174.92616470623994, 28.322525384253264, 55.06985520463075, 124.33772399623071, 35.91470150654222, 41.34643273522788, 55.22456101524844, 58.811306812420504, 36.58858220650448, 79.28901155550267, 67.78436564078443, 56.46831120558555, 48.66336433015385, 40.66055456892917, 75.63064523533279, 56.31135115784276, 39.76944082031741, 52.88718632005176, 50.78945627842776, 48.63113763451691, 52.90585549632281, 43.16902363243128, 43.87734332681341]}, \"plot.opts\": {\"xlab\": \"PC1\", \"ylab\": \"PC2\"}, \"mdsDat\": {\"x\": [0.19436823368199363, -0.1463671569155251, -0.11358146558877401, -0.1665550950297364, -0.08627315874150239, -0.08059996515741834, -0.13138783107020766, -0.0647386678940229, -0.00416926163669568, 0.07811068418024622, 0.07290557481968465, 0.05720421884718004, 0.005413727471381153, 0.07710175103813258, 0.1365101831205807, 0.029210419895006532, 0.0193122524840567, 0.03165041842742306, 0.05574440638007268, 0.03614073168812294], \"y\": [0.10973803042558784, 0.005493912874027074, 0.018661673221626644, 0.012952553182376971, 0.002513702623013895, 0.06004994702604056, 0.03496988124260004, -0.04416320443724328, 0.08991004855155957, 0.11843672652951154, -0.007346934792328183, -0.016195514002753944, 0.021201445889267867, 0.009698882662284834, -0.03736732509084918, 0.00548980928448612, -0.019042342308328648, -0.06449564031636343, 0.024348622598053878, -0.32485427516257004], \"topics\": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], \"Freq\": [6.483190561694671, 6.133896813958552, 6.045832837046436, 5.717812368092309, 5.56903718881794, 5.357053299716672, 5.35215486065815, 5.205041617571504, 4.88647914985108, 4.869793896866297, 4.863354354711722, 4.8261569928661965, 4.787002792956794, 4.6423532273307, 4.557455853793522, 4.523967286615372, 4.35273956849961, 3.9696786170878373, 3.9302511576019135, 3.9267475542627155], \"cluster\": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, \"topic.order\": [6, 11, 18, 15, 2, 9, 13, 8, 20, 4, 5, 3, 19, 10, 7, 1, 16, 14, 12, 17], \"lambda.step\": 0.01, \"token.table\": {\"Topic\": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 6, 9, 12, 13, 14, 15, 16, 18, 19, 12, 1, 2, 5, 6, 9, 12, 14, 16, 17, 19, 20, 1, 4, 6, 7, 10, 11, 13, 14, 17, 5, 6, 8, 9, 13, 14, 16, 17, 2, 5, 6, 7, 8, 11, 13, 14, 16, 20, 7, 13, 10, 4, 9, 3, 8, 9, 12, 15, 16, 3, 5, 6, 8, 17, 3, 9, 1, 2, 5, 6, 10, 14, 15, 16, 18, 19, 2, 5, 20, 12, 19, 12, 15, 2, 3, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 15, 7, 11, 12, 16, 17, 18, 4, 3, 16, 5, 13, 14, 14, 18, 18, 1, 6, 7, 11, 14, 19, 3, 4, 10, 14, 20, 9, 10, 3, 14, 2, 4, 6, 10, 14, 19, 9, 11, 16, 19, 19, 16, 17, 18, 4, 8, 10, 14, 20, 10, 20, 10, 6, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 6, 8, 9, 11, 12, 15, 1, 4, 5, 6, 10, 11, 13, 14, 15, 16, 18, 19, 20, 11, 1, 2, 3, 5, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 19, 10, 1, 12, 9, 18, 19, 1, 2, 8, 15, 18, 2, 3, 5, 7, 13, 15, 18, 20, 16, 1, 5, 1, 2, 19, 20, 5, 6, 8, 11, 1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 2, 4, 6, 7, 8, 9, 12, 16, 17, 19, 16, 2, 16, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 1, 1, 14, 6, 10, 11, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 1, 3, 10, 14, 20, 5, 7, 8, 11, 13, 4, 11, 1, 3, 9, 12, 16, 9, 16, 18, 20, 14, 4, 7, 9, 1, 14, 15, 9, 12, 7, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 2, 8, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 10, 19, 15, 1, 2, 4, 5, 6, 7, 9, 12, 14, 18, 19, 20, 11, 18, 13, 3, 8, 19, 8, 16, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 5, 15, 7, 2, 10, 12, 17, 1, 13, 20, 5, 15, 18, 20, 2, 4, 7, 15, 20, 9, 20, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 11, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 18, 2, 3, 4, 7, 14, 15, 16, 17, 18, 20, 11, 4, 15, 5, 8, 2, 3, 9, 10, 12, 13, 19, 20, 11, 11, 3, 6, 7, 8, 10, 12, 13, 15, 16, 5, 7, 19, 1, 2, 5, 6, 7, 16, 19, 5, 8, 16, 20, 19, 17, 4, 5, 6, 10, 19, 10, 9, 2, 3, 8, 9, 15, 18, 9, 10, 5, 6, 13, 14, 17, 19, 1, 10, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 19, 20, 19, 18, 7, 9, 6, 9, 16, 18, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 19, 3, 5, 8, 13, 14, 20, 4, 8, 12, 11, 2, 5, 6, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 4, 6, 11, 12, 13, 17, 18, 19, 20, 2, 5, 6, 9, 10, 11, 12, 13, 20, 5, 18, 3, 4, 5, 8, 10, 12, 16, 2, 7, 1, 2, 6, 10, 13, 14, 1, 2, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 3, 5, 6, 9, 12, 16, 17, 5, 10, 12, 13, 14, 18, 20, 10, 4, 5, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 10, 3, 6, 9, 10, 11, 13, 15, 16, 18, 20, 2, 18, 2, 8, 13, 16, 9, 17, 18, 1, 2, 4, 5, 9, 14, 15, 19, 20, 17, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 2, 6, 13, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 19, 1, 4, 5, 9, 10, 11, 13, 14, 15, 17, 19, 20, 16, 3, 4, 6, 10, 19, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 15, 18, 9, 10, 15, 9, 14, 14, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 2, 6, 8, 1, 3, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 1, 5, 9, 11, 13, 14, 16, 17, 19, 20, 6, 12, 17, 19, 1, 19, 7, 10, 20, 17, 9, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 17, 6, 13, 14, 1, 6, 9, 11, 12, 1, 16, 18, 19, 1, 3, 6, 11, 12, 12, 1, 2, 3, 4, 7, 8, 10, 13, 19, 20, 18, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 12, 14, 1, 10, 19, 5, 2, 6, 12, 6, 3, 19, 4, 5, 6, 7, 9, 10, 12, 13, 16, 1, 6, 4, 10, 8, 16, 20, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 18, 4, 19, 12, 10, 11, 14, 1, 2, 3, 4, 6, 7, 12, 14, 15, 18, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 3, 5, 7, 9, 10, 12, 13, 14, 16, 17, 18, 20, 11, 9, 10, 13, 16, 19, 5, 6, 9, 1, 5, 17, 18, 2, 6, 16, 4, 5, 6, 10, 11, 16, 17, 19, 11, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 2, 11, 13, 2, 3, 6, 8, 12, 14, 16, 20, 2, 4, 6, 9, 10, 12, 17, 19, 1, 4, 5, 7, 8, 9, 12, 14, 16, 19, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 7, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 1, 7, 11, 13, 14, 15, 17, 19, 1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18, 20, 2, 6, 8, 11, 15, 16, 1, 3, 7, 8, 10, 11, 17, 18, 19, 2, 8, 10, 11, 14, 16, 19, 20, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 14, 5, 6, 13, 19, 5, 12, 18, 14, 2, 3, 5, 6, 7, 10, 11, 12, 15, 16, 20, 3, 8, 19, 14, 15, 1, 14, 17, 3, 7, 15, 8, 18, 1, 20, 1, 3, 8, 9, 10, 13, 14, 15, 19, 2, 5, 11, 17, 19, 1, 13, 20, 5, 16, 14, 1, 5, 6, 8, 9, 12, 14, 15, 16, 5, 2, 12, 2, 3, 8, 12, 19, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 6, 9, 20, 16, 5, 7, 9, 10, 12, 16, 17, 1, 2, 4, 6, 9, 10, 14, 14, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3, 20, 19, 5, 10, 16, 17, 18, 18, 7, 19, 2, 20, 2, 3, 6, 9, 10, 12, 13, 15, 16, 17, 18, 20, 1, 8, 12, 9, 17, 1, 14, 1, 5, 16, 20, 3, 6, 8, 11, 12, 15, 5, 6, 8, 11, 13, 15, 17, 3, 4, 6, 9, 10, 12, 17, 18, 19, 20, 19, 1, 11, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 16, 17, 18, 8, 3, 3, 5, 10, 15, 2, 3, 4, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 5, 10, 17, 3, 8, 10, 11, 13, 14, 16, 7, 1, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 1, 3, 5, 6, 9, 11, 12, 13, 17, 19, 6, 17, 4, 11, 15, 6, 12, 13, 2, 9, 12, 2, 20, 3, 7, 8, 20, 2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 19, 20, 12, 2, 6, 10, 14, 15, 16, 18, 20, 6, 3, 5, 6, 7, 10, 12, 18, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 1, 3, 6, 9, 11, 15, 17, 12, 12, 3, 7, 9, 13, 20, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 2, 11, 18, 20, 1, 2, 7, 8, 9, 14, 15, 18, 20, 9, 17, 9, 2, 11, 16, 3, 5, 8, 10, 13, 15, 16, 17, 18, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 9, 11, 14, 16, 17, 18, 19, 20, 1, 4, 5, 7, 8, 9, 15, 16, 19, 9, 10, 11, 14, 14, 1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 7, 8, 12, 16, 16, 2, 5, 18, 2, 3, 4, 6, 7, 8, 9, 13, 14, 17, 18, 1, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 2, 6, 8, 9, 14, 18, 20, 5, 7, 1, 2, 3, 8, 7, 4, 10, 13, 15, 19, 20, 5, 1, 2, 10, 14, 18, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 2, 1, 6, 9, 11, 12, 14, 18, 19, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 5, 12, 1, 2, 3, 5, 9, 10, 11, 12, 13, 16, 20, 15, 20, 5, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 4, 10, 14, 15, 18, 5, 7, 9, 10, 15, 17, 3, 3, 7, 12, 16, 19, 11, 1, 5, 6, 7, 11, 14, 16, 1, 6, 7, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 4, 5, 11, 12, 17, 20, 9, 11, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 20, 2, 3, 10, 12, 19, 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 20, 13, 13, 4, 14, 16, 18, 9, 13, 4, 1, 2, 3, 5, 6, 10, 11, 15, 16, 18, 4, 1, 2, 4, 9, 10, 11, 12, 14, 17, 18, 20, 7, 9, 11, 18, 19, 8, 13, 14, 4, 15, 5, 6, 9, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 1, 11, 15, 5, 14, 1, 20, 13, 6, 1, 5, 10, 12, 14, 20, 9, 3, 18, 6, 13, 19, 20, 4, 5, 6, 8, 14, 15, 16, 17, 7, 18, 5, 7, 10, 11, 17, 18, 6, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 1, 15, 16, 17, 8, 1, 6, 7, 12, 13, 14, 15, 17, 19, 2, 9, 10, 15, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 1, 6, 10, 19, 14, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 15, 11, 8, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 14, 2, 10, 12, 13, 19, 9, 6, 7, 8, 12, 15, 2, 4, 7, 9, 7, 16, 4, 7, 3, 14, 17, 1, 16, 3, 8, 1, 7, 13, 16, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 10, 8, 1, 2, 5, 7, 12, 14, 16, 17, 18, 10, 2, 1, 11, 1, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 2, 13, 17, 12, 20, 9, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 13, 4, 18, 13, 12, 2, 5, 10, 12, 15, 3, 19, 9, 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 14, 19, 11, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 19, 17, 1, 6, 17, 9, 9, 11, 19, 16, 17, 3, 16, 17, 17, 2, 3, 8, 9, 13, 15, 16, 18, 19, 20, 8, 3, 16, 8, 3, 8, 15, 13, 19, 13, 4, 20, 6, 3, 5, 16, 18, 6, 17, 20, 3, 14, 1, 5, 9, 20, 2, 6, 7, 17, 7, 2, 8, 11, 13, 14, 16, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 9, 10, 12, 15, 16, 20, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 6, 10, 1, 2, 5, 6, 7, 9, 10, 13, 16, 19, 16, 5, 2, 10, 16, 18, 20, 4, 11, 3, 2, 3, 7, 10, 13, 14, 16, 19, 20, 1, 2, 10, 20, 1, 2, 4, 5, 7, 8, 9, 13, 14, 15, 18, 19, 20, 2, 15, 20, 10, 3, 20, 1, 6, 9, 14, 19, 20, 2, 3, 4, 7, 10, 11, 12, 13, 14, 15, 16, 18, 20, 7, 19, 14, 18, 19, 18, 2, 13, 16, 18, 1, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 18, 4, 6, 11, 12, 13, 19, 2, 13, 14, 1, 8, 15, 6, 13, 14, 16, 20, 14, 16, 3, 8, 16, 9, 18, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 19, 20, 20, 2, 8, 17, 18, 19, 6, 1, 3, 7, 9, 7, 3, 18, 1, 3, 5, 8, 9, 10, 11, 12, 15, 16, 17, 12, 8, 10, 8, 1, 6, 13, 14, 15, 16, 2, 8, 14, 18, 19, 1, 2, 3, 5, 6, 7, 9, 12, 14, 17, 18, 19, 20, 17, 5, 8, 11, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 20, 14, 1, 11, 19, 8, 9, 13, 14, 3, 4, 6, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 3, 19, 7, 12, 10, 16, 17, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 7, 11, 16, 20, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 16, 17, 18, 19, 5, 12, 11, 3, 15, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 4, 7, 10, 11, 13, 14, 16, 18, 20, 4, 12, 1, 3, 5, 6, 9, 10, 13, 17, 8, 1, 2, 5, 6, 9, 14, 15, 5, 15, 1, 4, 6, 8, 14, 15, 17, 19, 9, 18, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 17, 18, 19, 6, 2, 3, 4, 5, 6, 14, 16, 17, 18, 19, 20, 1, 1, 18, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 6, 1, 3, 5, 9, 11, 12, 14, 15, 16, 17, 19, 1, 5, 16, 20, 14, 1, 2, 3, 5, 6, 8, 9, 11, 13, 17, 19, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 6, 1, 2, 7, 8, 10, 11, 15, 16, 17, 18, 19, 14, 11, 1, 1, 2, 3, 5, 9, 15, 17, 20, 20, 17, 2, 3, 6, 8, 14, 19, 18, 3, 5, 6, 11, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 5, 8, 11, 16, 18, 1, 3, 6, 1, 2, 6, 10, 14, 19, 20, 1, 3, 7, 9, 10, 12, 14, 17, 3, 6, 10, 7, 1, 1, 11, 16, 20, 7, 15, 16, 1, 4, 6, 9, 16, 19, 16, 1, 2, 3, 7, 9, 10, 11, 12, 14, 15, 19, 15, 17, 20, 17, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 14, 5, 7, 12, 14, 15, 17, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 9, 10, 15, 16, 9, 17, 1, 4, 5, 7, 8, 9, 14, 15, 16, 17, 4, 9, 13, 2, 7, 10, 12, 15, 16, 3, 13, 16, 18, 11, 3, 4, 7, 1, 10, 12, 16, 1, 3, 5, 7, 10, 11, 13, 14, 15, 17, 18, 7, 16, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 4, 5, 9, 12, 13, 14, 1, 5, 6, 10, 15, 16, 3, 8, 12, 20, 1, 2, 3, 4, 5, 6, 7, 10, 16, 18, 19, 13, 2, 3, 8, 12, 15, 20, 5, 10, 14, 10, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 1, 3, 8, 9, 17, 18, 19, 20, 5, 1, 8, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 2, 4, 7, 8, 12, 19, 20, 15, 5, 7, 13, 15, 16, 5, 7, 17, 1, 5, 8, 11, 14, 16, 17, 19, 2, 15, 14, 1, 2, 4, 5, 11, 13, 14, 17, 18, 19, 20, 17, 8, 12, 15, 18, 13, 17, 15, 8, 20, 2, 10, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 5, 8, 16, 5, 7, 13, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 15, 7, 18, 2, 3, 5, 8, 9, 11, 12, 13, 15, 9, 4, 7, 10, 13, 14, 13, 15, 10, 12, 11, 6, 15, 20, 17, 16, 15, 17, 18, 1, 2, 4, 11, 14, 15, 2, 1, 7, 9, 20, 1, 2, 7, 12, 15, 4, 9, 12, 9, 11, 12, 15, 13, 2, 2, 4, 8, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 3, 6, 7, 8, 10, 15, 16, 17, 18, 20, 12, 13, 17, 1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 13, 6, 3, 4, 9, 10, 13, 18, 16, 1, 2, 3, 6, 9, 10, 12, 14, 15, 16, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 3, 4, 5, 9, 14, 17, 20, 1, 2, 6, 7, 12, 15, 17, 18, 19, 20, 4, 19, 4, 7, 8, 9, 10, 15, 15, 1, 2, 3, 5, 6, 7, 8, 10, 13, 16, 17, 18, 19, 18, 12, 13, 2, 3, 4, 10, 17, 2, 15, 9, 20, 5, 12, 2, 14, 19, 20, 13, 14, 14, 20, 1, 6, 7, 8, 9, 11, 12, 17, 20, 2, 4, 6, 8, 13, 18, 6, 9, 17, 18, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 14, 1, 14, 20, 11, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 12, 1, 2, 4, 6, 7, 10, 14, 15, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 10, 2, 3, 5, 8, 11, 12, 14, 17, 18, 19, 20, 4, 2, 14, 6, 7, 3, 7, 8, 4, 2, 3, 4, 5, 6, 15, 17, 20, 1, 2, 5, 6, 7, 17, 18, 19, 20, 2, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 15, 13, 1, 2, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 6, 18, 9, 10, 13, 14, 15, 16, 18, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 11, 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 16, 17, 18, 6, 5, 6, 12, 18, 2, 17, 18, 5, 5, 10, 2, 3, 5, 6, 10, 19, 1, 2, 4, 5, 6, 7, 12, 14, 18, 20, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 12, 7, 1, 4, 5, 6, 10, 11, 14, 15, 2, 4, 6, 8, 11, 14, 15, 19, 20, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 17, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 7, 9, 10, 14, 16, 17, 18, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 4, 7, 12, 14, 17, 18, 19, 6, 7, 10, 12, 13, 20, 4, 16, 2, 8, 11, 12, 13, 6, 7, 9, 16, 18, 1, 2, 3, 4, 5, 7, 9, 10, 11, 15, 19, 20, 2, 6, 17, 18, 20, 2, 12, 12, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 17, 18, 19, 20, 15, 3, 5, 6, 9, 12, 13, 14, 15, 16, 16, 2, 3, 4, 5, 7, 10, 14, 15, 16, 3, 10, 15, 2, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 20, 6, 4, 2, 2, 6, 7, 8, 9, 13, 14, 15, 17, 19, 2, 3, 6, 7, 9, 10, 19, 1, 2, 3, 5, 9, 12, 14, 15, 16, 17, 19, 17, 2, 7, 9, 1, 4, 2, 3, 7, 9, 10, 12, 13, 14, 15, 16, 20, 17, 1, 10, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 2, 10, 12, 15, 19, 20, 1, 2, 3, 4, 7, 9, 10, 11, 13, 14, 17, 19, 3, 6, 15, 13, 7, 10, 12, 19, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 16, 18, 20, 13, 1, 7, 3, 4, 5, 6, 7, 10, 17, 18, 20, 10, 10, 12, 14, 19, 2, 4, 5, 6, 7, 9, 13, 14, 15, 16, 17, 19, 20, 1, 3, 5, 6, 7, 11, 14, 15, 16, 19, 13, 3, 14, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 14, 18, 19, 2, 4, 8, 15, 1, 3, 7, 10, 15, 17, 19, 15, 3, 13, 17, 18, 20, 2, 3, 6, 9, 10, 16, 19, 17, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 5, 13, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 6, 5, 15, 18, 19, 20, 7, 13, 3, 4, 11, 13, 16, 18, 16, 2, 8, 10, 19, 1, 7, 5, 7, 12, 16, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 7, 13, 15, 2, 3, 4, 5, 6, 7, 9, 10, 14, 16, 17, 18, 19, 8, 11, 2, 3, 4, 19, 3, 15, 19, 20, 4, 16, 6, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 16, 18, 3, 19, 5, 14, 2, 4, 5, 10, 19, 20, 10, 16, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 2, 3, 4, 5, 7, 8, 11, 12, 13, 16, 17, 18, 20, 10, 11, 12, 2, 16, 11, 15, 14, 9, 1, 2, 5, 7, 9, 12, 13, 14, 15, 17, 18, 19, 20, 1, 3, 6, 11, 11, 1, 4, 14, 16, 18, 20, 8, 13, 20, 19, 7, 11, 9, 10, 8, 1, 4, 5, 6, 7, 9, 10, 14, 17, 19, 4, 12, 17, 4, 10, 14, 18, 5, 8, 14, 15, 20, 5, 10, 11, 6, 10, 15, 15, 5, 7, 8, 11, 14, 16, 1, 2, 6, 9, 11, 12, 13, 14, 15, 19, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 6, 11, 18, 5, 15, 19, 20, 1, 2, 4, 6, 9, 10, 13, 6, 11, 19, 1, 9, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 14, 20, 19, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 1, 12, 3, 3, 5, 9, 15, 3, 6, 8, 15, 18, 6, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 5, 6, 12, 13, 16, 5, 17, 18, 2, 5, 6, 10, 11, 15, 4, 11, 19, 20, 5, 13, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 5, 7, 14, 15, 7, 9, 7, 10, 11, 12, 14, 3, 9, 12, 1, 3, 4, 9, 10, 11, 13, 19, 9, 11, 9, 11, 7, 8, 17, 1, 2, 3, 6, 8, 12, 13, 19, 5, 9, 10, 11, 9, 8, 10, 15, 14, 15, 17, 18, 19, 18, 8, 18, 3, 11, 12, 14, 15, 17, 20, 19, 1, 4, 11, 16, 19, 5, 18, 4, 13, 1, 2, 5, 14, 16, 20, 18, 19, 6, 2, 3, 6, 9, 11, 13, 19, 2, 18, 20, 11, 9, 8, 7, 1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 5, 12, 18, 13, 20, 2, 20, 8, 10, 6, 13, 8, 2, 4, 8, 10, 17, 19, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 13, 6, 12, 15, 18, 3, 12, 17, 18, 19, 2, 8, 11, 4, 13, 20, 2, 10, 14, 2, 3, 8, 10, 13, 14, 15, 16, 17, 18, 19, 4, 5, 6, 8, 11, 14, 15, 17, 19, 9, 2, 6, 16, 17, 2, 4, 7, 10, 13, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 13, 6, 7, 11, 13, 13, 4, 1, 10, 14, 17, 19, 20, 14, 2, 3, 5, 6, 7, 10, 13, 14, 16, 19, 20, 1, 2, 3, 5, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 15, 1, 4, 5, 11, 12, 13, 18, 20, 3, 4, 5, 6, 8, 9, 11, 16, 20, 10, 6, 4, 18, 2, 6, 12, 13, 15, 17, 18, 2, 2, 14, 15, 16, 18, 1, 3, 5, 17, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 1, 2, 9, 10, 13, 15, 18, 19, 20, 5, 7, 10, 16, 3, 3, 4, 5, 8, 14, 3, 3, 6, 10, 3, 4, 11, 12, 14, 18, 15, 14, 2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 1, 3, 4, 9, 14, 20, 11, 14, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 3, 6, 14, 20, 5, 19, 2, 3, 6, 7, 10, 13, 15, 17, 5, 5, 18, 6, 16, 10, 4, 7, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 18, 5, 6, 8, 11, 5, 2, 4, 5, 9, 10, 11, 12, 15, 16, 17, 10, 10, 3, 6, 7, 18, 5, 9, 14, 15, 16, 19, 1, 2, 4, 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 16, 17, 19, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 9, 16, 1, 4, 5, 6, 7, 12, 13, 14, 5, 14, 7, 14, 2, 4, 7, 14, 1, 4, 6, 7, 8, 9, 10, 12, 14, 17, 18, 15, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 8, 14, 7, 12, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 17, 8, 5, 15, 17, 12, 13, 1, 2, 5, 12, 16, 20, 1, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 18, 19, 20, 1, 6, 5, 9, 12, 13, 16, 3, 6, 7, 8, 12, 16, 19, 9, 6, 14, 4, 9, 11, 13, 3, 8, 13, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 7, 10, 11, 12, 14, 18, 6, 14, 20, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 20, 1, 5, 6, 7, 8, 9, 10, 13, 14, 16, 18, 19, 6, 16, 2, 5, 6, 7, 8, 12, 13, 14, 16, 17, 18, 19, 20, 12, 11, 17, 17, 6, 2, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 13, 17, 5, 9, 18, 8, 1, 3, 7, 12, 18, 19, 1, 3, 6, 8, 9, 12, 15, 17, 18, 19, 1, 3, 4, 6, 9, 12, 13, 14, 15, 14, 15, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 3, 13, 7, 12, 7, 11, 2, 5, 6, 12, 15, 18, 1, 4, 7, 13, 14, 16, 19, 6, 4, 1, 3, 4, 6, 1, 2, 3, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 1, 4, 6, 9, 11, 12, 13, 14, 15, 18, 4, 13, 8, 1, 3, 8, 9, 15, 18, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 17, 19, 2, 3, 4, 7, 11, 19, 8, 12, 19, 11, 15, 20, 3, 12, 14, 15, 20, 1, 3, 4, 8, 9, 12, 3, 7, 8, 9, 10, 12, 16, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 13, 14, 7, 10, 5, 3, 4, 6, 12, 14, 16, 19, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 16, 19, 18, 12, 13, 8, 2, 5, 6, 9, 11, 13, 14, 15, 16, 18, 19, 1, 5, 6, 7, 9, 14, 14, 18, 2, 4, 9, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 2, 4, 7, 9, 10, 14, 16, 17, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 9, 4, 1, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 1, 4, 1, 10, 3, 7, 12, 13, 4, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 5, 13, 20, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 2, 11, 19, 17, 7, 11, 13, 16, 8, 16, 20, 1, 2, 4, 5, 7, 8, 9, 10, 12, 15, 16, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 3, 4, 10], \"Term\": [\"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$\", \"$_54_billion\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"'s\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will\", \"-PRON-_will_see\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019re\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"-PRON-_\\u2019s\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"1\", \"100,000\", \"100,000\", \"10th\", \"120\", \"15-year_old\", \"16\", \"16\", \"16\", \"16\", \"16\", \"16\", \"17\", \"17\", \"17\", \"17\", \"17\", \"18\", \"18\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2\", \"2005\", \"2005\", \"2005\", \"2008\", \"2008\", \"2013\", \"2013\", \"2016_election\", \"2016_presidential_campaign\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017\", \"2017_season\", \"2018\", \"2018\", \"2018\", \"2018\", \"2018\", \"2018\", \"2019\", \"20th\", \"21\", \"22\", \"22\", \"22\", \"250\", \"250\", \"29\", \"3\", \"3\", \"3\", \"3\", \"3\", \"3\", \"30\", \"30\", \"30\", \"30\", \"30\", \"3_0\", \"3_0\", \"46\", \"48\", \"4_2\", \"50%\", \"500_million\", \"60\", \"60\", \"65\", \"9\", \"9\", \"90\", \"90\", \"911\", \"a_federal_judge\", \"a_federal_judge\", \"a_federal_judge\", \"a_lot_of\", \"a_lot_of\", \"a_lot_of\", \"a_lot_of\", \"a_lot_of\", \"a_new_contract\", \"a_new_contract\", \"a_second_independence\", \"a_whole_lot\", \"absolutely\", \"academic\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"accord_to\", \"account\", \"account\", \"account\", \"account\", \"account\", \"account\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"accuse\", \"across_europe\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"action\", \"adam_bate\", \"addiction\", \"advantage\", \"adventure\", \"adviser\", \"adviser\", \"adviser\", \"affordable_care_act\", \"affordable_care_act\", \"affordable_care_act\", \"affordable_care_act\", \"affordable_care_act\", \"agree\", \"agree\", \"agree\", \"agree\", \"agree\", \"agree\", \"agree\", \"agree\", \"airbnb\", \"aitor_karanka\", \"alert\", \"alexander\", \"allegation_that\", \"allen\", \"allen\", \"alternative\", \"alternative\", \"alternative\", \"ambassador\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"american_health_care_act\", \"ammunition\", \"an_early\", \"an_hour\", \"ankle\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"announce\", \"anti_islam\", \"antonio\", \"antonio_conte\", \"antonio_conte\", \"appeal\", \"appeal\", \"appeal\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"appear\", \"approve\", \"approve\", \"approve\", \"approve\", \"approve\", \"april\", \"april\", \"april\", \"april\", \"april\", \"argue_that\", \"arrow\", \"arsenal\", \"arsenal\", \"arsenal\", \"arsenal\", \"arsenal\", \"asia\", \"asia\", \"assembly_election\", \"asylum\", \"at_twickenham\", \"atalanta\", \"atalanta\", \"atalanta\", \"atletico_madrid\", \"atletico_madrid\", \"atletico_madrid\", \"attention\", \"attention\", \"austin\", \"austin_texas\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"australia\", \"auto\", \"auto\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"bad\", \"badly\", \"balance\", \"ballot\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"ban\", \"bane\", \"bane\", \"banker\", \"barack_obama\", \"barack_obama\", \"barack_obama\", \"barrier\", \"barrier\", \"base\", \"base\", \"base\", \"base\", \"base\", \"base\", \"base\", \"base\", \"base\", \"base\", \"battery\", \"battery\", \"bayer_leverkusen\", \"be_able_to\", \"be_able_to\", \"be_able_to\", \"be_able_to\", \"beach\", \"beach\", \"beach\", \"beast\", \"beast\", \"beast\", \"beast\", \"beautiful\", \"beautiful\", \"beautiful\", \"beauty_and\", \"beauty_and\", \"bedroom\", \"belgian\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"believe\", \"berlin\", \"beware\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big\", \"big_news\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"bill\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"billion\", \"bind\", \"birth\", \"birthday\", \"bjp\", \"blair\", \"blame\", \"blame\", \"blame\", \"blame\", \"blame\", \"blame\", \"blame\", \"blame\", \"blind\", \"blizzard\", \"block\", \"block\", \"block\", \"block\", \"block\", \"block\", \"block\", \"block\", \"block\", \"blow\", \"blow\", \"blow\", \"board\", \"board\", \"board\", \"board\", \"board\", \"borrow\", \"borrow\", \"boston\", \"boston\", \"boston\", \"boston\", \"both_party\", \"bottle\", \"bracket\", \"breach\", \"breach\", \"brexit_negotiation\", \"brexit_secretary\", \"brilliant\", \"bring_back\", \"britain_'s\", \"britain_'s\", \"britain_'s\", \"britain_'s\", \"britain_'s\", \"britain_'s\", \"broadcaster\", \"broadcaster\", \"brother\", \"brother\", \"brother\", \"brother\", \"brother\", \"brother\", \"bruce\", \"brussels\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"budget\", \"bull\", \"bury\", \"cabinet\", \"cabinet\", \"camera\", \"camera\", \"camera\", \"camera\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"campaign\", \"can_not\", \"can_not\", \"can_not\", \"can_not\", \"can_not\", \"can_not\", \"canadian\", \"cancer\", \"cancer\", \"carrier\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"case\", \"catch\", \"catch\", \"catch\", \"catch\", \"catch\", \"catch\", \"catch\", \"catch\", \"catch\", \"cause\", \"cause\", \"cause\", \"cause\", \"cause\", \"cause\", \"cause\", \"cause\", \"cause\", \"celebration\", \"celebration\", \"center\", \"center\", \"center\", \"center\", \"center\", \"center\", \"center\", \"central_bank\", \"central_bank\", \"chairman\", \"chairman\", \"chairman\", \"chairman\", \"chairman\", \"chairman\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"challenge\", \"champion\", \"champion\", \"champion\", \"champion\", \"champion\", \"champion\", \"champion\", \"champions_league\", \"champions_league\", \"champions_league\", \"champions_league\", \"champions_league\", \"champions_league\", \"champions_league\", \"champions_league_quarter_final\", \"chancellor\", \"chancellor\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"change\", \"chant\", \"character\", \"character\", \"character\", \"character\", \"character\", \"character\", \"character\", \"character\", \"character\", \"character\", \"charge_against\", \"charlie\", \"cheap\", \"cheap\", \"cheap\", \"cheap\", \"check_out\", \"check_out\", \"check_out\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chelsea\", \"chicken\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief\", \"chief_executive_officer\", \"chief_executive_officer\", \"chief_executive_officer\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"child\", \"childhood\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"china\", \"christopher\", \"cia\", \"cia\", \"civil\", \"civil\", \"civil\", \"civil_war\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"claim\", \"clarify\", \"clarify\", \"clarify\", \"clarke\", \"clean\", \"clinic\", \"clinton\", \"clinton\", \"clock\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"close\", \"closely_watch\", \"closure\", \"clothes\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"club\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coach\", \"coalition\", \"coalition\", \"coalition\", \"coalition\", \"coast\", \"coast\", \"coin\", \"colin\", \"colin\", \"collaboration\", \"college_basketball\", \"columnist\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come\", \"come_amid\", \"come_out\", \"come_out\", \"come_out\", \"comeback\", \"comeback\", \"comeback\", \"comeback\", \"comeback\", \"comedy\", \"comedy\", \"comedy\", \"comedy\", \"comic\", \"comic\", \"comic\", \"comic\", \"comic\", \"comic_book\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment\", \"comment_so_far_on\", \"comment_so_far_on\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"company\", \"compromise\", \"compromise\", \"concede\", \"concede\", \"conclude\", \"concrete\", \"conduct\", \"conduct\", \"conduct\", \"congressional\", \"congressional_budget_office\", \"congressman\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"conservative\", \"construction\", \"construction\", \"consulate\", \"contender\", \"contest\", \"contest\", \"continent\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"continue\", \"controller\", \"conversation\", \"conversation\", \"conviction\", \"cook\", \"cooper\", \"corp\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"cost\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"country\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court\", \"court_hear\", \"coverage\", \"coverage\", \"coverage\", \"coverage\", \"coverage\", \"craig_shakespeare\", \"craig_shakespeare\", \"craig_shakespeare\", \"credit\", \"credit\", \"credit\", \"credit\", \"cricket\", \"cricket\", \"cricket\", \"crisis\", \"crisis\", \"crisis\", \"crisis\", \"crisis\", \"crucial\", \"crucial\", \"crucial\", \"crush\", \"cultural\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cut\", \"cycle\", \"dark\", \"dark\", \"datum\", \"datum\", \"datum\", \"datum\", \"datum\", \"datum\", \"datum\", \"datum\", \"daughter\", \"daughter\", \"daughter\", \"daughter\", \"daughter\", \"daughter\", \"daughter\", \"daughter\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david\", \"david_davis\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day\", \"day_before\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal\", \"deal_with\", \"deal_with\", \"deal_with\", \"deal_with\", \"deal_with\", \"deal_with\", \"deal_with\", \"deal_with\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"death\", \"debate\", \"debate\", \"debate\", \"debate\", \"debate\", \"debate\", \"debut\", \"debut\", \"debut\", \"debut\", \"debut\", \"debut\", \"debut\", \"debut\", \"debut\", \"decide\", \"decide\", \"decide\", \"decide\", \"decide\", \"decide\", \"decide\", \"decide\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decision\", \"decisive\", \"decline\", \"decline\", \"decline\", \"decline\", \"defiant\", \"defy\", \"delivery\", \"demarcus\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"department\", \"depict\", \"deposit\", \"deposit\", \"deputy\", \"deputy\", \"deserve\", \"deserve\", \"deserve\", \"desperate\", \"destination\", \"detainee\", \"devil\", \"diego\", \"diego_simeone\", \"diesel\", \"different\", \"different\", \"different\", \"different\", \"different\", \"different\", \"different\", \"different\", \"different\", \"difficult\", \"difficult\", \"difficult\", \"difficult\", \"difficult\", \"direction\", \"direction\", \"direction\", \"disaster\", \"disaster\", \"discipline\", \"discover\", \"discover\", \"discover\", \"discover\", \"discover\", \"discover\", \"discover\", \"discover\", \"discover\", \"discriminatory\", \"dna\", \"dna\", \"do_n't\", \"do_n't\", \"do_n't\", \"do_n't\", \"do_n't\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not\", \"do_not_think\", \"do_not_think\", \"do_not_think\", \"do_you\", \"doctor\", \"doctor\", \"doctor\", \"doctor\", \"doctor\", \"doctor\", \"doctor\", \"domestic\", \"domestic\", \"domestic\", \"domestic\", \"domestic\", \"domestic\", \"domestic\", \"don\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump\", \"donald_trump_\\u2019\", \"donald_trump_\\u2019\", \"donate\", \"dozen\", \"dozen\", \"dozen\", \"dozen\", \"dozen\", \"drag\", \"dramatically\", \"dramatically\", \"drink\", \"drink\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"driver\", \"dutch\", \"dutch_election\", \"each_other\", \"earlier_this_month\", \"earlier_this_month\", \"ease\", \"ease\", \"easily\", \"easily\", \"easily\", \"east_coast\", \"easy\", \"easy\", \"easy\", \"easy\", \"easy\", \"easy\", \"eat\", \"eat\", \"eat\", \"eat\", \"eat\", \"eat\", \"eat\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"economy\", \"eden_hazard\", \"edin_dzeko\", \"egypt\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election\", \"election_victory\", \"electricity\", \"eliminate\", \"eliminate\", \"elizabeth\", \"elizabeth\", \"email\", \"email\", \"email\", \"emmanuel_macron\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end\", \"end_up\", \"end_up\", \"end_up\", \"energy\", \"energy\", \"energy\", \"energy\", \"energy\", \"energy\", \"energy\", \"enforcement\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"england\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"episode\", \"equal\", \"equip\", \"era\", \"era\", \"era\", \"eric\", \"eric\", \"eric\", \"escalate\", \"especially\", \"especially\", \"establishment\", \"estate\", \"estimate\", \"estimate\", \"estimate\", \"estimate\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"eu\", \"europa_league\", \"europe\", \"europe\", \"europe\", \"europe\", \"europe\", \"europe\", \"europe\", \"europe\", \"european_parliament\", \"european_union\", \"european_union\", \"european_union\", \"european_union\", \"european_union\", \"european_union\", \"european_union\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"event\", \"everton\", \"everton\", \"everton\", \"everton\", \"everton\", \"everton\", \"everton\", \"every_year\", \"everyone_else\", \"executive_order\", \"executive_order\", \"expand\", \"expand\", \"expand\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expect\", \"expense\", \"expense\", \"expense\", \"expense\", \"experience\", \"experience\", \"experience\", \"experience\", \"experience\", \"experience\", \"experience\", \"experience\", \"experience\", \"experiment\", \"explode\", \"explosion\", \"external\", \"external\", \"exxon_mobil\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"eye\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"face\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"facebook\", \"fact\", \"fact\", \"fact\", \"fact\", \"fact\", \"fact\", \"fact\", \"fact\", \"fact\", \"failure\", \"failure\", \"failure\", \"failure\", \"famine\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"fan\", \"far\", \"far\", \"far\", \"far\", \"far_right\", \"fate\", \"fate\", \"fbi_director_james_comey\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"fear\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"feature\", \"fed\", \"fed\", \"fed\", \"fed\", \"fed\", \"fed\", \"fed\", \"federal_government\", \"federal_government\", \"federal_reserve\", \"federal_reserve\", \"federal_reserve\", \"federal_reserve\", \"federico_bernardeschi\", \"fee\", \"fee\", \"fee\", \"fee\", \"fee\", \"fee\", \"feminist\", \"festival\", \"festival\", \"festival\", \"festival\", \"festival\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"fight\", \"figure_out\", \"fill\", \"fill\", \"fill\", \"fill\", \"fill\", \"fill\", \"fill\", \"fill\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"film\", \"filmmaker\", \"fin\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"final\", \"finale\", \"finale\", \"finance_minister\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"find\", \"finish\", \"finish\", \"finish\", \"finish\", \"finish\", \"fiorentina\", \"fiorentina\", \"fiorentina\", \"fiorentina\", \"fiorentina\", \"first_trip\", \"fiscal\", \"five_month\", \"five_year\", \"five_year\", \"five_year\", \"five_year\", \"flash\", \"flight\", \"flight\", \"flight\", \"flight\", \"flight\", \"florida\", \"florida\", \"fly\", \"fly\", \"fly\", \"fly\", \"fly\", \"fly\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"follow\", \"food\", \"food\", \"food\", \"food\", \"food\", \"food\", \"footballer\", \"footballer\", \"footballer\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"force\", \"foreign_aid\", \"forget\", \"forget\", \"forget\", \"forget\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"form\", \"frame\", \"fraud\", \"free_agent\", \"free_agent\", \"free_agent\", \"free_agent\", \"free_trade\", \"freedom\", \"freeze\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french\", \"french_presidential_candidate_francois\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"friend\", \"frustrate\", \"frustration\", \"fuel\", \"fuel\", \"fuel\", \"fully\", \"fully\", \"fully\", \"fundamental\", \"funeral\", \"ga\", \"ga\", \"ga\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game\", \"game_of_thrones\", \"games\", \"gaming\", \"gang\", \"gang\", \"gary\", \"geert_wilders\", \"gen.\", \"gender\", \"general\", \"general\", \"general\", \"general\", \"general\", \"general\", \"generally\", \"generate\", \"generate\", \"generation\", \"generation\", \"generation\", \"generation\", \"germany\", \"germany\", \"germany\", \"germany\", \"germany\", \"germany\", \"germany\", \"germany\", \"get_ready_for\", \"gianluigi_donnarumma\", \"girl\", \"girl\", \"girl\", \"girl\", \"girl\", \"girl\", \"glenn\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"global\", \"go_head\", \"go_into\", \"go_into\", \"go_into_effect\", \"go_through\", \"goal\", \"goal\", \"goal\", \"goal\", \"goal\", \"goal\", \"goal\", \"goal\", \"goal\", \"goalkeeper\", \"goalkeeper\", \"goalkeeper\", \"goalkeeper\", \"gonzaga\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"good\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"google\", \"gop\", \"gop\", \"gop\", \"gop\", \"gop_health\", \"gossip\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"government\", \"grade\", \"graduate\", \"grave\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"great\", \"gregg_rosenthal\", \"guarantee\", \"guarantee\", \"guarantee\", \"guarantee\", \"guarantee\", \"guidance\", \"gun\", \"gun\", \"gun\", \"gun\", \"gun\", \"hack\", \"hack\", \"hack\", \"hack\", \"hacker\", \"hacker\", \"halt\", \"halt\", \"hammer\", \"harm\", \"harm\", \"harry_kane\", \"hate\", \"have_agree_to\", \"have_agree_to\", \"hawaii\", \"hawaii\", \"hawaii\", \"hawaii\", \"hawaii\", \"hawaii\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head\", \"head_coach\", \"head_coach\", \"head_coach\", \"header\", \"headphone\", \"health\", \"health\", \"health\", \"health\", \"health\", \"health\", \"health\", \"health\", \"health\", \"health_care_bill\", \"health_care_law\", \"healthy\", \"healthy\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hear\", \"hedge_fund\", \"her_own\", \"here_'_how\", \"here_'_what_you\", \"here_'_what_you\", \"heroine\", \"hey\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"high\", \"hijack\", \"hill\", \"hill\", \"hint\", \"hint_that\", \"his_own\", \"his_own\", \"his_own\", \"his_own\", \"his_own\", \"his_side\", \"his_side\", \"historically\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit\", \"hit_back_at\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"hold\", \"horror\", \"horror\", \"horse\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"host\", \"hostile\", \"hour_before\", \"house_gop\", \"house_gop\", \"house_intelligence_committee\", \"housing\", \"housing\", \"housing\", \"how_do\", \"how_do\", \"how_much\", \"how_much\", \"how_much\", \"howard\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"huge\", \"human_right\", \"human_rights\", \"humiliating\", \"hundred_of_million\", \"husband\", \"husband\", \"husband\", \"i_can\", \"i_can\", \"i_\\u2019ve\", \"ian\", \"ian\", \"icc\", \"iconic\", \"iconic\", \"iconic\", \"iconic\", \"identity\", \"illness\", \"imgur\", \"immediately\", \"immediately\", \"immigrant\", \"immigrant\", \"immigrant\", \"immigrant\", \"in_2014\", \"in_2014\", \"in_2014\", \"in_2014\", \"inappropriate\", \"inc.\", \"inc.\", \"inc.\", \"inc.\", \"inc.\", \"inc.\", \"inch\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"include\", \"income\", \"income\", \"income\", \"income\", \"income\", \"income\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"increase\", \"independence\", \"independence_referendum\", \"india\", \"india\", \"india\", \"india\", \"india\", \"india\", \"india\", \"india\", \"india\", \"india\", \"indicator\", \"indictment\", \"inflation\", \"inflation\", \"inflation\", \"inflation\", \"inflation\", \"initiative\", \"initiative\", \"injunction\", \"injury\", \"injury\", \"injury\", \"injury\", \"injury\", \"injury\", \"injury\", \"injury\", \"injury\", \"inspire\", \"inspire\", \"intel\", \"intel\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"inter\", \"interest_rate\", \"interest_rate\", \"interest_rate\", \"interest_rate_hike\", \"interested_in\", \"interested_in\", \"internet\", \"internet\", \"internet\", \"internet\", \"internet\", \"internet\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"investor\", \"iraqi\", \"iraqi\", \"ireland\", \"ireland\", \"ireland\", \"irish\", \"islamic_state\", \"islamic_state\", \"israeli\", \"israeli\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_'\", \"it_turn_out\", \"its_own\", \"its_own\", \"its_own\", \"its_own\", \"its_own\", \"its_own\", \"jack\", \"jack\", \"jack\", \"jamie_vardy\", \"jamie_vardy\", \"jan\", \"japan\", \"japan\", \"japan\", \"japan\", \"japan\", \"jeff\", \"jeff\", \"jeremy_corbyn\", \"jeremy_corbyn\", \"jeremy_corbyn\", \"jessica\", \"jewish\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job\", \"job_report\", \"joe_hart\", \"johnson\", \"johnson\", \"johnson\", \"johnson\", \"jonathan\", \"jose_mourinho\", \"jose_mourinho\", \"jose_mourinho\", \"jose_mourinho\", \"joy\", \"jr.\", \"juan\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judge\", \"judgment\", \"julie\", \"jump\", \"jump\", \"just_hour_before\", \"justice\", \"justice\", \"justice\", \"justice\", \"justice\", \"justice\", \"justice_department\", \"justice_department\", \"justice_department\", \"justice_department\", \"justice_department\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"juventus\", \"keen\", \"kid\", \"kid\", \"kid\", \"kid\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"kill\", \"killer\", \"kim_jong_nam\", \"kim_jong_nam\", \"kim_jong_nam\", \"kind_of\", \"kind_of\", \"kind_of\", \"kind_of\", \"knock\", \"knock\", \"knock\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know\", \"know_how\", \"knowledge\", \"kong\", \"la\", \"lad\", \"lake\", \"landslide\", \"largely\", \"largely\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late\", \"late_break_news_upcoming\", \"late_break_news_upcoming\", \"late_break_news_upcoming\", \"later_this_year\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"launch\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"law\", \"lawsuit\", \"lawsuit\", \"lawyer_say\", \"lazio\", \"lazio\", \"lazio\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"lead\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leader\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"leave\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal\", \"legal_action\", \"legal_challenge\", \"legend\", \"legend\", \"legend\", \"legend\", \"legend\", \"legend\", \"legend\", \"legend\", \"legion\", \"leicester_city\", \"leicester_city\", \"leicester_city\", \"leicester_city\", \"leicester_city\", \"leicester_city\", \"leonardo\", \"lesson\", \"let_you\", \"lie\", \"lie\", \"lie\", \"lie\", \"lie\", \"lie\", \"lie\", \"lie\", \"light_on\", \"light_on\", \"ligue_1\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"like\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"likely\", \"liken\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"line\", \"lineup\", \"literally\", \"literally\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live\", \"live_action\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"liverpool\", \"loan\", \"loan\", \"loan\", \"loan\", \"lok_sabha\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"look_at\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"lose\", \"louisville\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"love\", \"low_level\", \"luck\", \"luis_enrique\", \"luke\", \"m\", \"m\", \"m\", \"m\", \"m\", \"m\", \"m\", \"mainly\", \"mainstream\", \"maker\", \"maker\", \"maker\", \"maker\", \"maker\", \"maker\", \"making\", \"malaysia\", \"malaysia\", \"malaysia\", \"malaysia\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man\", \"man_who\", \"man_who\", \"man_who\", \"man_who\", \"man_who\", \"management\", \"management\", \"management\", \"manchester_city\", \"manchester_city\", \"manchester_city\", \"manchester_city\", \"manchester_city\", \"manchester_city\", \"manchester_city\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"manchester_united\", \"mandate\", \"mandate\", \"mandate\", \"map\", \"marcus\", \"marcus_rashford\", \"marine\", \"marine\", \"marine\", \"mario\", \"martellus_bennett\", \"maryland\", \"massive\", \"massive\", \"massive\", \"massive\", \"massive\", \"massive\", \"master\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match\", \"match_against\", \"matthew\", \"may.\", \"meal\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"mean\", \"medhi_benatia\", \"medical\", \"medical\", \"medical\", \"medical\", \"medical\", \"medical\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meet\", \"meeting_with\", \"meeting_with\", \"meeting_with\", \"meeting_with\", \"meeting_with\", \"mess\", \"mess\", \"message\", \"message\", \"message\", \"message\", \"message\", \"message\", \"message\", \"message\", \"message\", \"message\", \"mexican\", \"mexican\", \"mexican\", \"michael\", \"michael\", \"michael\", \"michael\", \"michael\", \"michael\", \"microsoft\", \"microsoft\", \"microsoft\", \"microsoft\", \"microwave\", \"mid\", \"mid\", \"mid\", \"middlesbrough\", \"middlesbrough\", \"middlesbrough\", \"midnight\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"milan\", \"mile\", \"milk\", \"miller\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"million\", \"mind\", \"mind\", \"mind\", \"mind\", \"mind\", \"mind\", \"mind\", \"minute\", \"minute\", \"minute\", \"minute\", \"minute\", \"minute\", \"mirror\", \"mirror\", \"mislead\", \"mislead\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"miss\", \"missile\", \"moderate\", \"moderate\", \"modern\", \"modern\", \"modern\", \"mom\", \"monaco\", \"monaco\", \"monaco\", \"monroe\", \"monster\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"month\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"more_than\", \"morning\", \"morning\", \"morning\", \"morning\", \"morning\", \"morning\", \"morning\", \"most_awesome_image_on\", \"most_recent\", \"motivation\", \"move_forward\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"movie\", \"mp\", \"mp\", \"mp\", \"mp\", \"mp\", \"mp\", \"mp\", \"mph\", \"mr\", \"mr\", \"mr\", \"mr\", \"mr\", \"msnbc\", \"multi\", \"mum\", \"murder\", \"murder\", \"murder\", \"murder\", \"murder\", \"murder\", \"murder\", \"murder\", \"muslims\", \"mvp\", \"n'golo_kante\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"napoli\", \"narrow\", \"nasa\", \"nasa\", \"nasa\", \"nasa\", \"nascar\", \"nascar\", \"nationalism\", \"nationwide\", \"nato\", \"naval\", \"ncaa\", \"necessary\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"need\", \"negotiation\", \"negotiation\", \"negotiation\", \"netherlands\", \"netherlands\", \"netherlands\", \"netherlands\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new\", \"new_book\", \"new_travel_ban\", \"new_travel_ban\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york\", \"new_york_city\", \"news_conference\", \"next_month\", \"next_month\", \"next_month\", \"next_month\", \"nice\", \"nice\", \"nicola_sturgeon\", \"nicola_sturgeon\", \"nightmare\", \"nintendo\", \"nintendo\", \"nintendo\", \"no_evidence\", \"no_matter\", \"no_problem\", \"nominate\", \"norman\", \"north\", \"north\", \"north\", \"north\", \"north\", \"north\", \"north_carolina\", \"northeast\", \"northeast\", \"northeast\", \"northeast\", \"novel\", \"novel\", \"novel\", \"novel\", \"novel\", \"nuclear\", \"nuclear\", \"nut\", \"n\\u2019t\", \"n\\u2019t\", \"object\", \"obtain\", \"occasion\", \"ocean\", \"of_fame\", \"of_state_rex\", \"of_state_rex\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"offer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"officer\", \"offset\", \"oh\", \"oh\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old\", \"old_man\", \"on_board\", \"on_friday\", \"on_friday\", \"on_friday\", \"on_friday\", \"on_friday\", \"on_friday\", \"on_people.com\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_thursday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_tuesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"on_wednesday\", \"online\", \"online\", \"online\", \"online\", \"online\", \"online\", \"online\", \"online\", \"online\", \"online\", \"opec\", \"opposite\", \"opposition\", \"opposition\", \"opposition\", \"opposition\", \"opposition\", \"opposition\", \"orbit\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"order\", \"oregon\", \"oust\", \"oust\", \"overhaul\", \"overhaul\", \"overhaul\", \"overhaul\", \"overhaul\", \"own_by\", \"own_by\", \"pacific\", \"pacific\", \"pakistan\", \"pakistan\", \"palace\", \"palermo\", \"palermo\", \"palermo\", \"panic\", \"panic\", \"paper\", \"paper\", \"parent\", \"parent\", \"parent\", \"parent\", \"parent\", \"parent\", \"parent\", \"parent\", \"parent\", \"parliament\", \"parliament\", \"parliament\", \"parliament\", \"parliament\", \"parliament\", \"particularly\", \"particularly\", \"particularly\", \"particularly\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"party\", \"passage\", \"pat\", \"paul_pogba\", \"paulo_dybala\", \"paulo_dybala\", \"pax_east\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pay\", \"pen\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"penalty\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"people\", \"pep_guardiola\", \"pep_guardiola\", \"pep_guardiola\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"percent\", \"perk\", \"permanent\", \"permanent\", \"permit\", \"personality\", \"petition\", \"phase\", \"phase\", \"phoenix\", \"photo\", \"photo\", \"photo\", \"photo\", \"photo\", \"photo\", \"photo\", \"photo\", \"pick\", \"pick\", \"pick\", \"pick\", \"pick\", \"pick\", \"pick\", \"pick\", \"pick\", \"pile\", \"pittsburgh\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"plan\", \"planet\", \"planet\", \"planned_parenthood\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"play\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"player\", \"pleased\", \"plow\", \"plus\", \"plus\", \"plus\", \"plus\", \"plus\", \"plus\", \"plus\", \"point_and\", \"point_and\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"police\", \"polish\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"political\", \"pollution\", \"popular\", \"popular\", \"popular\", \"popular\", \"populist\", \"populist\", \"populist\", \"portland\", \"porto\", \"porto\", \"position\", \"position\", \"position\", \"position\", \"position\", \"position\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"possible\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"post\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"power\", \"pregnant\", \"pregnant\", \"preliminary\", \"premier_league\", \"premier_league\", \"premier_league\", \"premier_league\", \"premier_league\", \"premier_league\", \"premier_league\", \"premier_league\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"prepare\", \"presentation\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president\", \"president_barack_obama\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_donald_trump_'s\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_'s\", \"president_trump_\\u2019s\", \"president_trump_\\u2019s\", \"president_trump_\\u2019s\", \"president_trump_\\u2019s\", \"president_trump_\\u2019s\", \"president_trump_\\u2019s\", \"presidential_election\", \"presidential_election\", \"pretty\", \"pretty\", \"pretty\", \"pretty\", \"pretty\", \"prevent\", \"prevent\", \"prevent\", \"prevent\", \"prevent\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister\", \"prime_minister_mark_rutte\", \"prime_minister_mark_rutte\", \"prime_minister_mark_rutte\", \"prime_minister_mark_rutte\", \"prime_minister_mark_rutte\", \"prime_minister_theresa_may\", \"prime_minister_theresa_may\", \"prisoner\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"problem\", \"proceed\", \"process\", \"process\", \"process\", \"process\", \"process\", \"process\", \"process\", \"process\", \"process\", \"proclaim\", \"program\", \"program\", \"program\", \"program\", \"program\", \"program\", \"program\", \"program\", \"program\", \"progress\", \"progress\", \"progress\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"project\", \"prometheus\", \"propaganda\", \"proper\", \"propose\", \"propose\", \"propose\", \"propose\", \"propose\", \"propose\", \"propose\", \"propose\", \"propose\", \"prosecution\", \"protect\", \"protect\", \"protect\", \"protect\", \"protect\", \"protect\", \"protect\", \"proud\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provide\", \"provision\", \"pub\", \"punch\", \"punch\", \"punjab\", \"pursue\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"push\", \"pyongyang\", \"quarter_final\", \"quarter_final\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"question\", \"quickly\", \"quickly\", \"quickly\", \"quickly\", \"quickly\", \"quickly\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"race\", \"rachel\", \"rachel_maddow\", \"rachel_maddow\", \"racing\", \"radio\", \"radio\", \"radio\", \"radio\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise\", \"raise_$\", \"raise_interest_rate\", \"raise_interest_rate\", \"rally\", \"rally\", \"rally\", \"rally\", \"rally\", \"rally\", \"rally\", \"rally\", \"rally\", \"rangers\", \"ranking\", \"rapoport_report\", \"rate_hike\", \"raw\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"reach\", \"read\", \"read\", \"read\", \"read\", \"read\", \"read\", \"read\", \"read\", \"read\", \"read\", \"reagan\", \"reassure\", \"reboot\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"record\", \"red_devils\", \"reddit\", \"reddit\", \"reform\", \"reform\", \"reform\", \"reform\", \"refugee\", \"refugee\", \"refugee\", \"refugee\", \"refugee\", \"refugee\", \"refugee\", \"refuse\", \"region\", \"region\", \"region\", \"region\", \"region\", \"regulation\", \"regulation\", \"regulation\", \"regulation\", \"regulation\", \"regulation\", \"regulation\", \"rein\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"release\", \"relief\", \"religious\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remain\", \"remake\", \"remember\", \"remember\", \"remember\", \"remember\", \"remember\", \"remote\", \"remote\", \"remove\", \"remove\", \"remove\", \"remove\", \"remove\", \"remove\", \"repair\", \"repeal\", \"repeal\", \"repeal\", \"repeal\", \"repeal_obamacare\", \"repeal_obamacare\", \"repeat\", \"replace_obamacare\", \"replace_obamacare\", \"replace_obamacare\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report\", \"report_suggest\", \"report_suggest\", \"report_suggest\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican\", \"republican_leader\", \"republican_leader\", \"republican_senator\", \"republican_senator\", \"requirement\", \"resign_from\", \"resignation\", \"resist\", \"resort\", \"respond_to\", \"restore\", \"restore\", \"resume\", \"retro\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"return\", \"revelation\", \"revise\", \"revise_travel_ban\", \"revise_travel_ban\", \"revised\", \"revised\", \"revised_travel_ban\", \"revised_travel_ban\", \"revised_travel_ban\", \"revised_travel_ban\", \"revised_travel_ban\", \"revised_travel_ban\", \"ride\", \"ride\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right\", \"right_wing\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"risk\", \"river\", \"river\", \"river\", \"robert\", \"robert\", \"robert_e._kelly\", \"robert_e._kelly\", \"robust\", \"roger\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"roma\", \"romelu_lukaku\", \"romelu_lukaku\", \"romelu_lukaku\", \"romelu_lukaku\", \"rotterdam\", \"round\", \"round\", \"round\", \"round\", \"round\", \"round\", \"roundup\", \"route\", \"royal\", \"rugby\", \"ruin\", \"ruin\", \"rush\", \"rush\", \"russell\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"russia\", \"rutte\", \"rutte\", \"rutte\", \"ryan\", \"ryan\", \"ryan\", \"ryan\", \"sa\", \"samir\", \"sampdoria\", \"sampdoria\", \"sampdoria\", \"san_francisco\", \"san_francisco\", \"san_francisco\", \"sanction\", \"sanction\", \"sand\", \"sassuolo\", \"satellite\", \"satellite\", \"satellite\", \"satellite\", \"saturday_'s\", \"saturday_'s\", \"save\", \"save\", \"save\", \"save\", \"save\", \"save\", \"save\", \"save\", \"save\", \"save\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"say_he\", \"scandal\", \"scandal\", \"scandal\", \"scandal\", \"scandal\", \"scheme\", \"scheme\", \"scheme\", \"scheme\", \"scotland\", \"scotland\", \"scotland\", \"scotland\", \"scotland\", \"scotland\", \"scotland\", \"scottish_independence\", \"scrap\", \"scrap\", \"script\", \"sean_spicer_say\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season\", \"season_1\", \"season_2\", \"seattle\", \"sebastian\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second\", \"second_half\", \"second_referendum\", \"second_season\", \"second_time\", \"second_time\", \"second_time\", \"second_time\", \"secret\", \"secret\", \"secret\", \"secret\", \"secret\", \"seed\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"seek\", \"self\", \"self\", \"self\", \"self\", \"self\", \"self_drive_car\", \"sentiment\", \"seoul\", \"seoul_south_korea_ap\", \"september\", \"september\", \"september\", \"september\", \"september\", \"sequel\", \"sequel\", \"sequel\", \"sequel\", \"sergeant\", \"serial\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"service\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"set\", \"setback\", \"setback\", \"seven_year\", \"seven_year\", \"seven_year\", \"sevilla\", \"sevilla\", \"sex\", \"sex\", \"sex\", \"sex\", \"sex\", \"sheldon\", \"shoe\", \"shopper\", \"short\", \"short\", \"short\", \"short\", \"short\", \"short\", \"short\", \"short\", \"sideline\", \"sign_up\", \"since_2012\", \"singapore\", \"singh\", \"singh\", \"sister\", \"site\", \"site\", \"site\", \"site\", \"site\", \"site\", \"site\", \"site\", \"six_year\", \"six_year\", \"six_year\", \"six_year\", \"skeptical\", \"skill\", \"skill\", \"skill\", \"slam\", \"slam\", \"slam\", \"slam\", \"slam\", \"slap\", \"sleep\", \"sleep\", \"smith\", \"smith\", \"smith\", \"smith\", \"smith\", \"smith\", \"snake\", \"snatch\", \"snow\", \"snow\", \"snow\", \"snub\", \"soil\", \"soldier\", \"solo\", \"source_say\", \"source_say\", \"south\", \"south\", \"south\", \"south\", \"south\", \"south\", \"south_africa\", \"south_africa\", \"south_australia\", \"south_korea\", \"south_korea\", \"south_korea\", \"south_korea\", \"south_korea\", \"south_korea\", \"south_korea\", \"south_korean\", \"south_korean\", \"southwest\", \"spain\", \"spare\", \"speedy\", \"spell\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spend\", \"spicer\", \"spin\", \"spin\", \"split\", \"split\", \"spokesman\", \"spokesman\", \"spotlight\", \"spotlight\", \"spring\", \"spur\", \"standalone\", \"standard\", \"standard\", \"standard\", \"standard\", \"standard\", \"standard\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"star\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"start\", \"starter\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state\", \"state_rex_tillerson\", \"station\", \"station\", \"station\", \"station\", \"statue\", \"status\", \"status\", \"status\", \"status\", \"steady\", \"steal\", \"steal\", \"stefano_pioli\", \"stefano_pioli\", \"stefano_pioli\", \"stem\", \"steven_smith\", \"stick_with\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stock\", \"stop\", \"stop\", \"stop\", \"stop\", \"stop\", \"stop\", \"stop\", \"stop\", \"stop\", \"storage\", \"store\", \"store\", \"store\", \"store\", \"storm\", \"storm\", \"storm\", \"storm\", \"storm\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"story\", \"strategic\", \"stream\", \"stream\", \"stream\", \"stream\", \"stretch\", \"strict\", \"striker\", \"striker\", \"striker\", \"striker\", \"striker\", \"striker\", \"strip\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"strong\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"struggle\", \"stuart\", \"student\", \"student\", \"student\", \"student\", \"student\", \"student\", \"student\", \"student\", \"study\", \"study\", \"study\", \"study\", \"study\", \"study\", \"study\", \"study\", \"study\", \"sturgeon\", \"successor\", \"suddenly\", \"sugar\", \"suggest_that\", \"suggest_that\", \"suggest_that\", \"suggest_that\", \"suggest_that\", \"suggest_that\", \"suggest_that\", \"suicide\", \"summer\", \"summer\", \"summer\", \"summer\", \"summer\", \"supply\", \"supply\", \"supply\", \"supply\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"support\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"surprise\", \"swap\", \"swear\", \"sweet\", \"sweet\", \"swing\", \"syria\", \"syria\", \"syria\", \"syria\", \"syria\", \"tab\", \"tactic\", \"tactic\", \"tactic\", \"take_effect\", \"talent\", \"talent\", \"talent\", \"talent\", \"talent\", \"tall\", \"tank\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax\", \"tax_return\", \"tax_return\", \"tax_return\", \"tax_return\", \"tax_return\", \"tax_return\", \"teacher\", \"teacher\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team\", \"team_mate\", \"team_mate\", \"teaser\", \"teaser\", \"teenager\", \"teenager\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_cnbc\", \"tell_him\", \"temporarily\", \"temporarily\", \"temporary\", \"temporary\", \"tennessee\", \"tension\", \"tension\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"test\", \"texas\", \"texas\", \"texas\", \"texas\", \"thank\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"that_'\", \"theft\", \"their_place\", \"there_\\u2019\", \"there_\\u2019\", \"they_'re\", \"they_'re\", \"they_can\", \"they_can\", \"they_can\", \"they_can\", \"they_can\", \"they_can\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"thing\", \"this_article_originally_appear\", \"this_article_originally_appear\", \"this_article_originally_appear\", \"this_season\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"this_week\", \"thomas\", \"thomas\", \"thought\", \"thousand_of\", \"thousand_of\", \"thousand_of\", \"thousand_of\", \"thousand_of\", \"thousand_of\", \"three_point\", \"thriller\", \"thriller\", \"thrilling\", \"thrilling\", \"thursday\", \"thursday\", \"thursday\", \"thursday\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tie\", \"tight_end\", \"tillerson\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"time\", \"tired\", \"tired\", \"to_repeal_and\", \"to_repeal_and\", \"to_start_your\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"today\", \"toilet\", \"tokyo\", \"tomorrow\", \"tomorrow\", \"tomorrow\", \"tonight_\\u2019s\", \"tony\", \"total\", \"total\", \"total\", \"total\", \"total\", \"total\", \"tottenham\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trade\", \"trademark\", \"trail\", \"trail\", \"train\", \"train\", \"train\", \"train\", \"train\", \"travel_ban\", \"travel_ban\", \"travel_ban\", \"travel_ban\", \"travel_ban\", \"travel_ban\", \"travel_ban\", \"traveler\", \"traveller\", \"treasure\", \"treasurer\", \"treasury\", \"treasury\", \"treasury\", \"treaty\", \"trigger_article_50\", \"trigger_article_50\", \"troll\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"trump\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"try_to\", \"turkey\", \"turkey\", \"turkey\", \"turkey\", \"turkey\", \"turkey\", \"turkish\", \"turkish\", \"turkish\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"turn\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv\", \"tv_series\", \"tv_series\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"tweet\", \"twin\", \"twist\", \"twist\", \"twitter_user\", \"u.k.\", \"u.n.\", \"u.n.\", \"u.n.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s.\", \"u.s._secretary_of\", \"ugly\", \"uncover\", \"uncover\", \"unidentified\", \"universe\", \"unveil\", \"unveil\", \"unveil\", \"unveil\", \"unveil\", \"unveil\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"upcoming\", \"update\", \"update\", \"update\", \"update\", \"update\", \"update\", \"update\", \"update\", \"update\", \"upgrade\", \"upgrade\", \"upset\", \"upset\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"use\", \"v\", \"v\", \"v\", \"venezuela\", \"venezuela\", \"verify\", \"verizon\", \"version_of\", \"version_of\", \"version_of\", \"version_of\", \"version_of\", \"version_of\", \"veteran\", \"veteran\", \"veteran\", \"veteran\", \"veteran\", \"veteran\", \"veteran\", \"vicious\", \"victor\", \"victory_over\", \"victory_over\", \"victory_over\", \"victory_over\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"video\", \"view\", \"view\", \"view\", \"view\", \"view\", \"view\", \"view\", \"view\", \"view\", \"view\", \"violate\", \"viral\", \"vital\", \"voice\", \"voice\", \"voice\", \"voice\", \"voice\", \"voice\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vote\", \"vow\", \"vow\", \"vow\", \"vow\", \"vow\", \"vow\", \"vr\", \"vr\", \"vr\", \"wait\", \"wait\", \"wait\", \"wait_for\", \"wait_for\", \"wait_for\", \"wait_for\", \"walking_dead\", \"wall\", \"wall\", \"wall\", \"wall\", \"wall\", \"wall\", \"wall_street\", \"wall_street\", \"wall_street\", \"wall_street\", \"wall_street\", \"wall_street\", \"wall_street\", \"walter\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"want\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warn\", \"warner_bros.\", \"warner_bros.\", \"warriors\", \"warriors\", \"watson\", \"wave\", \"wave\", \"wave\", \"wave\", \"wave\", \"wave\", \"wave\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"way\", \"wayne\", \"we_can\", \"we_can_not\", \"we_look_back\", \"weak\", \"wealthy\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"wear\", \"website\", \"website\", \"website\", \"website\", \"website\", \"website\", \"wednesday\", \"wednesday\", \"westminster\", \"westminster\", \"what_happen_when\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"when_it\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"white_house\", \"who_die\", \"widely\", \"williams\", \"williams\", \"williams\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"win\", \"wind\", \"wind\", \"window\", \"window\", \"winger\", \"winger\", \"wireless\", \"wireless\", \"withdrawal\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"woman\", \"wonderful\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"work\", \"workplace\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"world\", \"x\", \"x\", \"x\", \"yahoo\", \"yahoo\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"year\", \"yes\", \"yes\", \"yes\", \"yield\", \"your_daily_look_at\", \"your_daily_look_at\", \"your_daily_look_at\", \"your_daily_look_at\", \"zelda\", \"zero\", \"zero\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u00a3\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u2019s\", \"\\u20ac\", \"\\u20ac\", \"\\u20ac\"], \"Freq\": [0.00819174111165447, 0.03276696444661788, 0.1092232148220596, 0.01092232148220596, 0.01092232148220596, 0.03549754481716937, 0.05734218778158129, 0.00273058037055149, 0.00546116074110298, 0.03276696444661788, 0.01365290185275745, 0.00273058037055149, 0.01911406259386043, 0.01638348222330894, 0.08464799148709619, 0.00273058037055149, 0.5543078152219525, 0.9406263784920348, 0.151972813646175, 0.06172434277321569, 0.08557238429923084, 0.038577714233259806, 0.06265956008796138, 0.08510477564185799, 0.029225541085802883, 0.022445215553896614, 0.0993668396917298, 0.08346814534105304, 0.019171954952286692, 0.022912824211269462, 0.04301999647830185, 0.04605945275122535, 0.02899173675711646, 0.024783258840760845, 0.04489043110779323, 0.014262064049871808, 0.028524128099743615, 0.0074817385179655384, 0.006335008556695201, 0.012670017113390402, 0.006335008556695201, 0.1457051968039896, 0.006335008556695201, 0.006335008556695201, 0.380100513401712, 0.012670017113390402, 0.2787403764945888, 0.1520402053606848, 0.9081238910622903, 0.02079322412253597, 0.031189836183803957, 0.17154409901092177, 0.010396612061267985, 0.015594918091901978, 0.3170966678686736, 0.21832885328662768, 0.08317289649014388, 0.015594918091901978, 0.06757797839824191, 0.04158644824507194, 0.014641558732136366, 0.007320779366068183, 0.007320779366068183, 0.007320779366068183, 0.007320779366068183, 0.029283117464272732, 0.0439246761964091, 0.029283117464272732, 0.8492104064639092, 0.0649957898812558, 0.01624894747031395, 0.48746842410941854, 0.01624894747031395, 0.07312026361641277, 0.04062236867578488, 0.17873842217345345, 0.12186710602735464, 0.008136332302070724, 0.04881799381242434, 0.008136332302070724, 0.06509065841656579, 0.008136332302070724, 0.02440899690621217, 0.09763598762484868, 0.008136332302070724, 0.707860910280153, 0.02440899690621217, 0.9496427075672499, 0.02967633461147656, 0.9488661971332697, 0.9391061616475653, 0.9757258931604542, 0.013260166404615864, 0.013260166404615864, 0.013260166404615864, 0.6099676546123297, 0.30498382730616486, 0.026520332809231727, 0.01640340699511971, 0.1968408839414365, 0.03280681399023942, 0.03280681399023942, 0.7053465007901475, 0.02513871421890782, 0.955271140318497, 0.21602398265158543, 0.027874062277623925, 0.04877960898584187, 0.006968515569405981, 0.08362218683287177, 0.3066146850538632, 0.25086656049861533, 0.006968515569405981, 0.013937031138811963, 0.020905546708217943, 0.01425116481615655, 0.6413024167270447, 0.32777679077160066, 0.9159528537498793, 0.045797642687493964, 0.899510102833619, 0.0473426369912431, 0.9524142118528147, 0.9752082485894153, 0.10274439000690451, 0.0051372195003452255, 0.4674869745314155, 0.0051372195003452255, 0.010274439000690451, 0.030823317002071353, 0.010274439000690451, 0.07705829250517839, 0.041097756002761804, 0.05650941450379748, 0.030823317002071353, 0.0051372195003452255, 0.11301882900759495, 0.025686097501726127, 0.010274439000690451, 0.010274439000690451, 0.9758217244596782, 0.6821063204183414, 0.07751208186572062, 0.12401933098515298, 0.0077512081865720615, 0.08526329005229268, 0.0077512081865720615, 0.9774586334137725, 0.9735788477761967, 0.9640224317211639, 0.026934794275050446, 0.8619134168016143, 0.05386958855010089, 0.8540581306415183, 0.1102010491150346, 0.9426775069411654, 0.035900695406984644, 0.035900695406984644, 0.059834492344974406, 0.2513048678488925, 0.5983449234497441, 0.011966898468994881, 0.01285497993444877, 0.1414047792789365, 0.8098637358702726, 0.01285497993444877, 0.01285497993444877, 0.027986638660741803, 0.9515457144652213, 0.9900496040632236, 0.9496094259353517, 0.9825626118155326, 0.9680111669453594, 0.9645576943599881, 0.24318304287215148, 0.7430592976649073, 0.9568134581015141, 0.016196069898109105, 0.9555681239884372, 0.9476064782244964, 0.03384308850801773, 0.944355082727879, 0.9704205718186667, 0.013025779487498881, 0.0065128897437494405, 0.009822312533907057, 0.10804543787297763, 0.009822312533907057, 0.8250742528481928, 0.02946693760172117, 0.022484401455905148, 0.9668292626039213, 0.9690565971574048, 0.9324846662604266, 0.9727708168930549, 0.9745876269339377, 0.011928269105839417, 0.07753374918795622, 0.109342466803528, 0.0218684933607056, 0.12723487046228713, 0.09145006314476886, 0.027832627913625306, 0.009940224254866181, 0.03777285216849149, 0.049701121274330906, 0.0934381079957421, 0.03180871761557178, 0.04771307642335767, 0.07952179403892945, 0.03578480731751825, 0.06958156978406327, 0.0218684933607056, 0.003976089701946473, 0.023856538211678834, 0.025844583062652072, 0.2041021694877027, 0.46263158417212613, 0.02721362259836036, 0.09524767909426127, 0.18369195253893245, 0.020410216948770273, 0.017801603259786525, 0.14686322689323883, 0.3159784578612108, 0.02225200407473316, 0.02225200407473316, 0.1557640285231321, 0.09345841711387927, 0.004450400814946631, 0.0712064130391461, 0.031152805704626422, 0.004450400814946631, 0.008900801629893262, 0.10680961955871916, 0.9600479674033858, 0.11758061147175547, 0.010689146497432316, 0.042756585989729264, 0.005344573248716158, 0.09085774522817468, 0.03206743949229695, 0.02672286624358079, 0.037412012741013106, 0.010689146497432316, 0.09085774522817468, 0.058790305735877735, 0.04810115923844542, 0.3794647006588472, 0.04810115923844542, 0.9486857210044776, 0.9610258486316655, 0.9562057107603483, 0.9451426757599914, 0.16714381769579784, 0.7354327978615104, 0.06685752707831913, 0.023443103158959526, 0.757993668806358, 0.14847298667341033, 0.007814367719653175, 0.054700574037572225, 0.06425125963985606, 0.15420302313565454, 0.06425125963985606, 0.08995176349579849, 0.012850251927971212, 0.05140100771188485, 0.05140100771188485, 0.5140100771188485, 0.967054380278475, 0.9646762218482365, 0.9676835453530062, 0.9583206020374633, 0.9705229983433159, 0.9440836556562512, 0.03631090983293274, 0.1075829525804527, 0.06454977154827161, 0.8176304396114404, 0.9870796323628491, 0.06487152697382137, 0.16217881743455342, 0.032435763486910685, 0.1261390802268749, 0.10811921162303562, 0.032435763486910685, 0.010811921162303562, 0.2414662392914462, 0.10091126418149991, 0.010811921162303562, 0.021623842324607123, 0.0072079474415357074, 0.014415894883071415, 0.05766357953228566, 0.026316069999309532, 0.013158034999654766, 0.6315856799834287, 0.17105445499551195, 0.052632139998619064, 0.013158034999654766, 0.039474104998964296, 0.013158034999654766, 0.013158034999654766, 0.013158034999654766, 0.9350721078210534, 0.9695299588331909, 0.9634016524986536, 0.9574990284660736, 0.13477806271097062, 0.012479450251015798, 0.2421013348697065, 0.044926020903656876, 0.12479450251015799, 0.00998356020081264, 0.024958900502031596, 0.00499178010040632, 0.024958900502031596, 0.00998356020081264, 0.052413691054266354, 0.012479450251015798, 0.04991780100406319, 0.054909581104469515, 0.024958900502031596, 0.0374383507530474, 0.06738903135548531, 0.007487670150609479, 0.024958900502031596, 0.032446570652641074, 0.9904900492137226, 0.9528998133209806, 0.932502376203111, 0.025202766924408405, 0.01262309793075207, 0.8709937572218929, 0.10098478344601657, 0.04282438682327599, 0.11290065617045487, 0.13236628654467125, 0.02335875644905963, 0.019465630374216357, 0.0038931260748432716, 0.011679378224529816, 0.10122127794592506, 0.04282438682327599, 0.038931260748432714, 0.0038931260748432716, 0.06618314327233563, 0.038931260748432714, 0.007786252149686543, 0.0700762693471789, 0.05839689112264908, 0.20244255589185012, 0.019465630374216357, 0.013188207141430031, 0.10550565713144025, 0.013188207141430031, 0.7253513927786518, 0.14507027855573035, 0.573040973391804, 0.05636468590739056, 0.06575880022528899, 0.18788228635796855, 0.1033352574968827, 0.9301490069150246, 0.971613730292717, 0.7337876531618167, 0.008153196146242409, 0.11414474604739372, 0.0896851576086665, 0.04076598073121204, 0.9200974088192847, 0.07667478406827373, 0.904094727218022, 0.9762410016658005, 0.9699090871578745, 0.01825155196578946, 0.8760744943578942, 0.07300620786315784, 0.9560498756484149, 0.02223371803833523, 0.011116859019167615, 0.12671078505165306, 0.850772413918242, 0.9760355053906699, 0.9572425690164812, 0.009504756924206012, 0.014257135386309018, 0.004752378462103006, 0.04277140615892706, 0.004752378462103006, 0.6985996339291419, 0.03801902769682405, 0.004752378462103006, 0.009504756924206012, 0.0712856769315451, 0.004752378462103006, 0.009504756924206012, 0.004752378462103006, 0.04277140615892706, 0.019009513848412023, 0.019009513848412023, 0.05710330951109524, 0.9136529521775238, 0.023932737608916538, 0.028719285130699844, 0.03350583265248315, 0.009573095043566614, 0.15795606821884914, 0.023932737608916538, 0.04307892769604977, 0.004786547521783307, 0.038292380174266456, 0.07179821282674961, 0.39249689678623123, 0.0670116653049663, 0.03350583265248315, 0.07658476034853291, 0.9649628781774743, 0.9861477166328926, 0.9310325439452006, 0.08890245655367776, 0.01778049131073555, 0.008890245655367775, 0.08001221089830998, 0.13335368483051663, 0.16002442179661996, 0.004445122827683888, 0.08890245655367776, 0.004445122827683888, 0.01778049131073555, 0.39117080883618216, 0.004445122827683888, 0.062456919242838714, 0.8952158424806882, 0.9583570782632801, 0.060617112337970486, 0.1363885027604336, 0.803176738478109, 0.9491642518382888, 0.02636567366217469, 0.03349276439418625, 0.11722467537965187, 0.12280680277868292, 0.055821273990310415, 0.12280680277868292, 0.055821273990310415, 0.05023914659127937, 0.005582127399031042, 0.3572561535379867, 0.07256765618740355, 0.1680728608198367, 0.8067497319352162, 0.9867881530781345, 0.08168632440261131, 0.1497582614047874, 0.748791307023937, 0.013614387400435218, 0.029453408069707396, 0.11781363227882959, 0.8246954259518071, 0.10101229081782907, 0.7702187174859466, 0.050506145408914536, 0.06313268176114317, 0.04880389530199299, 0.9028720630868704, 0.024401947650996497, 0.9330000840348867, 0.05654545963847798, 0.9212264522837754, 0.9714237301031029, 0.0618991866316167, 0.09831047288550887, 0.018205643126946086, 0.007282257250778435, 0.018205643126946086, 0.018205643126946086, 0.054616929380838265, 0.06554031525700592, 0.09831047288550887, 0.054616929380838265, 0.02912902900311374, 0.050975800755449045, 0.251237875151856, 0.0036411286253892174, 0.08010482975856278, 0.04369354350467061, 0.050975800755449045, 0.0036411286253892174, 0.9577744904394409, 0.9466545758227736, 0.07576251417659675, 0.04446930179930679, 0.09387963713186989, 0.00494103353325631, 0.05929240239907572, 0.036234245910546276, 0.036234245910546276, 0.031293212377289964, 0.13340790539792036, 0.032940223555042066, 0.04282229062155469, 0.02964620119953786, 0.01482310059976893, 0.055998380043571515, 0.04611631297705889, 0.0494103353325631, 0.01976413413302524, 0.1498780171754414, 0.008235055888760516, 0.03788125708829838, 0.9556774286098547, 0.04994305868569203, 0.04370017634998053, 0.08740035269996106, 0.009364323503567256, 0.2778082639391619, 0.1623149407284991, 0.021850088174990265, 0.04370017634998053, 0.05306449985354778, 0.021850088174990265, 0.03121441167855752, 0.19040791123920087, 0.009364323503567256, 0.012454186983639271, 0.020756978306065453, 0.14945024380367125, 0.058119539256983266, 0.020756978306065453, 0.03736256095091781, 0.00415139566121309, 0.00415139566121309, 0.00830279132242618, 0.6849802841001599, 0.9377284254915986, 0.9462498643884094, 0.9573302334633383, 0.9918494122939452, 0.9727889411197521, 0.02995692753465179, 0.007489231883662947, 0.47931084055442863, 0.014978463767325895, 0.38195082606681036, 0.05991385506930358, 0.007489231883662947, 0.014978463767325895, 0.9449975930613433, 0.9835480747020138, 0.16654270150997766, 0.004501154094864261, 0.639163881470725, 0.13503462284592782, 0.004501154094864261, 0.009002308189728522, 0.009002308189728522, 0.009002308189728522, 0.022505770474321306, 0.4841814988470383, 0.5014736952344325, 0.008646098193697112, 0.11980736472775465, 0.6503828370935252, 0.025673006727375994, 0.17115337818250664, 0.025673006727375994, 0.9546535183548562, 0.030795274785640522, 0.029220698911130605, 0.9350623651561794, 0.014610349455565302, 0.014610349455565302, 0.9289283327386358, 0.9517304724928155, 0.9766218306196353, 0.6127421223938391, 0.3729734658049455, 0.9785795155516787, 0.9756554829270139, 0.9462328404552389, 0.966149812669653, 0.018722745425085226, 0.0748909817003409, 0.056168236275255676, 0.7114643261532385, 0.11233647255051135, 0.018722745425085226, 0.027905599258524885, 0.9208847755313212, 0.017879287356978225, 0.03575857471395645, 0.017879287356978225, 0.017879287356978225, 0.08939643678489113, 0.8224472184209984, 0.9637849377656124, 0.9304949238018931, 0.03458514732322907, 0.3631440468939052, 0.051877720984843605, 0.1902183102777599, 0.17292573661614535, 0.07608732411110396, 0.031126632590906162, 0.003458514732322907, 0.006917029464645814, 0.006917029464645814, 0.003458514732322907, 0.006917029464645814, 0.010375544196968721, 0.03458514732322907, 0.9445518413454814, 0.9706237277917639, 0.1632784361259241, 0.79598237611388, 0.014778450059041532, 0.029556900118083065, 0.014778450059041532, 0.9310423537196165, 0.31048945681623, 0.02271874074265098, 0.46194772843390325, 0.0037864567904418297, 0.0075729135808836594, 0.04165102469486013, 0.0378645679044183, 0.01135937037132549, 0.030291654323534638, 0.02271874074265098, 0.01135937037132549, 0.03407811111397647, 0.006229217518242733, 0.18064730802903928, 0.0186876525547282, 0.7101307970796716, 0.0560629576641846, 0.024916870072970932, 0.9824162841204439, 0.9075922190544912, 0.049731080496136504, 0.9296361162839643, 0.07098178990467614, 0.05845559168620388, 0.14196357980935229, 0.11273578396625035, 0.0835079881231484, 0.05428019228004646, 0.03340319524925936, 0.01670159762462968, 0.24634856496328777, 0.13778818040319488, 0.02922779584310194, 0.00835079881231484, 0.00835079881231484, 0.03678090083279832, 0.04904120111039777, 0.03678090083279832, 0.024520600555198883, 0.08582210194319609, 0.11034270249839497, 0.04904120111039777, 0.5762341130471738, 0.03678090083279832, 0.04093523190008948, 0.08771835407162032, 0.30993818438639176, 0.3274818552007158, 0.08771835407162032, 0.023391561085765417, 0.005847890271441354, 0.10526202488594438, 0.005847890271441354, 0.10594001012657148, 0.8740050835442147, 0.029628417533058848, 0.5555328287448533, 0.15554919204855894, 0.014814208766529424, 0.03703552191632356, 0.15554919204855894, 0.04444262629958827, 0.016746359543545416, 0.9712888535256342, 0.013052108985214536, 0.013052108985214536, 0.874491302009374, 0.03915632695564361, 0.026104217970429073, 0.013052108985214536, 0.13651236288061971, 0.106176282240482, 0.18201648384082628, 0.02022405376009181, 0.08089621504036724, 0.08595222848039019, 0.02528006720011476, 0.015168040320068858, 0.04044810752018362, 0.010112026880045906, 0.04550412096020657, 0.015168040320068858, 0.22752060480103287, 0.005056013440022953, 0.2520577040782289, 0.08401923469274297, 0.025205770407822892, 0.5713307959106523, 0.008401923469274299, 0.008401923469274299, 0.033607693877097194, 0.005866653248949363, 0.19653288383980366, 0.011733306497898726, 0.10266643185661385, 0.5514654054012401, 0.029333266244746817, 0.10266643185661385, 0.9875189992167646, 0.04525560227435704, 0.9352824470033788, 0.0607478194499896, 0.018691636753842954, 0.07943945620383255, 0.049065546478837756, 0.011682272971151847, 0.1355143664653614, 0.042056182696146645, 0.03504681891345554, 0.0303739097249948, 0.21495382266919397, 0.14018727565382216, 0.023364545942303694, 0.016355182159612586, 0.009345818376921477, 0.0023364545942303693, 0.05373845566729849, 0.03504681891345554, 0.04439263729037702, 0.9187316156171087, 0.06011394726498959, 0.008587706752141369, 0.025763120256424108, 0.017175413504282738, 0.07728936076927233, 0.4465607511113512, 0.08587706752141369, 0.12022789452997917, 0.09446477427355507, 0.051526240512848216, 0.9588017023441573, 0.9530773700693734, 0.024491963638180007, 0.024491963638180007, 0.024491963638180007, 0.8817106909744802, 0.272138855617571, 0.6576689010757967, 0.056695594920327295, 0.8986130323629474, 0.015493328144188748, 0.005164442714729583, 0.005164442714729583, 0.005164442714729583, 0.036151099003107076, 0.010328885429459166, 0.010328885429459166, 0.005164442714729583, 0.9437890960739973, 0.2807401649233049, 0.14037008246165245, 0.01619654797634451, 0.037791945278137194, 0.005398849325448171, 0.0917804385326189, 0.005398849325448171, 0.06478619190537804, 0.005398849325448171, 0.021595397301792683, 0.03239309595268902, 0.010797698650896342, 0.01619654797634451, 0.253745918296064, 0.9169640147131736, 0.031619448783212885, 0.031619448783212885, 0.06404958524560518, 0.009607437786840776, 0.04483470967192362, 0.054442147458764405, 0.04483470967192362, 0.003202479262280259, 0.11208677417980906, 0.02241735483596181, 0.003202479262280259, 0.019214875573681553, 0.11208677417980906, 0.02882231336052233, 0.016012396311401295, 0.02882231336052233, 0.1248966912289301, 0.04803718893420388, 0.009607437786840776, 0.25299586172014044, 0.9183651806865483, 0.04291256829001288, 0.023406855430916116, 0.007802285143638705, 0.06241828114910964, 0.019505712859096764, 0.023406855430916116, 0.2964868354582708, 0.023406855430916116, 0.10142970686730317, 0.3237948334610063, 0.027307998002735468, 0.04681371086183223, 0.971663076123805, 0.7492528724805918, 0.23587590429944555, 0.1364476012743967, 0.7991930931786093, 0.03898502893554192, 0.9820714948660206, 0.07850550755586728, 0.03232579722888653, 0.03694376826158461, 0.0669605799741221, 0.09928637720300863, 0.06926956549047114, 0.07157855100682017, 0.006926956549047114, 0.02078086964714134, 0.004617971032698076, 0.09005043513761248, 0.03463478274523557, 0.13161217443189516, 0.04387072481063172, 0.03694376826158461, 0.03232579722888653, 0.002308985516349038, 0.027707826196188456, 0.06926956549047114, 0.04156173929428268, 0.01741733200138598, 0.9057012640720709, 0.06966932800554392, 0.9649103080837818, 0.9475386586120094, 0.9335997667507198, 0.031039235523355156, 0.9311770657006546, 0.9650454373442432, 0.04295371717745329, 0.07809766759536962, 0.25381741968495125, 0.023429300278610888, 0.05466836731675874, 0.019524416898842406, 0.07028790083583267, 0.015619533519073924, 0.003904883379768481, 0.07419278421560115, 0.03123906703814785, 0.08981231773467507, 0.09762208449421203, 0.007809766759536962, 0.09762208449421203, 0.015619533519073924, 0.02733418365837937, 0.9537726773096152, 0.955834599715635, 0.9565239527775197, 0.7169584880395694, 0.011261128084391142, 0.007507418722927428, 0.04504451233756457, 0.007507418722927428, 0.04504451233756457, 0.04879822169902828, 0.003753709361463714, 0.041290802976100854, 0.052551931060491996, 0.007507418722927428, 0.007507418722927428, 0.824207349757226, 0.006926112182833832, 0.013852224365667664, 0.006926112182833832, 0.06233500964550449, 0.02770444873133533, 0.006926112182833832, 0.013852224365667664, 0.006926112182833832, 0.013852224365667664, 0.014549923570822573, 0.05819969428329029, 0.21824885356233859, 0.6983963313994834, 0.22950024438745328, 0.7458757942592231, 0.9421372740573819, 0.9418587028214437, 0.033637810815051565, 0.9634494159424977, 0.9733493828017185, 0.9493470998256326, 0.08492306443988155, 0.02154764321608935, 0.06337542122379221, 0.008872558971330909, 0.011407575820282597, 0.08365555601540571, 0.029152693762944413, 0.0747829970440748, 0.01267508424475844, 0.030420202187420257, 0.00633754212237922, 0.1432284519657704, 0.18252121312452155, 0.030420202187420257, 0.03929276115875117, 0.03422272746084779, 0.026617676913992725, 0.0430952864321787, 0.05957289595036467, 0.01267508424475844, 0.9682049026046924, 0.04775128795759327, 0.8913573752084077, 0.03183419197172885, 0.018759257694508216, 0.09379628847254108, 0.018759257694508216, 0.8254073385583615, 0.018759257694508216, 0.08292472038239225, 0.013820786730398708, 0.85688877728472, 0.013820786730398708, 0.02357506141216086, 0.02357506141216086, 0.02357506141216086, 0.04715012282432172, 0.848702210837791, 0.9791230714739279, 0.01603079183949907, 0.17633871023448977, 0.17633871023448977, 0.040076979598747675, 0.01603079183949907, 0.4168005878269758, 0.03206158367899814, 0.08816935511724489, 0.024046187759248605, 0.008015395919749535, 0.9489893727324971, 0.04490485990847778, 0.007219873319492202, 0.012634778309111354, 0.23284091455362352, 0.003609936659746101, 0.032489429937714906, 0.08483351150403337, 0.06136892321568371, 0.07400370152479507, 0.04151427158708016, 0.007219873319492202, 0.07941860651441422, 0.007219873319492202, 0.04331923991695321, 0.034294398267587956, 0.07039376486504896, 0.050539113236445415, 0.06317389154555676, 0.04873414490657236, 0.019854651628603556, 0.028879493277968807, 0.023203014579718, 0.974526612348156, 0.04725210699153554, 0.9214160863349431, 0.976285523072089, 0.9575100863321371, 0.7174748637567454, 0.251745566230437, 0.025174556623043697, 0.9513759759907016, 0.9899999332277684, 0.9880281085795384, 0.12069173874304802, 0.06034586937152401, 0.005028822447627001, 0.4375075529435491, 0.010057644895254002, 0.125720561190675, 0.14583585098118304, 0.07040351426677802, 0.030172934685762005, 0.03077911935795815, 0.9541527000967027, 0.9164136828269084, 0.9497071773607448, 0.8717008690873359, 0.12756598084204915, 0.9547277665773426, 0.015064787554683249, 0.03766196888670812, 0.2485689946522736, 0.003766196888670812, 0.17701125376752816, 0.0903887253280995, 0.030129575109366497, 0.12051830043746599, 0.10545351288278274, 0.007532393777341624, 0.01883098444335406, 0.03389577199803731, 0.026363378220695684, 0.05272675644139137, 0.01883098444335406, 0.011298590666012437, 0.9470068425281919, 0.11005393286503314, 0.8529179797040067, 0.9774229594329003, 0.9555356209077857, 0.9494795452113169, 0.9783896351709885, 0.010289593959185257, 0.12347512751022309, 0.010289593959185257, 0.015434390938777886, 0.010289593959185257, 0.051447969795926286, 0.3292670066939282, 0.07717195469388943, 0.08746154865307469, 0.2572398489796314, 0.025723984897963143, 0.010728977435905314, 0.06222806912825082, 0.02145795487181063, 0.11801875179495845, 0.04077011425644019, 0.13089352471804483, 0.39482636964131557, 0.038624318769259126, 0.00858318194872425, 0.019312159384629563, 0.06437386461543189, 0.004291590974362125, 0.010728977435905314, 0.0171663638974485, 0.004291590974362125, 0.025749545846172752, 0.004291590974362125, 0.019312159384629563, 0.0021457954871810627, 0.0021457954871810627, 0.004063777849254376, 0.1747424475179382, 0.18287000321644692, 0.14629600257315753, 0.05282911204030689, 0.09753066838210503, 0.22757155955824507, 0.012191333547763129, 0.004063777849254376, 0.06095666773881564, 0.02031888924627188, 0.008127555698508752, 0.004063777849254376, 0.9342745225179776, 0.011211399488123172, 0.7063181677517598, 0.06726839692873904, 0.06726839692873904, 0.14574819334560124, 0.0348725132614878, 0.0348725132614878, 0.9066853447986828, 0.016447282921809563, 0.049341848765428686, 0.016447282921809563, 0.9046005606995259, 0.046858731642396415, 0.8668865353843337, 0.07028809746359461, 0.04615802924243499, 0.01538600974747833, 0.01538600974747833, 0.01538600974747833, 0.8923885653537431, 0.6924201509836244, 0.016486194071038674, 0.2637791051366188, 0.9660703080431888, 0.9333889664667634, 0.007338010825799875, 0.31920347092229456, 0.13208419486439776, 0.058704086606399, 0.09539414073539838, 0.10640115697409819, 0.0036690054128999377, 0.01467602165159975, 0.05136607578059913, 0.01834502706449969, 0.011007016238699813, 0.011007016238699813, 0.04402806495479925, 0.04402806495479925, 0.007338010825799875, 0.03669005412899938, 0.011007016238699813, 0.022014032477399626, 0.9604105914612895, 0.8598859565912981, 0.13577146683020497, 0.07801911799550884, 0.1702235301720193, 0.3759102957965426, 0.056741176724006435, 0.0070926470905008044, 0.09929705926701125, 0.10638970635751206, 0.10638970635751206, 0.010611527705014332, 0.010611527705014332, 0.06366916623008599, 0.010611527705014332, 0.031834583115042996, 0.8170876332861036, 0.031834583115042996, 0.010611527705014332, 0.6832565309431445, 0.021351766591973267, 0.007117255530657756, 0.007117255530657756, 0.007117255530657756, 0.21351766591973267, 0.007117255530657756, 0.007117255530657756, 0.021351766591973267, 0.007117255530657756, 0.9488443652647935, 0.037439914737770585, 0.05241588063287882, 0.1991803464049395, 0.037439914737770585, 0.005990386358043293, 0.013478369305597409, 0.037439914737770585, 0.038937511327281404, 0.06289905675945458, 0.18869717027836375, 0.047923090864346346, 0.05990386358043293, 0.032947124969238115, 0.03144952837972729, 0.0014975965895108233, 0.0029951931790216466, 0.00898557953706494, 0.053913477222389636, 0.08835819878113857, 0.9696064105153199, 0.0031775034120309275, 0.0031775034120309275, 0.19065020472185565, 0.10803511600905154, 0.0031775034120309275, 0.06672757165264948, 0.03177503412030928, 0.0031775034120309275, 0.0349525375323402, 0.006355006824061855, 0.041307544356402055, 0.022242523884216492, 0.4035429333279278, 0.019065020472185563, 0.04766255118046391, 0.006355006824061855, 0.01271001364812371, 0.08449503741216467, 0.06571836243168364, 0.07510669992192416, 0.5726885869046717, 0.01877667498048104, 0.05633002494144312, 0.00938833749024052, 0.0938833749024052, 0.07757471312957322, 0.051716475419715476, 0.012929118854928869, 0.047406769134739186, 0.03016794399483403, 0.01723882513990516, 0.06895530055962064, 0.4051123907877712, 0.09912324455445466, 0.00861941256995258, 0.012929118854928869, 0.1292911885492887, 0.02154853142488145, 0.012929118854928869, 0.678527707201098, 0.009833734886972435, 0.12783855353064166, 0.009833734886972435, 0.01966746977394487, 0.14750602330458654, 0.009593649391522678, 0.16309203965588553, 0.028780948174568034, 0.019187298783045356, 0.009593649391522678, 0.5468380153167927, 0.14390474087284016, 0.04796824695761339, 0.03837459756609071, 0.10302682578496328, 0.08370929595028266, 0.01287835322312041, 0.045074236280921436, 0.43786400958609395, 0.23824953462772758, 0.02575670644624082, 0.045074236280921436, 0.12700077706017585, 0.11770803727528494, 0.009292739784890916, 0.06195159856593944, 0.08053707813572127, 0.12700077706017585, 0.0433661189961576, 0.2416112344071638, 0.006195159856593944, 0.003097579928296972, 0.06195159856593944, 0.003097579928296972, 0.024780639426375775, 0.05885401863764247, 0.01548789964148486, 0.01858547956978183, 0.9569146780928639, 0.024251147418348617, 0.036376721127522924, 0.12125573709174307, 0.78816229109633, 0.959774200493385, 0.9557501841268078, 0.9733397080665811, 0.9237583124273685, 0.031389407741666486, 0.10044610477333275, 0.1820585649016656, 0.3703950113516645, 0.1632249202566657, 0.031389407741666486, 0.006277881548333297, 0.012555763096666594, 0.012555763096666594, 0.05022305238666638, 0.031389407741666486, 0.9695528107236656, 0.04431850098704378, 0.9306885207279194, 0.09493541784395505, 0.8951053682430047, 0.01400275041181154, 0.25204950741260773, 0.7141402710023885, 0.9722872343871892, 0.9387634674155039, 0.9791216934669118, 0.9788865793009889, 0.9610701949253295, 0.9660808175375258, 0.9565077846046721, 0.011150996930919506, 0.1561139570328731, 0.1561139570328731, 0.011150996930919506, 0.044603987723678025, 0.5798518404078143, 0.022301993861839012, 0.011150996930919506, 0.011150996930919506, 0.05367855803560373, 0.03578570535706915, 0.0715714107141383, 0.017892852678534577, 0.8051783705340559, 0.047524518172211996, 0.902965845272028, 0.023762259086105998, 0.9121248956939118, 0.05212142261108067, 0.9600171838620564, 0.029104294980777577, 0.05820858996155515, 0.19402863320518385, 0.09701431660259192, 0.03880572664103677, 0.009701431660259193, 0.019402863320518385, 0.09701431660259192, 0.45596728803218206, 0.9385076357377067, 0.058597338161897446, 0.9082587415094104, 0.9091274076962157, 0.011086919606051411, 0.011086919606051411, 0.011086919606051411, 0.044347678424205644, 0.018180230233780383, 0.039665956873702654, 0.09916489218425664, 0.1504000864794559, 0.014874733827638495, 0.028096719452206046, 0.014874733827638495, 0.036360460467560765, 0.05949893531055398, 0.004958244609212832, 0.018180230233780383, 0.10247038859039853, 0.07437366913819247, 0.07933191374740531, 0.02479122304606416, 0.01652748203070944, 0.013221985624567553, 0.17849680593166195, 0.02479122304606416, 0.8497294307305171, 0.04248647153652585, 0.0849729430730517, 0.9507387950023404, 0.011002703543046327, 0.11002703543046327, 0.011002703543046327, 0.033008110629138984, 0.7261784338410576, 0.022005407086092655, 0.06601622125827797, 0.022464823980079155, 0.04492964796015831, 0.06739447194023747, 0.022464823980079155, 0.7862688393027704, 0.022464823980079155, 0.04492964796015831, 0.9792094152801194, 0.1858192867558815, 0.05161646854330042, 0.07914525176639396, 0.20646587417320167, 0.010323293708660083, 0.030969881125980248, 0.07570415386350728, 0.02408768532020686, 0.010323293708660083, 0.030969881125980248, 0.10323293708660083, 0.017205489514433472, 0.0034410979028866944, 0.034410979028866945, 0.0034410979028866944, 0.05505756644618711, 0.061939762251960497, 0.010323293708660083, 0.04104833778509912, 0.9030634312721807, 0.9711177652989761, 0.08457621140316504, 0.02819207046772168, 0.35240088084652105, 0.4933612331851294, 0.04228810570158252, 0.9728334447260645, 0.03184415262088444, 0.9234804260056488, 0.029544342338238824, 0.9454189548236424, 0.022220559639313138, 0.014813706426208759, 0.1851713303276095, 0.1481370642620876, 0.06666167891793941, 0.022220559639313138, 0.007406853213104379, 0.029627412852417517, 0.029627412852417517, 0.4592248992124715, 0.007406853213104379, 0.007406853213104379, 0.9943191983707187, 0.9829251848937819, 0.9908673548824602, 0.9177777709895735, 0.03399176929591013, 0.9454296128100964, 0.030497729445486982, 0.03305695466201787, 0.9421232078675094, 0.016528477331008935, 0.9585182090834193, 0.05382347263681793, 0.6458816716418151, 0.09419107711443138, 0.013455868159204482, 0.17492628606965827, 0.013455868159204482, 0.015279797478968439, 0.030559594957936878, 0.04583939243690532, 0.015279797478968439, 0.015279797478968439, 0.015279797478968439, 0.8403888613432642, 0.10575560467716105, 0.0070503736451440705, 0.09165485738687291, 0.46532466057950866, 0.02115112093543221, 0.028201494580576282, 0.18330971477374583, 0.02115112093543221, 0.0070503736451440705, 0.06345336280629663, 0.9455225709926, 0.9703844993107413, 0.937508927552935, 0.2453563345750775, 0.16639107747045484, 0.20305351826902965, 0.04230281630604784, 0.016921126522419137, 0.0987065713807783, 0.07050469384341307, 0.033842253044838275, 0.002820187753736523, 0.016921126522419137, 0.01974131427615566, 0.06768450608967655, 0.014100938768682614, 0.9618302484163999, 0.9741449826841618, 0.9345124218784131, 0.04918486430939017, 0.02995187417351868, 0.9584599735525977, 0.07098230947038524, 0.01774557736759631, 0.9050244457474117, 0.9381821143546978, 0.1699263741317214, 0.029206095553889616, 0.021240796766465175, 0.0451366931287385, 0.08230808747005255, 0.06106729070358738, 0.02655099595808147, 0.01593059757484888, 0.08761828666166885, 0.047791792724546645, 0.16727127453591326, 0.023895896362273322, 0.05841219110777923, 0.002655099595808147, 0.08230808747005255, 0.010620398383232588, 0.01593059757484888, 0.00796529878742444, 0.029206095553889616, 0.01858569717065703, 0.07855230682106658, 0.05891423011579993, 0.8444372983264656, 0.32710306062094435, 0.11630331044300245, 0.007268956902687653, 0.4288684572585715, 0.007268956902687653, 0.03634478451343826, 0.06542061212418887, 0.942734612504447, 0.4697846268696946, 0.028106772547759503, 0.008030506442217, 0.028106772547759503, 0.008030506442217, 0.34531177701533106, 0.0040152532211085, 0.012045759663325502, 0.028106772547759503, 0.0040152532211085, 0.0040152532211085, 0.008030506442217, 0.04015253221108501, 0.008030506442217, 0.06501273048837608, 0.04137173758351206, 0.13002546097675216, 0.005910248226216008, 0.005910248226216008, 0.017730744678648023, 0.16548695033404823, 0.49646085100214465, 0.06501273048837608, 0.005910248226216008, 0.9463364712739517, 0.9374068845993779, 0.16635437820158777, 0.055451459400529264, 0.7578366118072333, 0.8940492293541915, 0.05259113113848185, 0.026295565569240925, 0.9887322192997743, 0.9431187574769078, 0.03143729191589693, 0.9697824887969158, 0.9226397021247223, 0.5561482084411672, 0.05753257328701729, 0.34519543972210376, 0.028766286643508644, 0.372207220890281, 0.07945996850466673, 0.20910518027543876, 0.04600313966059653, 0.16310204061484224, 0.0041821036055087754, 0.0041821036055087754, 0.020910518027543876, 0.008364207211017551, 0.012546310816526325, 0.0041821036055087754, 0.07109576129364918, 0.9807171625963954, 0.544467955962506, 0.06694278147079992, 0.1428112671377065, 0.062479929372746594, 0.02231426049026664, 0.013388556294159984, 0.031239964686373297, 0.11603415454938652, 0.9828721587988807, 0.0670566730707512, 0.10431038033227964, 0.1266626046891967, 0.4768474529475641, 0.1341133461415024, 0.08940889742766826, 0.007450741452305689, 0.0397923980660317, 0.004974049758253963, 0.004974049758253963, 0.04974049758253963, 0.19896199033015852, 0.0397923980660317, 0.004974049758253963, 0.014922149274761888, 0.2934689357369838, 0.004974049758253963, 0.09948099516507926, 0.20891008984666645, 0.014922149274761888, 0.014922149274761888, 0.004974049758253963, 0.9195249122565607, 0.013326448003718272, 0.013326448003718272, 0.013326448003718272, 0.013326448003718272, 0.013326448003718272, 0.013326448003718272, 0.9674077341204887, 0.9627489365283881, 0.11695532608887876, 0.8706674275505419, 0.031346100850905764, 0.031346100850905764, 0.8776908238253615, 0.09769506577714729, 0.24848527599839637, 0.22087580088746345, 0.008495223111056285, 0.029733280888697002, 0.006371417333292215, 0.02760947511093293, 0.021238057777640717, 0.02760947511093293, 0.06796178488845028, 0.014866640444348501, 0.021238057777640717, 0.02548566933316886, 0.019114251999876642, 0.03398089244422514, 0.06583797911068622, 0.021238057777640717, 0.04035230977751736, 0.029313839306085266, 0.9233859381416859, 0.029313839306085266, 0.014656919653042633, 0.027108194099131098, 0.013554097049565549, 0.0813245822973933, 0.027108194099131098, 0.6099343672304497, 0.04066229114869665, 0.09487867934695884, 0.04066229114869665, 0.04066229114869665, 0.9585366119649508, 0.9429866008072845, 0.9350832919110087, 0.032500461331861935, 0.9425133786239961, 0.9802463513573499, 0.024179379096743264, 0.08462782683860143, 0.14507627458045957, 0.012089689548371632, 0.06044844774185816, 0.024179379096743264, 0.036269068645114894, 0.5682154087734667, 0.024179379096743264, 0.012089689548371632, 0.12158699417898632, 0.07558110448964014, 0.009858404933431323, 0.1840235587573847, 0.0640796320673036, 0.014787607400146984, 0.04107668722263051, 0.03286134977810441, 0.03943361973372529, 0.07558110448964014, 0.05750736211168272, 0.03779055224482007, 0.009858404933431323, 0.011501472422336543, 0.04107668722263051, 0.008215337444526103, 0.04271975471153573, 0.011501472422336543, 0.07065190202292448, 0.05257815964496706, 0.875050633473263, 0.006890162468293409, 0.006890162468293409, 0.006890162468293409, 0.006890162468293409, 0.013780324936586819, 0.06201146221464068, 0.006890162468293409, 0.006890162468293409, 0.02530301001840407, 0.012651505009202035, 0.6452267554693037, 0.02530301001840407, 0.05060602003680814, 0.037954515027606106, 0.11386354508281832, 0.012651505009202035, 0.06325752504601018, 0.012504494846924707, 0.16255843301002118, 0.6877472165808589, 0.12504494846924707, 0.9611213734236046, 0.3222556306691592, 0.007956929152324918, 0.003978464576162459, 0.06763389779476181, 0.003978464576162459, 0.03978464576162459, 0.04774157491394951, 0.09150468525173656, 0.1949447642319605, 0.011935393728487377, 0.1074185435563864, 0.055698504066274426, 0.027849252033137213, 0.003978464576162459, 0.015913858304649836, 0.23846372840028132, 0.5564153662673231, 0.1766397988150232, 0.017663979881502322, 0.9797003649775637, 0.9590989955288383, 0.028208793986142303, 0.952167886138075, 0.10797322272893439, 0.019631495041624435, 0.0588944851248733, 0.009815747520812218, 0.019631495041624435, 0.009815747520812218, 0.009815747520812218, 0.6183920938111697, 0.02944724256243665, 0.09815747520812218, 0.009815747520812218, 0.03583359871521064, 0.011944532905070214, 0.005972266452535107, 0.0895839967880266, 0.06569493097788617, 0.005972266452535107, 0.06569493097788617, 0.32250238843689577, 0.011944532905070214, 0.2627797239115447, 0.0836117303354915, 0.005972266452535107, 0.029861332262675535, 0.6520823480008497, 0.006722498432998451, 0.19495245455695506, 0.006722498432998451, 0.026889993731993803, 0.026889993731993803, 0.08066998119598141, 0.0931147148198819, 0.900108909925525, 0.0157543765997879, 0.11028063619851529, 0.7194498647236474, 0.15229230713128303, 0.9649180745686325, 0.027175732474208656, 0.013587866237104328, 0.013587866237104328, 0.027175732474208656, 0.8967991716488856, 0.013587866237104328, 0.9583552991755645, 0.06931681094236562, 0.017329202735591406, 0.12130441914913984, 0.7104973121592476, 0.05198760820677421, 0.013101563515228476, 0.02183593919204746, 0.03930469054568543, 0.048039066222504416, 0.13538282299069426, 0.013101563515228476, 0.004367187838409493, 0.08297656892978035, 0.4017812811336733, 0.008734375676818985, 0.04367187838409492, 0.07860938109137086, 0.03493750270727594, 0.004367187838409493, 0.004367187838409493, 0.004367187838409493, 0.03930469054568543, 0.026203127030456953, 0.9636738129526258, 0.01150748970901662, 0.02301497941803324, 0.01150748970901662, 0.1495973662172161, 0.609896954577881, 0.1611048559262327, 0.01150748970901662, 0.01150748970901662, 0.016049612175828436, 0.024074418263742656, 0.028086821307699763, 0.06821085174727086, 0.004012403043957109, 0.012037209131871328, 0.004012403043957109, 0.004012403043957109, 0.004012403043957109, 0.589823247461695, 0.056173642615399526, 0.14845891262641303, 0.020062015219785546, 0.004012403043957109, 0.016049612175828436, 0.9620843026453412, 0.9772263404090055, 0.35270525193370705, 0.004831578793612425, 0.004831578793612425, 0.37203156710815677, 0.06764210311057396, 0.014494736380837276, 0.00966315758722485, 0.14977894260198518, 0.004831578793612425, 0.00966315758722485, 0.004831578793612425, 0.019483855158721485, 0.9547089027773527, 0.9494840111225765, 0.005717055914825828, 0.03620802079389691, 0.16770030683489096, 0.032396650184013026, 0.03811370609883885, 0.053359188538374396, 0.02096253835436137, 0.0019056853049419426, 0.12005817421134239, 0.06860467097790994, 0.017151167744477485, 0.009528426524709713, 0.030490964879071082, 0.06479330036802605, 0.06669898567296799, 0.2420220337276267, 0.005717055914825828, 0.017151167744477485, 0.11157888501372147, 0.7922100835974225, 0.06694733100823289, 0.011157888501372148, 0.011157888501372148, 0.016272240182548584, 0.862428729675075, 0.03254448036509717, 0.016272240182548584, 0.03254448036509717, 0.9383206282173799, 0.9749377243493208, 0.9638129052785043, 0.009914949216120812, 0.5453222068866446, 0.2577886796191411, 0.16855413667405378, 0.9678532303759514, 0.046568988952697024, 0.015522996317565674, 0.007761498158782837, 0.007761498158782837, 0.9158567827363748, 0.14661652966919367, 0.8345863996554101, 0.04423876428077586, 0.02211938214038793, 0.04423876428077586, 0.8073574481241594, 0.06635814642116379, 0.011059691070193965, 0.1951893766565161, 0.06229448191165407, 0.05606503372048866, 0.03945317187738091, 0.010382413651942346, 0.05606503372048866, 0.02076482730388469, 0.07060041283320795, 0.09136524013709264, 0.0934417228674811, 0.07890634375476183, 0.004152965460776938, 0.03945317187738091, 0.06437096464204253, 0.049835585529323254, 0.012458896382330813, 0.035300206416603974, 0.012458896382330813, 0.004152965460776938, 0.04362760838209539, 0.008725521676419077, 0.03490208670567631, 0.008725521676419077, 0.5758844306436591, 0.32284430202750586, 0.9358605543895837, 0.01991192668914008, 0.03982385337828016, 0.019608705635542307, 0.19216531522831462, 0.007843482254216924, 0.05098263465241, 0.007843482254216924, 0.13726093944879617, 0.19216531522831462, 0.02745218788975923, 0.2666783966433754, 0.015686964508433848, 0.03529567014397615, 0.019608705635542307, 0.007843482254216924, 0.019608705635542307, 0.9664996656412742, 0.024682672350776487, 0.07404801705232945, 0.8392108599264005, 0.024682672350776487, 0.23745075127438064, 0.0356176126911571, 0.01780880634557855, 0.011872537563719032, 0.011872537563719032, 0.05936268781859516, 0.04155388147301661, 0.02968134390929758, 0.04749015025487613, 0.04749015025487613, 0.053426419036735645, 0.32055851422041387, 0.08310776294603323, 0.973777266776785, 0.9463612649381558, 0.03619844240917078, 0.09049610602292694, 0.01809922120458539, 0.8325641754109279, 0.9546776530138454, 0.988591195846526, 0.9510437014826871, 0.020847583985067978, 0.020847583985067978, 0.11466171191787389, 0.010423791992533989, 0.03127137597760197, 0.03127137597760197, 0.1042379199253399, 0.11466171191787389, 0.5107658076341655, 0.03127137597760197, 0.9327430465572623, 0.06866251284886521, 0.01961786081396149, 0.11770716488376894, 0.01961786081396149, 0.01961786081396149, 0.009808930406980745, 0.6670072676746907, 0.009808930406980745, 0.009808930406980745, 0.03923572162792298, 0.009808930406980745, 0.9383707462879457, 0.9713211228951854, 0.2998619005725876, 0.013037473937938592, 0.6779486447728068, 0.9018081029812093, 0.04746358436743207, 0.023731792183716034, 0.9199305222198589, 0.953425625753381, 0.08524692913789275, 0.8311575590944543, 0.06393519685341956, 0.15053992380315478, 0.0032374177161968772, 0.009712253148590632, 0.0210432151552797, 0.02266192401337814, 0.01133096200668907, 0.017805797439082824, 0.017805797439082824, 0.08741027833731568, 0.05017997460105159, 0.03399288602006721, 0.15701475923554853, 0.2800366324510299, 0.029136759445771893, 0.0016187088580984386, 0.10683478463449694, 0.960846225371895, 0.9260939200519774, 0.9729654146956664, 0.9241560018448368, 0.03080520006149456, 0.9670252106729386, 0.9909733156550988, 0.9534954773541388, 0.977348895176192, 0.014122996862710718, 0.14122996862710718, 0.014122996862710718, 0.7767648274490895, 0.014122996862710718, 0.042368990588132156, 0.9746390239011933, 0.9548696047935983, 0.026524155688711065, 0.04704539500145899, 0.09409079000291798, 0.7997717150248028, 0.023522697500729495, 0.045567527161290595, 0.015189175720430197, 0.17467552078494727, 0.4936482109139814, 0.007594587860215099, 0.030378351440860395, 0.015189175720430197, 0.22024304794623786, 0.9076902978740263, 0.9205428542472434, 0.01666051647164271, 0.06664206588657084, 0.16660516471642714, 0.5664575600358522, 0.09163284059403493, 0.08330258235821357, 0.9647348149224103, 0.040874160334761385, 0.0749359606137292, 0.48367756396134304, 0.040874160334761385, 0.020437080167380692, 0.006812360055793564, 0.047686520390554946, 0.18393372150642623, 0.020437080167380692, 0.020437080167380692, 0.020437080167380692, 0.027249440223174257, 0.006812360055793564, 0.9510099193866377, 0.916856023042675, 0.04584280115213375, 0.9883911085703764, 0.9844218446116627, 0.46469148703724494, 0.04085199886041714, 0.02042599943020857, 0.005106499857552143, 0.015319499572656426, 0.24511199316250282, 0.0970234972934907, 0.06638449814817785, 0.030638999145312852, 0.06460968965667353, 0.5630272955795836, 0.1938290689700206, 0.16613920197430337, 0.9743255944256409, 0.1488262611328541, 0.0026576118059438232, 0.009301641320803382, 0.014616864932691027, 0.04252178889510117, 0.07175551876048322, 0.0026576118059438232, 0.05846745973076411, 0.021260894447550586, 0.13952461981205072, 0.022589700350522497, 0.11560611355855631, 0.03587775938024161, 0.018603282641606763, 0.04650820660401691, 0.0797283541783147, 0.07308432466345514, 0.0571386538277922, 0.01727447673863485, 0.022589700350522497, 0.012498822774506502, 0.11873881635781178, 0.12498822774506503, 0.024997645549013004, 0.006249411387253251, 0.5624470248527926, 0.018748234161759754, 0.031247056936266258, 0.012498822774506502, 0.006249411387253251, 0.07499293664703902, 0.012498822774506502, 0.007364594917594298, 0.5597092137371666, 0.10310432884632018, 0.3314067712917434, 0.9613552412273565, 0.9351572598272861, 0.001867696849172241, 0.1718281101238462, 0.12326799204536791, 0.04856011807847827, 0.1942404723139131, 0.03361854328510034, 0.10459102355364551, 0.05789860232433947, 0.007470787396688964, 0.011206181095033447, 0.001867696849172241, 0.04856011807847827, 0.03361854328510034, 0.003735393698344482, 0.028015452737583615, 0.014941574793377928, 0.022412362190066894, 0.03735393698344482, 0.05042781492765051, 0.974356372920649, 0.939402057933659, 0.974324968048696, 0.014862535320635459, 0.08174394426349502, 0.10403774724444821, 0.011146901490476594, 0.0037156338301588647, 0.41243535514763396, 0.07059704277301843, 0.011146901490476594, 0.04087197213174751, 0.08917521192381275, 0.018578169150794323, 0.059450141282541835, 0.07059704277301843, 0.011146901490476594, 0.0037156338301588647, 0.9633541873006535, 0.08749972134910684, 0.8224973806816044, 0.03499988853964274, 0.01749994426982137, 0.01749994426982137, 0.9451026366074273, 0.010364631632111982, 0.538960844869823, 0.1658341061137917, 0.020729263264223963, 0.2591157908027995, 0.12171134188008664, 0.29558468742306754, 0.01738733455429809, 0.5563947057375389, 0.9573164542144551, 0.03088117594240178, 0.7125818983280402, 0.28036009114545846, 0.9668440821642974, 0.0848273877908442, 0.8765496738387234, 0.9689107548301846, 0.9716717858484489, 0.9074399910454177, 0.05337882300267163, 0.040570414635576035, 0.5048762710205018, 0.009015647696794676, 0.3831650271137737, 0.054093886180768054, 0.004507823848397338, 0.043120486320173665, 0.020122893616081043, 0.08336627355233575, 0.03449638905613893, 0.17823134345671782, 0.03449638905613893, 0.08911567172835891, 0.03737108814415051, 0.0258722917921042, 0.017248194528069465, 0.017248194528069465, 0.05749398176023155, 0.0057493981760231554, 0.14373495440057887, 0.11786266260847468, 0.0776168753763126, 0.008624097264034732, 0.008624097264034732, 0.9572759759360783, 0.019943249498668297, 0.019943249498668297, 0.9296257214396262, 0.9620330604914358, 0.005870989014516311, 0.19961362649355457, 0.05870989014516311, 0.2054846155080709, 0.011741978029032622, 0.005870989014516311, 0.08219384620322835, 0.3463883518564624, 0.07632285718871204, 0.9822439588592825, 0.9584904298453918, 0.035096330804780945, 0.9125046009243046, 0.05442525398893614, 0.013606313497234035, 0.013606313497234035, 0.020409470245851054, 0.04762209724031912, 0.03401578374308509, 0.06803156748617017, 0.04762209724031912, 0.04762209724031912, 0.006803156748617018, 0.5442525398893614, 0.020409470245851054, 0.013606313497234035, 0.06803156748617017, 0.9670222655655584, 0.9693208231370356, 0.9635145908532283, 0.04258838516969095, 0.9369444737332008, 0.9732375385746344, 0.9130642173329823, 0.017495185488950796, 0.03149133388011144, 0.06998074195580319, 0.0034990370977901596, 0.03149133388011144, 0.05248555646685239, 0.041988445173481916, 0.24843163394310133, 0.024493259684531116, 0.0034990370977901596, 0.06998074195580319, 0.0034990370977901596, 0.024493259684531116, 0.038489408075691754, 0.04898651936906223, 0.09097496454254415, 0.006998074195580319, 0.006998074195580319, 0.18544896618287846, 0.9573116034806121, 0.13425476211221254, 0.8323795250957178, 0.9422277894738768, 0.9573821439879642, 0.789516946999451, 0.08772410522216122, 0.014620684203693536, 0.014620684203693536, 0.08772410522216122, 0.023134974819284823, 0.9485339675906778, 0.9607683908648587, 0.1455694156784484, 0.015737234127399826, 0.0629489365095993, 0.027540159722949695, 0.04721170238219948, 0.08655478770069905, 0.36589069346204595, 0.0039343085318499565, 0.015737234127399826, 0.007868617063699913, 0.007868617063699913, 0.043277393850349524, 0.015737234127399826, 0.01180292559554987, 0.01180292559554987, 0.1258978730191986, 0.9501396982030177, 0.08733875768520512, 0.0667884617592745, 0.07449482273149848, 0.035963017870378575, 0.061650887777791846, 0.05908210078705052, 0.06421967476853317, 0.046238165833343885, 0.0770636097222398, 0.046238165833343885, 0.010275147962965307, 0.015412721944447962, 0.03339423087963725, 0.04880695282408521, 0.10788905361113572, 0.13100813652780766, 0.007706360972223981, 0.023119082916671942, 0.0025687869907413266, 0.051254333584301585, 0.9225780045174286, 0.9751037208370782, 0.17160479607151738, 0.010725299754469836, 0.010725299754469836, 0.005362649877234918, 0.021450599508939672, 0.021450599508939672, 0.053626498772349186, 0.03217589926340951, 0.16087949631704754, 0.016087949631704755, 0.20914334521216182, 0.262769843984511, 0.005362649877234918, 0.021450599508939672, 0.9369381024259485, 0.983578898608124, 0.1475209810152223, 0.8359522257529263, 0.9899304423745088, 0.8939810034567494, 0.02629355892519851, 0.02629355892519851, 0.09489399063038662, 0.8777694133310763, 0.07045391252116363, 0.8982873846448363, 0.01761347813029091, 0.9563537821127639, 0.08793734870987745, 0.0073281123924897875, 0.036640561962448935, 0.13923413545730598, 0.0073281123924897875, 0.02931244956995915, 0.0073281123924897875, 0.02931244956995915, 0.5642646542217137, 0.08793734870987745, 0.953139299791493, 0.9649601118024865, 0.9822433697557281, 0.9660562758459866, 0.024042834060960874, 0.937670528377474, 0.04808566812192175, 0.024315311610505302, 0.972612464420212, 0.9749290382212478, 0.04655317917318064, 0.9310635834636127, 0.9478483154057649, 0.1625059172368059, 0.01805621302631177, 0.7222485210524707, 0.07222485210524708, 0.977122933560218, 0.9672200153908876, 0.9936151780842384, 0.8414776947730174, 0.1202110992532882, 0.1689104793686166, 0.015355498124419692, 0.1689104793686166, 0.6295754231012074, 0.0764846000426116, 0.7801429204346383, 0.01529692000852232, 0.10707844005965624, 0.935645931546406, 0.08106858154702888, 0.072961723392326, 0.6323349360668252, 0.08106858154702888, 0.072961723392326, 0.04864114892821733, 0.9759216915052368, 0.04720527201743301, 0.04720527201743301, 0.07193184307418364, 0.14835942634050375, 0.011239350480341194, 0.058444622497774205, 0.0876669337466613, 0.12588072537982137, 0.0022478700960682388, 0.02023083086461415, 0.0404616617292283, 0.042709531825296534, 0.06069249259384245, 0.07642758326632011, 0.0404616617292283, 0.0022478700960682388, 0.05619675240170597, 0.0022478700960682388, 0.06294036268991068, 0.011084930278586935, 0.04433972111434774, 0.011084930278586935, 0.5875013047651075, 0.02216986055717387, 0.3214629780790211, 0.026996518940137316, 0.14848085417075524, 0.2834634488714418, 0.008998839646712439, 0.12598375505397413, 0.017997679293424877, 0.04949361805691841, 0.017997679293424877, 0.004499419823356219, 0.013498259470068658, 0.004499419823356219, 0.11248549558390548, 0.004499419823356219, 0.013498259470068658, 0.04949361805691841, 0.1169849154072617, 0.9897866461371673, 0.969795232146082, 0.07027800446815685, 0.007027800446815685, 0.08433360536178822, 0.5060016321707294, 0.05622240357452548, 0.1827228116172078, 0.05622240357452548, 0.021083401340447054, 0.007027800446815685, 0.007027800446815685, 0.9724664871715862, 0.9548299866134953, 0.018596590849773414, 0.03719318169954683, 0.22315909019728097, 0.03719318169954683, 0.6880738614416163, 0.9542233646389098, 0.02511114117470815, 0.9542525999227527, 0.04079798060721185, 0.024478788364327108, 0.016319192242884736, 0.7017252664440438, 0.008159596121442368, 0.03263838448576947, 0.13871313406452027, 0.008159596121442368, 0.016319192242884736, 0.9402980958585132, 0.022934099898988126, 0.8120121741291978, 0.17400260874197093, 0.31875177986312797, 0.013281324160963665, 0.013281324160963665, 0.013281324160963665, 0.19036564630714586, 0.004427108053654555, 0.004427108053654555, 0.02656264832192733, 0.07526083691212743, 0.3054704557021643, 0.01770843221461822, 0.004427108053654555, 0.00885421610730911, 0.05557267776549292, 0.05557267776549292, 0.8752696748065135, 0.9532972388359119, 0.9503215433805869, 0.0422365130391372, 0.002035610155431338, 0.002035610155431338, 0.002035610155431338, 0.002035610155431338, 0.002035610155431338, 0.9872709253841989, 0.11143101497517872, 0.12857424804828316, 0.04285808268276105, 0.00857161653655221, 0.04285808268276105, 0.01714323307310442, 0.00857161653655221, 0.00857161653655221, 0.02571484960965663, 0.00857161653655221, 0.12000263151173093, 0.00857161653655221, 0.47143890951037154, 0.9281419344138035, 0.030938064480460117, 0.08254122201691844, 0.013756870336153073, 0.8941965718499497, 0.96168493923506, 0.8613355480585396, 0.11880490318048822, 0.9453616285769378, 0.03636006263757453, 0.22440653144972625, 0.0178100421785497, 0.010686025307129822, 0.0035620084357099405, 0.5485492990993308, 0.042744101228519286, 0.028496067485679524, 0.0035620084357099405, 0.046306109664229225, 0.0035620084357099405, 0.05699213497135905, 0.007124016871419881, 0.9553952107175915, 0.018498620865128507, 0.09249310432564253, 0.018498620865128507, 0.07399448346051403, 0.7769420763353974, 0.018498620865128507, 0.09540778050993398, 0.03180259350331133, 0.8586700245894058, 0.03090927192460614, 0.9272781577381842, 0.9582132889184315, 0.009662338178247482, 0.6570389961208288, 0.19324676356494966, 0.13527273449546476, 0.009662338178247482, 0.8765109119651938, 0.09391188342484219, 0.9062016555068874, 0.033563024278032864, 0.033563024278032864, 0.9450597213193734, 0.9684228679578007, 0.07545833342588704, 0.16732065237914082, 0.04593115947662689, 0.1607590581681941, 0.032807971054733494, 0.009842391316420047, 0.006561594210946698, 0.032807971054733494, 0.04593115947662689, 0.09842391316420047, 0.05577355079304694, 0.2001286234338743, 0.016403985527366747, 0.003280797105473349, 0.019684782632840094, 0.029527173949260143, 0.9563084603242736, 0.9346932505644449, 0.33059819016380326, 0.624463248087184, 0.012244377413474195, 0.012244377413474195, 0.9337513224544098, 0.9651899103314061, 0.010054061565952148, 0.010054061565952148, 0.010054061565952148, 0.9397525988625194, 0.9275275886826873, 0.9385760053524839, 0.08693206357248963, 0.32599523839683614, 0.036221693155204016, 0.003622169315520401, 0.12677592604321405, 0.06882121699488762, 0.07968772494144884, 0.10504291015009164, 0.010866507946561204, 0.15575328056737725, 0.9412538910625995, 0.9698125327473338, 0.04340228783060372, 0.9331491883579801, 0.9840994896226469, 0.006291715396791312, 0.2579603312684438, 0.22650175428448724, 0.42154493158501793, 0.018875146190373938, 0.06291715396791313, 0.03085078103270826, 0.04627617154906239, 0.07712695258177064, 0.16967929567989543, 0.6324410111705193, 0.07679594048107714, 0.015359188096215427, 0.0030718376192430856, 0.009215512857729256, 0.015359188096215427, 0.1505200433429112, 0.0030718376192430856, 0.006143675238486171, 0.5621462843214846, 0.03379021381167394, 0.0215028633347016, 0.009215512857729256, 0.08908329095804948, 0.9490628086783445, 0.051367498356211745, 0.8347218482884409, 0.07705124753431762, 0.025683749178105873, 0.05577067717501579, 0.05577067717501579, 0.019918098991077066, 0.1473939325339703, 0.007967239596430828, 0.03186895838572331, 0.03585257818393872, 0.03585257818393872, 0.015934479192861655, 0.4063292194179722, 0.003983619798215414, 0.007967239596430828, 0.02390171878929248, 0.02390171878929248, 0.0916232553589545, 0.007967239596430828, 0.02390171878929248, 0.9632735826551361, 0.04621443170632984, 0.878074202420267, 0.04621443170632984, 0.015686407345830752, 0.2352961101874613, 0.09411844407498451, 0.6431427011790608, 0.8953736598540185, 0.01989719244120041, 0.05969157732360124, 0.03579979090866148, 0.009763579338725858, 0.1236720049571942, 0.006509052892483906, 0.032545264462419524, 0.006509052892483906, 0.006509052892483906, 0.05532694958611319, 0.026036211569935623, 0.0618360024785971, 0.052072423139871246, 0.026036211569935623, 0.042308843801145385, 0.042308843801145385, 0.02278168512369367, 0.04881789669362929, 0.40356127933400215, 0.9650834535072986, 0.940982600645361, 0.9644001429671059, 0.9504081393066689, 0.9753724113412073, 0.9357258093260105, 0.9380655117914382, 0.9345690855746425, 0.03461366983609787, 0.07916656534589764, 0.03668694491639159, 0.150609563340976, 0.011585351026228922, 0.011585351026228922, 0.052134079618030155, 0.028963377565572306, 0.021239810214753026, 0.10812994291146995, 0.028963377565572306, 0.028963377565572306, 0.03089426940327713, 0.011585351026228922, 0.0019308918377048206, 0.028963377565572306, 0.12936975312622298, 0.027032485727867487, 0.03861783675409641, 0.13902421231474707, 0.03668694491639159, 0.055497804520549136, 0.027748902260274568, 0.8602159700685116, 0.9507579783589161, 0.013222535429691052, 0.07933521257814631, 0.06941831100587803, 0.013222535429691052, 0.009916901572268289, 0.009916901572268289, 0.039667606289073155, 0.25783944087897553, 0.05289014171876421, 0.003305633857422763, 0.07933521257814631, 0.2611450747363983, 0.013222535429691052, 0.07272394486330079, 0.019833803144536578, 0.003305633857422763, 0.018771153243687746, 0.2290080695729905, 0.09010153556970119, 0.09760999686717628, 0.18020307113940237, 0.07508461297475098, 0.0075084612974750985, 0.20272845503182765, 0.011262691946212648, 0.0037542306487375493, 0.018771153243687746, 0.04880499843358814, 0.0037542306487375493, 0.0037542306487375493, 0.18096467711233055, 0.8083088911017432, 0.9537142432093711, 0.018902326071705396, 0.8317023471550373, 0.13231628250193778, 0.09762286386826889, 0.046487078032509, 0.092974156065018, 0.10924463337639614, 0.08600109436014164, 0.14178558799915245, 0.025567892917879947, 0.01162176950812725, 0.0604332014422617, 0.01162176950812725, 0.0046487078032509, 0.0371896624260072, 0.048811431934134446, 0.0883254482617671, 0.0232435390162545, 0.00697306170487635, 0.053460139737385344, 0.0092974156065018, 0.0418383702292581, 0.0404796841380342, 0.011565624039438342, 0.08674218029578756, 0.25444372886764355, 0.08385077428592798, 0.10698202236480467, 0.03758827812817461, 0.08963358630564715, 0.023131248078876683, 0.05204530817747254, 0.05782812019719171, 0.014457030049297928, 0.0202398420690171, 0.011565624039438342, 0.014457030049297928, 0.05782812019719171, 0.014457030049297928, 0.017348436059157514, 0.005782812019719171, 0.09875853888595343, 0.1499666701601515, 0.03840609845564856, 0.03840609845564856, 0.04023496028686992, 0.0182886183122136, 0.08961422972984663, 0.01463089464977088, 0.06949674958641168, 0.04755040761175536, 0.1316780518479379, 0.05852357859908352, 0.00182886183122136, 0.053036993105419435, 0.03840609845564856, 0.00731544732488544, 0.02926178929954176, 0.0274329274683204, 0.0091443091561068, 0.0365772366244272, 0.224851687710476, 0.26035458577002485, 0.04733719741273179, 0.023668598706365895, 0.01775144902977442, 0.005917149676591474, 0.011834299353182948, 0.07100579611909769, 0.33136038188912253, 0.9521400350359599, 0.9604693816835824, 0.769844820933498, 0.012620406900549148, 0.012620406900549148, 0.012620406900549148, 0.06310203450274575, 0.03786122070164745, 0.012620406900549148, 0.0757224414032949, 0.9571551191880088, 0.7840213261129189, 0.08191267586254376, 0.011701810837506252, 0.08191267586254376, 0.023403621675012504, 0.011701810837506252, 0.9594088523436163, 0.9329580096017582, 0.9628385199972385, 0.02216812357526362, 0.6872118308331722, 0.055420308938159045, 0.07758843251342266, 0.01108406178763181, 0.11084061787631809, 0.01108406178763181, 0.01108406178763181, 0.930988957594946, 0.03580726759980562, 0.9493187608480637, 0.029340656657138878, 0.005868131331427775, 0.0978021888571296, 0.015648350217140734, 0.025428569102853696, 0.03912087554285184, 0.03325274421142406, 0.10953845151998515, 0.08997801374855922, 0.01173626266285555, 0.03716483176570925, 0.01760439399428333, 0.12909888929141106, 0.03129670043428147, 0.04107691931999443, 0.03520878798856666, 0.15452745839426477, 0.01760439399428333, 0.07824175108570368, 0.016079912738093054, 0.1447192146428375, 0.3376781674999541, 0.18223901103172127, 0.08039956369046528, 0.016079912738093054, 0.005359970912697684, 0.010719941825395369, 0.021439883650790737, 0.12863930190474443, 0.016079912738093054, 0.021439883650790737, 0.021439883650790737, 0.9718540806388182, 0.0561577992282455, 0.18953257239532856, 0.0070197249035306875, 0.0070197249035306875, 0.0561577992282455, 0.4984004681506788, 0.07721697393883756, 0.0070197249035306875, 0.04913807432471481, 0.035098624517653436, 0.014039449807061375, 0.9620123239099208, 0.8892219597285167, 0.09198847859260517, 0.10497990886649823, 0.013693031591282379, 0.004564343863760792, 0.03195040704632555, 0.027386063182564757, 0.009128687727521585, 0.1825737545504317, 0.022821719318803963, 0.004564343863760792, 0.004564343863760792, 0.3651475091008634, 0.027386063182564757, 0.01825737545504317, 0.03195040704632555, 0.05020778250136872, 0.09128687727521585, 0.004564343863760792, 0.9579358705417085, 0.7436555951753462, 0.042738827308927946, 0.051286592770713534, 0.017095530923571176, 0.017095530923571176, 0.05983435823249912, 0.025643296385356767, 0.008547765461785588, 0.008547765461785588, 0.008547765461785588, 0.008547765461785588, 0.020255655129421065, 0.10127827564710531, 0.12153393077652638, 0.7292035846591584, 0.9776643305695214, 0.01157982217517092, 0.028949555437927297, 0.028949555437927297, 0.02315964435034184, 0.028949555437927297, 0.7990077300867934, 0.00578991108758546, 0.00578991108758546, 0.04631928870068368, 0.00578991108758546, 0.00578991108758546, 0.18308970489995038, 0.10101500959997263, 0.025253752399993157, 0.12626876199996578, 0.08838813339997605, 0.041037347649988884, 0.025253752399993157, 0.20203001919994526, 0.01894031429999487, 0.06629110004998204, 0.025253752399993157, 0.01894031429999487, 0.031567190499991446, 0.0031567190499991447, 0.009470157149997434, 0.031567190499991446, 0.9693341900863954, 0.006613734342687639, 0.006613734342687639, 0.013227468685375278, 0.07936481211225167, 0.006613734342687639, 0.09920601514031459, 0.013227468685375278, 0.7010558403248898, 0.013227468685375278, 0.006613734342687639, 0.05290987474150111, 0.9255382719457789, 0.9520123706304748, 0.9420861316412033, 0.9746160432673708, 0.023268608204086792, 0.011634304102043396, 0.046537216408173585, 0.023268608204086792, 0.5817152051021698, 0.2675889943469981, 0.046537216408173585, 0.9224770177139259, 0.94607838935133, 0.14655252520898296, 0.21419215222851357, 0.0338198135097653, 0.5411170161562447, 0.011273271169921767, 0.04509308467968707, 0.9729081081910089, 0.03250836703996679, 0.016254183519983395, 0.08127091759991698, 0.8452175430391365, 0.2987048772531709, 0.018381838600195134, 0.01608410877517074, 0.04365686667546344, 0.011488649125121958, 0.02987048772531709, 0.04825232632551222, 0.01608410877517074, 0.09190919300097566, 0.1079933017761464, 0.025275028075268307, 0.013786378950146349, 0.009190919300097567, 0.020679568425219525, 0.14245924915151228, 0.013786378950146349, 0.0827182737008781, 0.0068931894750731745, 0.0259666289240188, 0.0519332578480376, 0.7789988677205639, 0.0259666289240188, 0.09088320123406579, 0.020184795151798537, 0.040369590303597075, 0.8881309866791356, 0.8225724114924364, 0.03537945855881447, 0.004422432319851809, 0.11056080799629522, 0.004422432319851809, 0.004422432319851809, 0.004422432319851809, 0.9301103305675081, 0.004869687594594284, 0.004869687594594284, 0.004869687594594284, 0.004869687594594284, 0.02434843797297142, 0.009739375189188567, 0.009739375189188567, 0.029832431250263424, 0.029832431250263424, 0.9248053687581662, 0.9783808112666319, 0.9745149753501572, 0.9644772106981852, 0.030050372823040437, 0.030050372823040437, 0.9015111846912132, 0.9185332125491309, 0.9216795820040211, 0.9729510782632597, 0.04519365480885851, 0.8225245175212249, 0.04519365480885851, 0.018077461923543404, 0.027116192885315107, 0.027116192885315107, 0.9352269151176978, 0.3894554890624347, 0.006181833159721186, 0.006181833159721186, 0.006181833159721186, 0.012363666319442372, 0.4141828217013195, 0.01854549947916356, 0.03709099895832712, 0.006181833159721186, 0.055636498437490675, 0.03709099895832712, 0.9198349935111179, 0.9670439686048277, 0.9169057789217231, 0.947452944090294, 0.00787073813533495, 0.05903053601501213, 0.027547583473672328, 0.0157414762706699, 0.08657811948868446, 0.039353690676674755, 0.11412570296235679, 0.003935369067667475, 0.33057100168406794, 0.039353690676674755, 0.0314829525413398, 0.003935369067667475, 0.11806107203002426, 0.019676845338337377, 0.003935369067667475, 0.07477201228568203, 0.02361221440600485, 0.9725719062083829, 0.0891928030589535, 0.012741829008421928, 0.1911274351263289, 0.012741829008421928, 0.025483658016843855, 0.6753169374463622, 0.061943289917197365, 0.05717842146202834, 0.39548408177902933, 0.019059473820676114, 0.02382434227584514, 0.10959197446888765, 0.02858921073101417, 0.04764868455169028, 0.02858921073101417, 0.02382434227584514, 0.009529736910338057, 0.166770395930916, 0.033354079186183196, 0.10467448090408497, 0.10467448090408497, 0.6878608745125584, 0.044860491816036414, 0.02990699454402428, 0.13181559653593253, 0.8348321113942394, 0.014923607398356086, 0.27608673686958757, 0.007461803699178043, 0.007461803699178043, 0.38801379235725825, 0.0522326258942463, 0.08954164439013651, 0.11938885918684869, 0.007461803699178043, 0.029847214796712172, 0.9209279521893837, 0.027086116240864228, 0.027086116240864228, 0.03129386933394329, 0.09388160800182989, 0.046940804000914944, 0.7197589946806958, 0.06258773866788658, 0.03129386933394329, 0.019395783701712712, 0.019395783701712712, 0.7758313480685085, 0.1551662696137017, 0.9883772366500303, 0.025684968689251308, 0.8989739041237959, 0.051369937378502616, 0.9112913792672301, 0.058167534846844476, 0.019389178282281493, 0.9665540449998503, 0.03550431706760137, 0.05769451523485223, 0.008876079266900342, 0.0931988323024536, 0.27515845727391064, 0.004438039633450171, 0.004438039633450171, 0.004438039633450171, 0.1997117835052577, 0.28403453654081096, 0.022190198167250857, 0.9799587313884265, 0.9688837916604963, 0.9570430580997717, 0.0024439446527289802, 0.08065017354005634, 0.07576228423459838, 0.02688339118001878, 0.06598650562368247, 0.09286989680370124, 0.0122197232636449, 0.01466366791637388, 0.0122197232636449, 0.02199550187456082, 0.09286989680370124, 0.14908062381646778, 0.05376678236003756, 0.08798200749824328, 0.01710761256910286, 0.039103114443663683, 0.0024439446527289802, 0.0048878893054579604, 0.0244394465272898, 0.11975328798372002, 0.009908071739718987, 0.009908071739718987, 0.059448430438313916, 0.059448430438313916, 0.03963228695887595, 0.7431053804789239, 0.059448430438313916, 0.04802755604368662, 0.012006889010921656, 0.012006889010921656, 0.6843926736225343, 0.036020667032764964, 0.18010333516382482, 0.9217239227805009, 0.031783583544155204, 0.06079660145678995, 0.9119490218518492, 0.22728813403936385, 0.011087226050700675, 0.0055436130253503375, 0.011087226050700675, 0.04989251722815304, 0.04989251722815304, 0.0055436130253503375, 0.3547912336224216, 0.2051136819379625, 0.011087226050700675, 0.05543613025350338, 0.9716414660894069, 0.9489131823742611, 0.027909211246301798, 0.8774132178621226, 0.01866836633749197, 0.09334183168745985, 0.9408119068902213, 0.012272342834896258, 0.012272342834896258, 0.9695150839568044, 0.9435753009616955, 0.9509984011145166, 0.04838046526194252, 0.004838046526194252, 0.07257069789291377, 0.18384576799538158, 0.02419023263097126, 0.09676093052388504, 0.02902827915716551, 0.019352186104777007, 0.25641646588829536, 0.014514139578582755, 0.03386632568335977, 0.019352186104777007, 0.014514139578582755, 0.02419023263097126, 0.04354241873574827, 0.04354241873574827, 0.06289460484052528, 0.009676093052388503, 0.04768522230062283, 0.02805013076507225, 0.02805013076507225, 0.16549577151392628, 0.044880209224115605, 0.05329524845363728, 0.014025065382536126, 0.1346406276723468, 0.0336601569180867, 0.07573535306569508, 0.07293033998918785, 0.005610026153014451, 0.008415039229521675, 0.05049023537713005, 0.02805013076507225, 0.0561002615301445, 0.0028050130765072253, 0.008415039229521675, 0.1430556669018685, 0.10026378319444167, 0.012532972899305208, 0.10026378319444167, 0.012532972899305208, 0.7519783739583126, 0.012532972899305208, 0.012532972899305208, 0.9949434396108218, 0.9579286164963534, 0.9695181908174777, 0.9381684465237341, 0.054781621034825166, 0.06695531459811965, 0.060868467816472406, 0.018260540344941723, 0.006086846781647241, 0.012173693563294482, 0.042607927471530686, 0.08521585494306137, 0.054781621034825166, 0.024347387126588963, 0.048694774253177926, 0.5052082828767209, 0.018260540344941723, 0.008790687029482292, 0.11427893138326978, 0.17141839707490467, 0.03955809163267031, 0.39997625984144425, 0.06593015272111719, 0.18899977113386926, 0.9231152297160071, 0.07840199246772761, 0.017422664992828355, 0.7840199246772761, 0.017422664992828355, 0.08711332496414179, 0.9849490368729553, 0.9384509022937988, 0.9417353718274748, 0.1294945007489444, 0.0076173235734673175, 0.05332126501427122, 0.6779417980385912, 0.03808661786733659, 0.07617323573467318, 0.0076173235734673175, 0.0076173235734673175, 0.9700283374643586, 0.9318535513018154, 0.974324485803746, 0.10957091242065042, 0.01289069557890005, 0.006445347789450025, 0.006445347789450025, 0.04511743452615018, 0.006445347789450025, 0.3029313461041512, 0.32871273726195127, 0.006445347789450025, 0.06445347789450025, 0.1031255646312004, 0.9245641333944256, 0.02672592685956109, 0.05345185371912218, 0.881955586365516, 0.02672592685956109, 0.05812057788381066, 0.9008689571990653, 0.9757618642208984, 0.9720566725057006, 0.9385804953348712, 0.9456572756209858, 0.9130824033552315, 0.97612932948228, 0.05560471793658399, 0.015887062267595425, 0.047661186802786276, 0.023830593401393138, 0.013239218556329521, 0.013239218556329521, 0.0052956874225318085, 0.04501334309152037, 0.07149178020417941, 0.0052956874225318085, 0.007943531133797713, 0.0052956874225318085, 0.0052956874225318085, 0.052956874225318085, 0.04236549938025447, 0.10061806102810436, 0.0026478437112659042, 0.021182749690127234, 0.4633726494715332, 0.9185754315355544, 0.044447198300107474, 0.01481573276670249, 0.1254774508371973, 0.11543925477022152, 0.3463177643106646, 0.41156603874600717, 0.028556111800786224, 0.037394908310553386, 0.08634824282618692, 0.04555379739649231, 0.020397222714847302, 0.05439259390625947, 0.042834167701179336, 0.017677593019534327, 0.03331546376758393, 0.008838796509767164, 0.04215426027735109, 0.07343000177345028, 0.11218472493166017, 0.08634824282618692, 0.04351407512500758, 0.08838796509767165, 0.04011453800586636, 0.11014500266017543, 0.019037407867190815, 0.009518703933595407, 0.96574869108042, 0.8866019434983374, 0.07599445229985749, 0.005682812465622478, 0.017048437396867434, 0.07387656205309222, 0.03977968725935734, 0.21594687369365417, 0.02841406232811239, 0.5796468714934927, 0.017048437396867434, 0.017048437396867434, 0.9805172785616211, 0.9739198294641527, 0.057173159352800595, 0.014293289838200149, 0.24298592724940254, 0.6860779122336071, 0.1979384450689146, 0.7917537802756583, 0.9648739401843824, 0.02880220716968306, 0.9353053616435142, 0.019027364761215082, 0.9513682380607541, 0.019027364761215082, 0.975153136473981, 0.970422141276439, 0.9419513410511405, 0.9630448582227974, 0.9472329151987181, 0.021031300704802993, 0.23134430775283293, 0.06309390211440898, 0.6204233707916883, 0.042062601409605986, 0.010515650352401497, 0.957215967578301, 0.0593279779401398, 0.07119357352816777, 0.8543228823380132, 0.011865595588027961, 0.012518450420866446, 0.07511070252519868, 0.012518450420866446, 0.701033223568521, 0.1877767563129967, 0.3530831253244714, 0.6305055809365561, 0.9094881877115631, 0.034614824797668954, 0.9346002695370618, 0.935339258840599, 0.97947267227169, 0.9403785634359239, 0.9453858235674621, 0.9692195177391787, 0.934930416585264, 0.030159045696298837, 0.01653570466434711, 0.12567135544903804, 0.05622139585878018, 0.023149986530085955, 0.009921422798608267, 0.0033071409328694224, 0.01653570466434711, 0.03637855026156365, 0.02645712746295538, 0.03637855026156365, 0.05622139585878018, 0.019842845597216534, 0.08598566425460498, 0.019842845597216534, 0.148821341979124, 0.04299283212730249, 0.234807006233729, 0.03968569119443307, 0.09326667812597628, 0.15389001890786086, 0.2051866918771478, 0.004663333906298813, 0.08860334421967746, 0.04663333906298814, 0.032643337344091694, 0.018653335625195253, 0.349750042972411, 0.009326667812597627, 0.9301439082241594, 0.022761107726338818, 0.9559665245062303, 0.09607836228397094, 0.09287575020783857, 0.00640522415226473, 0.08326791397944149, 0.01921567245679419, 0.016013060380661824, 0.11529403474076513, 0.33307165591776594, 0.003202612076132365, 0.00640522415226473, 0.06725485359877965, 0.009607836228397094, 0.07045746567491203, 0.03202612076132365, 0.01281044830452946, 0.04163395698972074, 0.9419479456191505, 0.9603871209111257, 0.48890657440087343, 0.22153579152539576, 0.04583499135008188, 0.1451441392752593, 0.06875248702512282, 0.03055666090005459, 0.970556409377546, 0.10723146957863322, 0.21446293915726644, 0.17157035132581316, 0.09804020075760751, 0.03370131901042758, 0.058211369199829464, 0.03370131901042758, 0.15931532623111222, 0.0061275125473504695, 0.11948649467333416, 0.010984285499072923, 0.09153571249227437, 0.06956714149412851, 0.05858285599505559, 0.007322856999381949, 0.1720871394854758, 0.014645713998763897, 0.05492142749536462, 0.014645713998763897, 0.014645713998763897, 0.007322856999381949, 0.043937141996291694, 0.04759857049598267, 0.03295285649721877, 0.021968570998145847, 0.03295285649721877, 0.0036614284996909744, 0.05125999899567364, 0.24897713797898627, 0.048633578109095195, 0.28057833524478, 0.4657600365063348, 0.0205757445846172, 0.1533828232671464, 0.0168347001146868, 0.013093655644756398, 0.0018705222349652, 0.007301207208794476, 0.007301207208794476, 0.5694941622859692, 0.09491569371432819, 0.06571086487915029, 0.02190362162638343, 0.014602414417588952, 0.08031327929673923, 0.05110845046156133, 0.08031327929673923, 0.9512934012975505, 0.9069141494275765, 0.867757282705192, 0.04519569180756208, 0.009039138361512418, 0.02711741508453725, 0.04519569180756208, 0.009039138361512418, 0.9483135277926558, 0.003210135459256994, 0.060992573725882876, 0.00963040637777098, 0.07704325102216784, 0.7030196655772816, 0.012840541837027975, 0.003210135459256994, 0.032101354592569936, 0.003210135459256994, 0.022470948214798954, 0.003210135459256994, 0.05457230280736889, 0.016050677296284968, 0.97460004264691, 0.04874759282048761, 0.9262042635892646, 0.025269088166288478, 0.7328035568223659, 0.025269088166288478, 0.15161452899773087, 0.050538176332576956, 0.0669901169484467, 0.9155315982954382, 0.03552602208891657, 0.9592025964007475, 0.9197702765844732, 0.035375779868633585, 0.9852952165233171, 0.028407175336371045, 0.028407175336371045, 0.9090296107638735, 0.9275731319581932, 0.03710292527832773, 0.8358701024984758, 0.13931168374974595, 0.0078055347739722355, 0.0078055347739722355, 0.023416604321916706, 0.18733283457533365, 0.05463874341780565, 0.031222139095888942, 0.062444278191777884, 0.5385818994040843, 0.08586088251369459, 0.21548325262264142, 0.08287817408563132, 0.2071954352140783, 0.4724055922880985, 0.00828781740856313, 0.00828781740856313, 0.097765131640291, 0.8310036189424735, 0.02444128291007275, 0.02444128291007275, 0.12546936074471668, 0.09885464785947376, 0.4372417116861339, 0.007604203681497982, 0.07033888405385633, 0.1197662079835932, 0.005703152761123486, 0.017109458283370457, 0.005703152761123486, 0.0019010509203744954, 0.026614712885242933, 0.02091156012411945, 0.02851576380561743, 0.003802101840748991, 0.0019010509203744954, 0.019010509203744953, 0.005703152761123486, 0.0019010509203744954, 0.0019010509203744954, 0.941718292995749, 0.9467195158379142, 0.9761219919429479, 0.9600975792886547, 0.019201951585773095, 0.9722098516425387, 0.0029521182575931683, 0.02656906431833851, 0.1476059128796584, 0.011808473030372673, 0.0029521182575931683, 0.09741990250057454, 0.02952118257593168, 0.18893556848596277, 0.011808473030372673, 0.07675507469742238, 0.20664827803152178, 0.0059042365151863365, 0.1210368485613199, 0.02656906431833851, 0.0059042365151863365, 0.0029521182575931683, 0.0029521182575931683, 0.02656906431833851, 0.9663453761817842, 0.01168428880710159, 0.01168428880710159, 0.03505286642130477, 0.01168428880710159, 0.05842144403550795, 0.654320173197689, 0.07010573284260954, 0.01168428880710159, 0.03505286642130477, 0.03505286642130477, 0.04673715522840636, 0.0011252052857318269, 0.024754516286100193, 0.016878079285977406, 0.08889121757281433, 0.15302791885952846, 0.057385469572323176, 0.020253695143172885, 0.2509207787181974, 0.03263095328622298, 0.010126847571586443, 0.06638711185817779, 0.08439039642988702, 0.057385469572323176, 0.01800328457170923, 0.015752874000245578, 0.03938218500061394, 0.012377258143050096, 0.012377258143050096, 0.01462766871451375, 0.024754516286100193, 0.8385183187422021, 0.00931687020824669, 0.13043618291545367, 0.02853814145848105, 0.01141525658339242, 0.01712288487508863, 0.0570762829169621, 0.30250429945989915, 0.00570762829169621, 0.1198601941256204, 0.3709958389602536, 0.05136865462526589, 0.00570762829169621, 0.02283051316678484, 0.9887888151952866, 0.9162531618782589, 0.032723327209937814, 0.9404615815850635, 0.9455323159818132, 0.9795346248541325, 0.9465719677874492, 0.028683999023862098, 0.9790598626012383, 0.030084591895478394, 0.015042295947739197, 0.015042295947739197, 0.16546525542513116, 0.015042295947739197, 0.07521147973869599, 0.5941706899356983, 0.08273262771256558, 0.11972990581883611, 0.01596398744251148, 0.5188295918816231, 0.08780193093381315, 0.07981993721255741, 0.14367588698260333, 0.00798199372125574, 0.00798199372125574, 0.00798199372125574, 0.94478841533141, 0.9636728207819611, 0.0013397417296690747, 0.2438329947997716, 0.08440372896915171, 0.09512166280650432, 0.03081405978238872, 0.037512768430734096, 0.11253830529220228, 0.025455092863712423, 0.009378192107683524, 0.026794834593381497, 0.06296786129444652, 0.024115351134043346, 0.01741664248569797, 0.05626915264610114, 0.04823070226808669, 0.024115351134043346, 0.04153199361974132, 0.022775609404374272, 0.03483328497139594, 0.9168405411099573, 0.03667362164439829, 0.9657583988924952, 0.25825093004809735, 0.003825939704416257, 0.028694547783121926, 0.017216728669873158, 0.003825939704416257, 0.007651879408832514, 0.0019129698522081285, 0.007651879408832514, 0.034433457339746315, 0.0267815779309138, 0.4438090057122858, 0.07269285438390888, 0.007651879408832514, 0.03634642719195444, 0.04591127645299508, 0.003825939704416257, 0.5245302519028635, 0.015611019401870938, 0.0249776310429935, 0.0031222038803741877, 0.006244407760748375, 0.0031222038803741877, 0.018733223282245127, 0.06868848536823213, 0.009366611641122563, 0.09054391253085144, 0.037466446564490254, 0.046833058205612815, 0.01248881552149675, 0.02809983492336769, 0.006244407760748375, 0.015611019401870938, 0.08742170865047726, 0.006244407760748375, 0.9335897945451321, 0.9744884172301745, 0.018758649733124962, 0.009379324866562481, 0.018758649733124962, 0.09379324866562481, 0.23448312166406202, 0.5908974665934363, 0.018758649733124962, 0.9478463803340048, 0.0459561881374063, 0.032717068141230564, 0.0054528446902050946, 0.008179267035307641, 0.4171426188006897, 0.12268900552961462, 0.16358534070615283, 0.013632111725512736, 0.008179267035307641, 0.021811378760820378, 0.024537801105922925, 0.029990645796128017, 0.0027264223451025473, 0.0027264223451025473, 0.016358534070615282, 0.12268900552961462, 0.0054528446902050946, 0.0054528446902050946, 0.9354123916665815, 0.026902973212265553, 0.1109747645005954, 0.1143376361521286, 0.29256983368338785, 0.12442625110672818, 0.047080203121464714, 0.003362871651533194, 0.07398317633373026, 0.09079753459139624, 0.03362871651533194, 0.003362871651533194, 0.020177229909199165, 0.053805946424531105, 0.9475904080584904, 0.8714379497612237, 0.057331444063238396, 0.01146628881264768, 0.04586515525059072, 0.8125310175115678, 0.13542183625192797, 0.03385545906298199, 0.9483140724194721, 0.08796735773857758, 0.9016654168204202, 0.09810688265271444, 0.06243165259718192, 0.6510729485134685, 0.008918807513883131, 0.1427009202221301, 0.017837615027766263, 0.008841500696691231, 0.6542710515551511, 0.04420750348345615, 0.061890504876838615, 0.04420750348345615, 0.008841500696691231, 0.0884150069669123, 0.05304900418014739, 0.008841500696691231, 0.026524502090073693, 0.01193345567875057, 0.003977818559583524, 0.019889092797917618, 0.05171164127458581, 0.003977818559583524, 0.02386691135750114, 0.17900183518125856, 0.4216487673158535, 0.007955637119167048, 0.007955637119167048, 0.05568945983416933, 0.05568945983416933, 0.015911274238334095, 0.01193345567875057, 0.12331237534708923, 0.025196291688105176, 0.27355973832799907, 0.10438463699357858, 0.04319364289389459, 0.05399205361736823, 0.02879576192926306, 0.02879576192926306, 0.09358622627010493, 0.010798410723473647, 0.010798410723473647, 0.0791883453054734, 0.025196291688105176, 0.05759152385852612, 0.007198940482315765, 0.03599470241157882, 0.05399205361736823, 0.046793113135052467, 0.01439788096463153, 0.01439788096463153, 0.10314064297332573, 0.8509103045299373, 0.9563719460324808, 0.9055591317483341, 0.007019838230607241, 0.007019838230607241, 0.007019838230607241, 0.007019838230607241, 0.007019838230607241, 0.035099191153036204, 0.014039676461214482, 0.8033170070131185, 0.010855635229907006, 0.010855635229907006, 0.02171127045981401, 0.03256690568972102, 0.06513381137944203, 0.010855635229907006, 0.02171127045981401, 0.010855635229907006, 0.9254465084556949, 0.003969447331024894, 0.2580140765166182, 0.1667167879030456, 0.14819270035826274, 0.05160281530332363, 0.018524087544782842, 0.08071209573083953, 0.029109280427515895, 0.02646298220683263, 0.003969447331024894, 0.011908341993074684, 0.006615745551708158, 0.05557226263434852, 0.025139833096491, 0.03440187686888242, 0.009262043772391421, 0.021170385765466104, 0.04763336797229874, 0.0013231491103416315, 0.961430466409099, 0.003978410670939081, 0.19892053354695405, 0.19295291754054542, 0.17902848019225864, 0.07558980274784254, 0.09150344543159886, 0.029838080032043107, 0.0019892053354695406, 0.03182728536751265, 0.003978410670939081, 0.003978410670939081, 0.017902848019225863, 0.017902848019225863, 0.019892053354695405, 0.0019892053354695406, 0.027848874696573565, 0.073600597412373, 0.017902848019225863, 0.005967616006408621, 0.005967616006408621, 0.007658570299951334, 0.183805687198832, 0.022975710899854, 0.42122136649732334, 0.13019569509917267, 0.08807355844944033, 0.022975710899854, 0.003829285149975667, 0.003829285149975667, 0.007658570299951334, 0.007658570299951334, 0.08424427329946467, 0.019146425749878335, 0.0040859651134775386, 0.036773686021297845, 0.08580526738302831, 0.3268772090782031, 0.04085965113477539, 0.012257895340432616, 0.06537544181564062, 0.15526667431214647, 0.03268772090782031, 0.0040859651134775386, 0.0040859651134775386, 0.016343860453910154, 0.008171930226955077, 0.036773686021297845, 0.13075088363128123, 0.0040859651134775386, 0.02451579068086523, 0.012257895340432616, 0.050729365841729664, 0.12682341460432414, 0.012682341460432416, 0.025364682920864832, 0.0887763902230269, 0.6594817559424856, 0.025364682920864832, 0.03956575247591049, 0.026377168317273658, 0.8440693861527571, 0.013188584158636829, 0.013188584158636829, 0.052754336634547316, 0.9457424355166557, 0.02627062320879599, 0.017275187642744404, 0.725557880995265, 0.06910075057097761, 0.017275187642744404, 0.13820150114195523, 0.5766423764588876, 0.36992152452079585, 0.010880044838846937, 0.010880044838846937, 0.010880044838846937, 0.018990129156338353, 0.19623133461549633, 0.07596051662535341, 0.07596051662535341, 0.39246266923099266, 0.05697038746901506, 0.02532017220845114, 0.03798025831267671, 0.044310301364789494, 0.006330043052112785, 0.006330043052112785, 0.05697038746901506, 0.011633747058333047, 0.16287245881666265, 0.17450620587499568, 0.011633747058333047, 0.6398560882083175, 0.06281274612520522, 0.9107848188154757, 0.9622894399489946, 0.08991960656506828, 0.03173633172884763, 0.02115755448589842, 0.23273309934488262, 0.01057877724294921, 0.07405144070064447, 0.2962057628025779, 0.02115755448589842, 0.07405144070064447, 0.04231510897179684, 0.015868165864423814, 0.037025720350322235, 0.005289388621474605, 0.04231510897179684, 0.9480073994960836, 0.0177160441309573, 0.20373450750600897, 0.07972219858930786, 0.026574066196435955, 0.00885802206547865, 0.04429011032739326, 0.04429011032739326, 0.00885802206547865, 0.5669134121906336, 0.9436721656901016, 0.5513153886323767, 0.09080488753945028, 0.00648606339567502, 0.1945819018702506, 0.0648606339567502, 0.01297212679135004, 0.01945819018702506, 0.04540244376972514, 0.00648606339567502, 0.7117919120160175, 0.03235417781890989, 0.24265633364182418, 0.007694303659745426, 0.007694303659745426, 0.04616582195847256, 0.03847151829872713, 0.030777214638981705, 0.030777214638981705, 0.06924873293770883, 0.06924873293770883, 0.16927468051439937, 0.08463734025719968, 0.04616582195847256, 0.030777214638981705, 0.37702087932752587, 0.9603898850484602, 0.9657822932783143, 0.9694231765151341, 0.41532309805619244, 0.34939879677743174, 0.08570159166238892, 0.026369720511504283, 0.013184860255752141, 0.05933187115088463, 0.006592430127876071, 0.006592430127876071, 0.039554580767256424, 0.9653285460449885, 0.026402547524150444, 0.19801910643112833, 0.6336611405796106, 0.039603821286225666, 0.013201273762075222, 0.05280509504830089, 0.013201273762075222, 0.9366377210479766, 0.04497876935330239, 0.012266937096355197, 0.17582609838109114, 0.016355916128473594, 0.004088979032118399, 0.11449141289931516, 0.004088979032118399, 0.004088979032118399, 0.523389316111155, 0.10222447580295997, 0.9787829311672573, 0.965854968857227, 0.11955988054289331, 0.8668091339359765, 0.9585195747523393, 0.9509377417001232, 0.5846845957475982, 0.07693218365099977, 0.06923896528589979, 0.007693218365099977, 0.023079655095299932, 0.015386436730199954, 0.038466091825499885, 0.05385252855569984, 0.015386436730199954, 0.007693218365099977, 0.11539827547649965, 0.9765888965147167, 0.034990121933894, 0.944733292215138, 0.004017833645354771, 0.10446367477922404, 0.0401783364535477, 0.02008916822677385, 0.016071334581419083, 0.19687384862238375, 0.012053500936064311, 0.05223183738961202, 0.008035667290709541, 0.3133910243376721, 0.044196170098902476, 0.004017833645354771, 0.09241017384315972, 0.004017833645354771, 0.032142669162838165, 0.03616050280819293, 0.016071334581419083, 0.27793744846068136, 0.012633520384576425, 0.02526704076915285, 0.15160224461491711, 0.012633520384576425, 0.5179743357676334, 0.0196356111292664, 0.0065452037097554665, 0.03272601854877733, 0.0196356111292664, 0.0065452037097554665, 0.09163285193657653, 0.0065452037097554665, 0.05236162967804373, 0.06545203709755466, 0.0392712222585328, 0.5956135375877474, 0.06545203709755466, 0.9400311798936767, 0.8742986800391218, 0.12489981143416026, 0.9399931102848643, 0.03553022649737235, 0.08882556624343088, 0.8527254359369364, 0.017765113248686175, 0.3716049123573921, 0.06756452951952584, 0.014478113468469823, 0.014478113468469823, 0.03860830258258619, 0.043434340405409465, 0.004826037822823274, 0.10134679427928876, 0.03378226475976292, 0.10617283210211204, 0.05308641605105602, 0.019304151291293096, 0.12547698339340513, 0.9496231350799617, 0.061143432186049895, 0.9375326268527651, 0.17795834682473508, 0.47455559153262683, 0.03707465558848647, 0.10380903564776213, 0.03707465558848647, 0.014829862235394588, 0.007414931117697294, 0.06673438005927565, 0.07414931117697295, 0.9701395583969683, 0.9318344506206663, 0.9826054956388951, 0.9329771114393381, 0.9577146185862606, 0.09436388776800127, 0.30106573716457546, 0.013480555395428752, 0.004493518465142917, 0.09436388776800127, 0.03145462925600042, 0.06290925851200084, 0.14828610934971628, 0.004493518465142917, 0.03145462925600042, 0.19322129400114546, 0.004493518465142917, 0.004493518465142917, 0.015431777639731867, 0.015431777639731867, 0.05401122173906154, 0.015431777639731867, 0.0077158888198659336, 0.27005610869530766, 0.07715888819865933, 0.015431777639731867, 0.0077158888198659336, 0.5169645509310176, 0.9654686786044008, 0.9619622201961391, 0.9286470507273635, 0.003960732299382536, 0.13862563047838877, 0.08317537828703327, 0.015842929197530144, 0.003960732299382536, 0.10693977208332849, 0.08317537828703327, 0.3366622454475156, 0.02376439379629522, 0.07921464598765073, 0.01188219689814761, 0.027725126095677753, 0.03564659069444283, 0.05148951989197297, 0.9441631941431087, 0.9472326729624827, 0.04677692212160408, 0.8234248152462699, 0.053701618385626294, 0.053701618385626294, 0.01790053946187543, 0.011000361327073714, 0.011000361327073714, 0.7700252928951599, 0.055001806635368564, 0.03300108398122114, 0.11000361327073713, 0.011000361327073714, 0.941729718115233, 0.11841148433014331, 0.631527916427431, 0.1282791080243219, 0.06907336585925027, 0.03947049477671444, 0.04490296240746182, 0.04490296240746182, 0.8082533233343128, 0.029935308271641214, 0.04490296240746182, 0.014967654135820607, 0.014967654135820607, 0.9687770790331646, 0.020986436830597543, 0.06295931049179264, 0.1515687104432045, 0.051300178919238444, 0.03964104734668425, 0.06762296312081431, 0.046636526290216765, 0.004663652629021677, 0.004663652629021677, 0.04430469997570593, 0.13291409992711778, 0.06529113680630347, 0.032645568403151734, 0.05363200523374928, 0.030313742088640898, 0.0069954789435325146, 0.11892314204005275, 0.0023318263145108383, 0.06295931049179264, 0.976802495379676, 0.9820390631639758, 0.07590767483944194, 0.004744229677465121, 0.34158453677748873, 0.004744229677465121, 0.009488459354930243, 0.09962882322676754, 0.004744229677465121, 0.056930756129581456, 0.028465378064790728, 0.1328384309690234, 0.07116344516197681, 0.004744229677465121, 0.10911728258169778, 0.014232689032395364, 0.004744229677465121, 0.023721148387325607, 0.9712812019263168, 0.02343164086866628, 0.07029492260599884, 0.8435390712719861, 0.02343164086866628, 0.02343164086866628, 0.030769993269807797, 0.9230997980942339, 0.014804218021806263, 0.1628463982398689, 0.1184337441744501, 0.04441265406541879, 0.07402109010903131, 0.562560284828638, 0.9321400896910401, 0.8710259155348554, 0.047082481920803, 0.0235412409604015, 0.0235412409604015, 0.030583432815419212, 0.9480864172779956, 0.9518226182791344, 0.9298959230781252, 0.029059247596191412, 0.014529623798095706, 0.04881862000550787, 0.10503400061791088, 0.07100890182619327, 0.0784056624330884, 0.06657084546205619, 0.1508939163806607, 0.12574493031721723, 0.0784056624330884, 0.016272873335169292, 0.017752225456548316, 0.031066394548959556, 0.031066394548959556, 0.004438056364137079, 0.0014793521213790264, 0.032545746670338584, 0.034025098791717605, 0.019231577577927345, 0.023669633942064422, 0.06213278909791911, 0.09110650792904482, 0.036442603171617925, 0.8564011745330212, 0.4239755571982658, 0.04646307476145378, 0.11034980255845274, 0.04646307476145378, 0.011615768690363446, 0.1568128773199065, 0.034847306071090337, 0.017423653035545168, 0.04065519041627206, 0.011615768690363446, 0.005807884345181723, 0.09292614952290756, 0.005807884345181723, 0.9333268444359689, 0.06511582635599783, 0.03054293887597603, 0.9468311051552569, 0.9690512640675418, 0.9690308772553148, 0.9844459376906086, 0.952783125813173, 0.9594785738122812, 0.9812424211063216, 0.037380503229645735, 0.9345125807411434, 0.9782397934213296, 0.9338688981500571, 0.29430800529688544, 0.027028286200734376, 0.03303457202311979, 0.009009428733578125, 0.015015714555963542, 0.03303457202311979, 0.0030031429111927084, 0.030031429111927084, 0.009009428733578125, 0.19220114631633334, 0.11712257353651563, 0.01801885746715625, 0.03303457202311979, 0.04504714366789062, 0.01801885746715625, 0.08408800151339584, 0.0030031429111927084, 0.01801885746715625, 0.0030031429111927084, 0.01801885746715625, 0.9830143628224259, 0.9468592540409803, 0.977158374304362, 0.02442895935760905, 0.11474618829405414, 0.8605964122054061, 0.08308929941478406, 0.07270313698793605, 0.6854867201719685, 0.031158487280544024, 0.10386162426848007, 0.010386162426848007, 0.022617820785960023, 0.949948473010321, 0.0031356130060583983, 0.056441034109051165, 0.009406839018175194, 0.4515282728724093, 0.01881367803635039, 0.05330542110299277, 0.009406839018175194, 0.025084904048467187, 0.047034195090875974, 0.021949291042408788, 0.10661084220598555, 0.012542452024233593, 0.012542452024233593, 0.043898582084817575, 0.047034195090875974, 0.009406839018175194, 0.040762969078759176, 0.0031356130060583983, 0.025084904048467187, 0.9865562455121435, 0.07144956824240857, 0.007144956824240858, 0.02857982729696343, 0.02857982729696343, 0.11431930918785373, 0.014289913648481716, 0.11431930918785373, 0.15004409330905802, 0.007144956824240858, 0.021434870472722575, 0.014289913648481716, 0.007144956824240858, 0.42155245263021063, 0.8673425948365022, 0.06086614700607033, 0.06086614700607033, 0.08139417095248301, 0.895335880477313, 0.9565499872882856, 0.022245348541588036, 0.9187312483221176, 0.9738858301761987, 0.1647903725748441, 0.01883318543712504, 0.0235414817964063, 0.01883318543712504, 0.01412488907784378, 0.042374667233531345, 0.00470829635928126, 0.00941659271856252, 0.29191437427543815, 0.24012311432334427, 0.11299911262275024, 0.00470829635928126, 0.0470829635928126, 0.9485481734723199, 0.013949237845181175, 0.013949237845181175, 0.013949237845181175, 0.939157235482835, 0.2238634692608216, 0.6974208080817903, 0.025830400299325568, 0.008610133433108522, 0.025830400299325568, 0.008610133433108522, 0.9641391015423317, 0.9548894856094551, 0.9788171320110951, 0.9323475682014469, 0.03861550732189447, 0.9267721757254672, 0.9204829296296265, 0.03409196035665284, 0.9584039125427373, 0.006784694443457848, 0.4410051388247601, 0.06106224999112063, 0.013569388886915695, 0.14926327775607265, 0.047492861104204934, 0.11533980553878341, 0.12890919442569912, 0.013569388886915695, 0.013569388886915695, 0.023676463642769003, 0.29595579553461254, 0.662940981997532, 0.03304805341804931, 0.8757734155783068, 0.016524026709024656, 0.06609610683609862, 0.9594544553868531, 0.9669776548795253, 0.19561015103821774, 0.729092381142448, 0.053348223010423024, 0.12139389123701952, 0.04046463041233984, 0.8092926082467967, 0.9374900758548258, 0.052082781991934765, 0.9206646659462786, 0.9606590943359875, 0.872223092388132, 0.027256971637129125, 0.027256971637129125, 0.05451394327425825, 0.9385045583742428, 0.031283485279141425, 0.009497976658790427, 0.009497976658790427, 0.018995953317580853, 0.5318866928922639, 0.13297167322306597, 0.18046155651701812, 0.009497976658790427, 0.009497976658790427, 0.09497976658790427, 0.009497976658790427, 0.0697013224379309, 0.03216984112519887, 0.09114788318806347, 0.024127380843899156, 0.11527526403196263, 0.005361640187533145, 0.17961494628236038, 0.05093558178156488, 0.04557394159403173, 0.02144656075013258, 0.0026808200937665726, 0.06702050234416432, 0.04021230140649859, 0.04289312150026516, 0.02144656075013258, 0.01876574065636601, 0.1367218247820952, 0.03485066121896545, 0.0418027461467273, 0.1254082384401819, 0.013934248715575767, 0.027868497431151534, 0.7942521767878187, 0.07899051239890008, 0.17114611019761683, 0.7240796969899174, 0.01316508539981668, 0.034281733598466466, 0.027425386878773175, 0.006856346719693294, 0.08913250735601282, 0.034281733598466466, 0.7884798727647288, 0.02056904015907988, 0.95188769115855, 0.04227576707104392, 0.9300668755629662, 0.9592457788916914, 0.9691123538535771, 0.36768992359497715, 0.010505426388427918, 0.007879069791320938, 0.0026263565971069796, 0.0026263565971069796, 0.005252713194213959, 0.007879069791320938, 0.04202170555371167, 0.0630325583305675, 0.03414263576239073, 0.010505426388427918, 0.06828527152478146, 0.13919689964666992, 0.11030697707849314, 0.015758139582641877, 0.015758139582641877, 0.04202170555371167, 0.04202170555371167, 0.013131782985534897, 0.9731489966661785, 0.9729766489297936, 0.9826466244444185, 0.9652907555122139, 0.04574869784338667, 0.019061957434744446, 0.019061957434744446, 0.026686740408642225, 0.08387261271287556, 0.04193630635643778, 0.019061957434744446, 0.03431152338254, 0.14487087650405778, 0.24780544665167778, 0.06481065527813111, 0.03431152338254, 0.08006022122592667, 0.0038123914869488892, 0.015249565947795557, 0.03431152338254, 0.08387261271287556, 0.0038123914869488892, 0.9796346709682026, 0.980299142180937, 0.9729025414760553, 0.08966466847301902, 0.025618476706576864, 0.15371086023946118, 0.7301265861374406, 0.074061950702714, 0.22218585210814198, 0.012343658450452332, 0.6171829225226166, 0.037030975351357, 0.9592145700839012, 0.09812564765060598, 0.29028837429970933, 0.17580845204066903, 0.05723996112952015, 0.03679711786897724, 0.04497425517319441, 0.01635427460843433, 0.05315139247741157, 0.01635427460843433, 0.01635427460843433, 0.061328529781628734, 0.004088568652108582, 0.008177137304217165, 0.020442843260542912, 0.020442843260542912, 0.08177137304217165, 0.17009596219941475, 0.09922264461632528, 0.014174663516617897, 0.6520345217644232, 0.056698654066471586, 0.9723764667753213, 0.9604909481824144, 0.9354499088193245, 0.9503380495514684, 0.1245134824779362, 0.020752247079656033, 0.020752247079656033, 0.8093376361065854, 0.020752247079656033, 0.013554133361358087, 0.36596160075666834, 0.5828277345383978, 0.013554133361358087, 0.9687070832064673, 0.9294969048065586, 0.007298868652854414, 0.04014377759069927, 0.11678189844567062, 0.021896605958563242, 0.18977058497421476, 0.1715234133420787, 0.043793211917126484, 0.051092080569980894, 0.003649434326427207, 0.003649434326427207, 0.003649434326427207, 0.007298868652854414, 0.018247171632136034, 0.043793211917126484, 0.025546040284990447, 0.010948302979281621, 0.22991436256491404, 0.003649434326427207, 0.1280081563247652, 0.04585366793722933, 0.05349594592676755, 0.03630082045030655, 0.06495936291107489, 0.04776423743461388, 0.003821138994769111, 0.06304879341369032, 0.08024391889015133, 0.08024391889015133, 0.028658542460768332, 0.06878050190584399, 0.032479681455537444, 0.02101626447123011, 0.07833334939276677, 0.10508132235615054, 0.011463416984307332, 0.013373986481691887, 0.028658542460768332, 0.007642277989538222, 0.9010077041807425, 0.08008957370495488, 0.932011500045398, 0.025889208334594387, 0.025889208334594387, 0.14303003156107508, 0.8479637585406593, 0.15071386134229697, 0.033491969187177104, 0.033491969187177104, 0.7200773375243078, 0.050237953780765655, 0.93034144841579, 0.9736634742674208, 0.9481434118552533, 0.010718698616906724, 0.13934308201978743, 0.042874794467626896, 0.7181528073327506, 0.021437397233813448, 0.010718698616906724, 0.021437397233813448, 0.010718698616906724, 0.927457088259724, 0.9390992473497042, 0.9673507338864957, 0.9417731148224849, 0.02114466213080091, 0.951509795886041, 0.9619456871251733, 0.025046403556032527, 0.012523201778016264, 0.012523201778016264, 0.5760672817887481, 0.12523201778016263, 0.025046403556032527, 0.16280162311421142, 0.037569605334048795, 0.011944487624842333, 0.011944487624842333, 0.35833462874527, 0.609168868866959, 0.9632709422571817, 0.04913038560600682, 0.02456519280300341, 0.8843469409081227, 0.0798950304964937, 0.013315838416082283, 0.6791077592201964, 0.0798950304964937, 0.14647422257690512, 0.9234381404688682, 0.901597911231031, 0.06761984334232732, 0.04522549496724812, 0.015075164989082707, 0.015075164989082707, 0.06030065995633083, 0.8140589094104662, 0.04522549496724812, 0.9529177556856231, 0.9715868140599646, 0.08156601297656771, 0.5328979514469091, 0.3806413938906493, 0.9706177793094047, 0.9237231714649995, 0.961433500414301, 0.9493713564779778, 0.9329164706155365, 0.04910086687450192, 0.7936451267373218, 0.09489235210989716, 0.01725315492907221, 0.01725315492907221, 0.04313288732268053, 0.03450630985814442, 0.9269642009012344, 0.06866401488157292, 0.9792012010089092, 0.05627027157399557, 0.014067567893498893, 0.014067567893498893, 0.05627027157399557, 0.05627027157399557, 0.7315135304619423, 0.05627027157399557, 0.8025871325703254, 0.1707632196958139, 0.9408181483093268, 0.9748508841172993, 0.9348396678442628, 0.9462783556485568, 0.9794079122907021, 0.02971294390383763, 0.02971294390383763, 0.011885177561535051, 0.36249791562681904, 0.05348329902690773, 0.035655532684605154, 0.005942588780767526, 0.06536847658844278, 0.047540710246140205, 0.24364614001146856, 0.07725365414997783, 0.011885177561535051, 0.02971294390383763, 0.9471338904287804, 0.06263679560416163, 0.9082335362603436, 0.11665039836851916, 0.845715388171764, 0.9334916601607003, 0.06087989088004567, 0.9303769309535195, 0.03001215906301676, 0.9864648368456519, 0.9409978888235516, 0.9454405254174794, 0.05792157828310061, 0.014480394570775152, 0.8398628851049588, 0.014480394570775152, 0.05792157828310061, 0.014480394570775152, 0.5384587967756128, 0.0065267732942498515, 0.013053546588499703, 0.0065267732942498515, 0.0065267732942498515, 0.009790159941374778, 0.0032633866471249258, 0.01631693323562463, 0.0032633866471249258, 0.0065267732942498515, 0.08158466617812316, 0.01631693323562463, 0.06526773294249852, 0.03589725311837418, 0.11095514600224748, 0.062004346295373595, 0.013053546588499703, 0.0032633866471249258, 0.012189993369372617, 0.02844331786186944, 0.018284990054058925, 0.0020316655615621026, 0.050791639039052566, 0.10767827476279145, 0.042664976792804156, 0.02844331786186944, 0.05282330460061467, 0.1503432515555956, 0.08939328470873252, 0.020316655615621026, 0.04875997347749047, 0.12189993369372616, 0.09955161251654303, 0.08329828802404621, 0.024379986738745234, 0.01422165893093472, 0.004063331123124205, 0.9290633309942498, 0.003653325156378982, 0.11507974242593794, 0.027399938672842367, 0.0821998160185271, 0.18997290813170709, 0.23381281000825485, 0.1022931043786115, 0.09498645406585354, 0.03287992640741084, 0.027399938672842367, 0.010959975469136947, 0.029226601251031856, 0.005479987734568473, 0.014613300625515928, 0.001826662578189491, 0.014613300625515928, 0.007306650312757964, 0.007306650312757964, 0.9611091660113781, 0.23941352727697557, 0.7332039272857377, 0.014963345454810973, 0.014963345454810973, 0.9586672823980579, 0.015211475987294179, 0.030422951974588358, 0.8974770832503566, 0.030422951974588358, 0.9589993331873224, 0.28209215956082223, 0.697806921018876, 0.09096341202935668, 0.8641524142788884, 0.04548170601467834, 0.9636444203812986, 0.9508011664566202, 0.9416195178283042, 0.06148197850887417, 0.12296395701774834, 0.08607476991242384, 0.04303738495621192, 0.0368891871053245, 0.006148197850887417, 0.01844459355266225, 0.516448619474543, 0.012296395701774834, 0.04918558280709934, 0.04303738495621192, 0.0038114262954724747, 0.8232680798220545, 0.034302836659252274, 0.011434278886417425, 0.011434278886417425, 0.0076228525909449495, 0.030491410363779798, 0.07241709961397702, 0.0038114262954724747, 0.9772462336510295, 0.011709092678953377, 0.90160013627941, 0.023418185357906754, 0.04683637071581351, 0.009035194239256122, 0.03614077695702449, 0.9306250066433805, 0.009035194239256122, 0.009035194239256122, 0.039889784477498004, 0.019944892238749002, 0.0049862230596872505, 0.10969690731311951, 0.03490356141781076, 0.03490356141781076, 0.08476579201468326, 0.054848453656559756, 0.08975201507437051, 0.009972446119374501, 0.05983467671624701, 0.04986223059687251, 0.28920093746186054, 0.09972446119374502, 0.0049862230596872505, 0.014958669179061752, 0.0049862230596872505, 0.9653002710593402, 0.012496937511585194, 0.012496937511585194, 0.7123254381603561, 0.2499387502317039, 0.9427465878809745, 0.9136695095426157, 0.7999172682587053, 0.09810306120153933, 0.07546389323195334, 0.007546389323195333, 0.007546389323195333, 0.007546389323195333, 0.9770020093322522, 0.05879561174955011, 0.6039912843362875, 0.016035166840786392, 0.032070333681572784, 0.14431650156707754, 0.005345055613595465, 0.0748307785903365, 0.02138022245438186, 0.005345055613595465, 0.01069011122719093, 0.026725278067977323, 0.20174729608803302, 0.03478401656690225, 0.006956803313380449, 0.020870409940141346, 0.11130885301408719, 0.020870409940141346, 0.006956803313380449, 0.006956803313380449, 0.37566737892254426, 0.04869762319366314, 0.04869762319366314, 0.06261122982042404, 0.020870409940141346, 0.013913606626760899, 0.013913606626760899, 0.9750299242582878, 0.07950990261103004, 0.06360792208882403, 0.5009123864494892, 0.08746089287213304, 0.1510688149609571, 0.047705941566618025, 0.05565693182772103, 0.007950990261103004, 0.019900630661950258, 0.029850945992925385, 0.009950315330975129, 0.019900630661950258, 0.07960252264780103, 0.009950315330975129, 0.6567208118443585, 0.009950315330975129, 0.14925472996462694, 0.9645026541200322, 0.9566117522795233, 0.9417755553396399, 0.9260594541032002, 0.04101534821922342, 0.013671782739741139, 0.08203069643844683, 0.8066351816447271, 0.013671782739741139, 0.013671782739741139, 0.027343565479482277, 0.9502644945963342, 0.19275161791415313, 0.6906932975257154, 0.0642505393047177, 0.016062634826179426, 0.016062634826179426, 0.04287087094300571, 0.9002882898031198, 0.028580580628670468, 0.028580580628670468, 0.005989927875313668, 0.03593956725188201, 0.15573812475815538, 0.1138086296309597, 0.041929495127195675, 0.07187913450376401, 0.27254171832677193, 0.014974819688284171, 0.014974819688284171, 0.05390935087782302, 0.002994963937656834, 0.017969783625941003, 0.05390935087782302, 0.014974819688284171, 0.032944603314225177, 0.09284388206736185, 0.15168769756564437, 0.009480481097852773, 0.056882886587116634, 0.07584384878282219, 0.056882886587116634, 0.587789828066872, 0.009480481097852773, 0.037921924391411094, 0.018960962195705547, 0.9378203566560597, 0.9726073037907054, 0.929143008954018, 0.0619428672636012, 0.9364742122984179, 0.04132336530680547, 0.6508430035821862, 0.0619850479602082, 0.010330841326701368, 0.22727850918743006, 0.9826503546244592, 0.8899012348508765, 0.026966704086390195, 0.05393340817278039, 0.9893449378518533, 0.02818075436302303, 0.02818075436302303, 0.02818075436302303, 0.873603385253714, 0.02818075436302303, 0.9721131498808881, 0.9501556202039191, 0.10893903812315042, 0.08624340518082742, 0.4993039247311061, 0.009078253176929202, 0.004539126588464601, 0.09078253176929202, 0.009078253176929202, 0.009078253176929202, 0.009078253176929202, 0.013617379765393803, 0.06808689882696901, 0.022695632942323005, 0.05446951906157521, 0.009078253176929202, 0.009078253176929202, 0.011305404864535367, 0.05652702432267683, 0.0678324291872122, 0.0339162145936061, 0.678324291872122, 0.14697026323895976, 0.9241986361082698, 0.051344368672681655, 0.15170420222821496, 0.097935624223278, 0.013442144501234238, 0.02304367628783012, 0.021123369930510946, 0.026884289002468476, 0.030724901717106828, 0.02304367628783012, 0.05376857800493695, 0.05568888436225612, 0.07105133522080954, 0.04608735257566024, 0.04608735257566024, 0.15170420222821496, 0.019203063573191768, 0.04800765893297942, 0.07105133522080954, 0.04800765893297942, 0.9402491155742113, 0.03760996462296845, 0.04174842713662994, 0.9184653970058587, 0.9687314841079211, 0.017939471927924465, 0.057361102268578656, 0.7839350643372416, 0.019120367422859552, 0.038240734845719104, 0.019120367422859552, 0.038240734845719104, 0.019120367422859552, 0.019120367422859552, 0.9482722197890355, 0.9571882976200128, 0.026588563822778133, 0.042307710666891776, 0.9307696346716191, 0.9641764559676002, 0.22906929876672036, 0.7482930426379532, 0.05174497874573788, 0.03557467288769479, 0.0032340611716086174, 0.6435781731501148, 0.006468122343217235, 0.03557467288769479, 0.02587248937286894, 0.09702183514825852, 0.029106550544477555, 0.04851091757412926, 0.02263842820126032, 0.6472219221356317, 0.04515501782341617, 0.07525836303902694, 0.22577508911708083, 0.9593883068895673, 0.04491781630566113, 0.038500985404852396, 0.07058513990889606, 0.10266929441293972, 0.012833661801617465, 0.06416830900808732, 0.5903484428744034, 0.012833661801617465, 0.03208415450404366, 0.02566732360323493, 0.966204252945036, 0.9621386372828129, 0.20079080976584704, 0.7808531490894052, 0.9215866242838433, 0.049815493204532074, 0.014040050258590514, 0.04212015077577154, 0.631802261636573, 0.12636045232731463, 0.12636045232731463, 0.056160201034362055, 0.09995358210863989, 0.0038443685426399954, 0.0038443685426399954, 0.0038443685426399954, 0.019221842713199978, 0.26910579798479967, 0.057665528139599936, 0.023066211255839974, 0.11533105627919987, 0.0922648450233599, 0.019221842713199978, 0.023066211255839974, 0.0038443685426399954, 0.22681774401575974, 0.03459931688375996, 0.0038443685426399954, 0.01498670519713309, 0.8842156066308524, 0.07493352598566545, 0.9772960463999949, 0.03023856303891892, 0.10079521012972974, 0.06719680675315315, 0.016799201688288287, 0.03023856303891892, 0.033598403376576574, 0.033598403376576574, 0.10415505046738739, 0.04367792438954955, 0.04031808405189189, 0.033598403376576574, 0.07727632776612613, 0.08399600844144145, 0.1679920168828829, 0.10079521012972974, 0.020159042025945945, 0.016799201688288287, 0.16343070184557784, 0.8171535092278892, 0.9535438792731651, 0.09182198091758345, 0.10329972853228138, 0.03443324284409379, 0.66570936165248, 0.06886648568818758, 0.022955495229395863, 0.9635108774723302, 0.04225356901701517, 0.9295785183743338, 0.9212761530915454, 0.040055484917023716, 0.9193196400967885, 0.006759703236005797, 0.006759703236005797, 0.060837329124052174, 0.025224891679755654, 0.10720578963896153, 0.06306222919938913, 0.08198089795920588, 0.01891866875981674, 0.20179913343804523, 0.39098582103621266, 0.0063062229199389135, 0.08198089795920588, 0.012612445839877827, 0.0063062229199389135, 0.955644973039856, 0.985364957293595, 0.08980836963400447, 0.019957415474223215, 0.04561694965536735, 0.008553178060381379, 0.07270201351324171, 0.011404237413841837, 0.03136165288806505, 0.04419141997863712, 0.1297232005824509, 0.05702118706920919, 0.08268072125035332, 0.09265942898746493, 0.03991483094844643, 0.08980836963400447, 0.008553178060381379, 0.03706377159498597, 0.049893538685558035, 0.027085063857874365, 0.0627233057761301, 0.04020677670847815, 0.9448592526492366, 0.9262136697436953, 0.06946602523077715, 0.9497931550453521, 0.09972974417441426, 0.04986487208720713, 0.08587839081685672, 0.03324324805813809, 0.016621624029069044, 0.08587839081685672, 0.05263514275871864, 0.1495946162616214, 0.024932436043603564, 0.08864866148836824, 0.0027702706715115074, 0.008310812014534522, 0.07202703745929918, 0.027702706715115072, 0.17452705230522497, 0.027702706715115072, 0.9270524384006192, 0.9526928018742953, 0.0334598026446777, 0.9201445727286367, 0.01672990132233885, 0.9535948363046735, 0.9836875810322567, 0.01992578797981062, 0.15940630383848495, 0.01992578797981062, 0.01992578797981062, 0.7372541552529929, 0.01992578797981062, 0.9701684560793241, 0.004662300813279278, 0.06993451219918917, 0.34501026018266656, 0.07459681301246845, 0.02797380487967567, 0.16784282927805402, 0.023311504066396392, 0.013986902439837835, 0.004662300813279278, 0.03263610569295495, 0.0652722113859099, 0.14453132521165762, 0.018649203253117114, 0.009324601626558557, 0.9182088425863137, 0.9343723573676156, 0.045579139383786126, 0.8466056211556057, 0.016932112423112114, 0.008466056211556057, 0.10159267453867268, 0.016932112423112114, 0.10748700137946661, 0.030710571822704747, 0.5527902928086854, 0.1689081450248761, 0.03838821477838093, 0.09213171546811424, 0.015355285911352374, 0.9732272469501049, 0.9629893527348685, 0.9440660492747251, 0.957473902198526, 0.12423949879766513, 0.017748499828237875, 0.8519279917554181, 0.9604079561674933, 0.024771279107113388, 0.9413086060703088, 0.957281189384741, 0.0016604806089438977, 0.16438758028544587, 0.04981441826831693, 0.024907209134158465, 0.0714006661845876, 0.016604806089438977, 0.0714006661845876, 0.0630982631398681, 0.006641922435775591, 0.08468451105613878, 0.029888650960990158, 0.02158624791627067, 0.07970306922930709, 0.06807970496669981, 0.03819105400570964, 0.059777301921980316, 0.02822817035204626, 0.026567689743102363, 0.03819105400570964, 0.05479586009514862, 0.008867843189883297, 0.002955947729961099, 0.002955947729961099, 0.14779738649805493, 0.05025111140933868, 0.13301764784824946, 0.14188549103813275, 0.17440091606770483, 0.10641411827859956, 0.005911895459922198, 0.02955947729961099, 0.02364758183968879, 0.011823790919844396, 0.02364758183968879, 0.10937006600856065, 0.005911895459922198, 0.005911895459922198, 0.014779738649805495, 0.6829054831117612, 0.06582221523968783, 0.041138884524804895, 0.008227776904960979, 0.024683330714882934, 0.16455553809921958, 0.6626375771895907, 0.0108629111014687, 0.3150244219425923, 0.03246401539986245, 0.021642676933241633, 0.08657070773296653, 0.09739204619958734, 0.08657070773296653, 0.003607112822206939, 0.014428451288827755, 0.3246401539986245, 0.2416765590878649, 0.014428451288827755, 0.02885690257765551, 0.018035564111034692, 0.021642676933241633, 0.007214225644413878, 0.034215509704160374, 0.03991809465485378, 0.07413360435901416, 0.011405169901386793, 0.0057025849506933965, 0.017107754852080187, 0.0057025849506933965, 0.273724077633283, 0.04562067960554717, 0.05132326455624057, 0.42199128635131133, 0.022810339802773586, 0.030164978202375535, 0.9351143242736415, 0.07830459305632897, 0.08751689812177944, 0.004606152532725233, 0.013818457598175701, 0.018424610130900933, 0.009212305065450467, 0.11515381331813083, 0.055273830392702804, 0.19345840637445982, 0.26715684689806357, 0.09672920318722991, 0.018424610130900933, 0.03684922026180187, 0.9490679807837745, 0.9372601808358922, 0.03905250753482884, 0.9649596845165358, 0.9758982000745595, 0.020738071222795168, 0.0622142136683855, 0.8917370625801921, 0.024130480820832738, 0.20242792244143018, 0.2721382003682803, 0.11529007503286752, 0.038876885766897185, 0.11260891049721944, 0.05362329071296164, 0.001340582267824041, 0.037536303499073144, 0.006702911339120205, 0.008043493606944245, 0.02681164535648082, 0.024130480820832738, 0.006702911339120205, 0.03217397442777698, 0.03217397442777698, 0.001340582267824041, 0.002681164535648082, 0.002681164535648082, 0.969898650620787, 0.9565758547890224, 0.9301815373163305, 0.03100605124387768, 0.9421520996208369, 0.9616763993646847, 0.010688312688530278, 0.010688312688530278, 0.5344156344265139, 0.1496363776394239, 0.2351428791476661, 0.03206493806559083, 0.03157804328774746, 0.03789365194529695, 0.18946825972648476, 0.050524869260395934, 0.12631217315098983, 0.018946825972648476, 0.050524869260395934, 0.3536740848227715, 0.10104973852079187, 0.03789365194529695, 0.018696557039571713, 0.6076381037860807, 0.018696557039571713, 0.009348278519785857, 0.07478622815828685, 0.009348278519785857, 0.196313848915503, 0.04674139259892929, 0.009348278519785857, 0.8991288910129122, 0.06660214007503053, 0.027980284112011197, 0.9513296598083807, 0.0019013618174559797, 0.009506809087279898, 0.026619065444383718, 0.015210894539647838, 0.013309532722191859, 0.2985138053405888, 0.032323150896751654, 0.039928598166575575, 0.11788443268227075, 0.015210894539647838, 0.04943540725385547, 0.07035038724587125, 0.04373132180148753, 0.04182995998403156, 0.03802723634911959, 0.07985719633315115, 0.053238130888767436, 0.0475340454363995, 0.0038027236349119594, 0.0019013618174559797, 0.1609485582531157, 0.017883173139235077, 0.8047427912655785, 0.031198845634412036, 0.935965369032361, 0.9550881201299258, 0.9671587845822657, 0.01475071083922229, 0.01475071083922229, 0.11800568671377833, 0.10325497587455604, 0.70803412028267, 0.01475071083922229, 0.013235596445525018, 0.052942385782100074, 0.0661779822276251, 0.013235596445525018, 0.013235596445525018, 0.6882510151673009, 0.1323559644552502, 0.9338069185643826, 0.9621514779580242, 0.9254927346086844, 0.01623671464225762, 0.01623671464225762, 0.01623671464225762, 0.01862551553095328, 0.08847119877202807, 0.00465637888273832, 0.01862551553095328, 0.00931275776547664, 0.2980082484952525, 0.00931275776547664, 0.1210658509511963, 0.13503498759941127, 0.09778395653750471, 0.00465637888273832, 0.14900412424762624, 0.041907409944644876, 0.04167434423630697, 0.010418586059076742, 0.031255758177230225, 0.5834408193082975, 0.06251151635446045, 0.010418586059076742, 0.10418586059076741, 0.010418586059076742, 0.13544161876799765, 0.010418586059076742, 0.987710741951357, 0.9769345034346646, 0.961001489007292, 0.03332713248198743, 0.7554150029250484, 0.011109044160662477, 0.13330852992794973, 0.022218088321324953, 0.044436176642649906, 0.011442629034865155, 0.35186084282210356, 0.02860657258716289, 0.03146722984587918, 0.002860657258716289, 0.02860657258716289, 0.27176243957804747, 0.0772377459853398, 0.10012300405507012, 0.008581971776148866, 0.08295906050277238, 0.002860657258716289, 0.014857515737859131, 0.08914509442715479, 0.7428757868929565, 0.11886012590287305, 0.014857515737859131, 0.014857515737859131, 0.9564185675026613, 0.01875330524515022, 0.01875330524515022, 0.06041607837398887, 0.8911371560163359, 0.030208039186994436, 0.04008670356092913, 0.020043351780464565, 0.04008670356092913, 0.8819074783404408, 0.9659914831752124, 0.07530758667060208, 0.00941344833382526, 0.01882689666765052, 0.866037246711924, 0.00941344833382526, 0.00941344833382526, 0.7026958023732108, 0.08970584711147372, 0.014950974518578955, 0.014950974518578955, 0.05980389807431582, 0.014950974518578955, 0.08970584711147372, 0.9605816653956505, 0.05724162750333329, 0.010101463677058815, 0.043773009267254866, 0.011785040956568618, 0.09764748221156855, 0.04545658654676467, 0.08417886397549013, 0.05219089566480388, 0.0050507318385294075, 0.011785040956568618, 0.22896651001333315, 0.0050507318385294075, 0.09091317309352934, 0.07407740029843131, 0.031987968310686246, 0.055558050223823485, 0.05219089566480388, 0.028620813751666644, 0.01346861823607842, 0.09916568680338951, 0.013222091573785268, 0.029749706041016854, 0.04627732050824844, 0.0760270265492653, 0.2148589880740106, 0.06280493497548002, 0.04297179761480212, 0.04297179761480212, 0.016527614467231586, 0.04627732050824844, 0.02313866025412422, 0.006611045786892634, 0.026444183147570535, 0.00991656868033895, 0.056193889188587386, 0.18510928203299376, 0.9236187208399819, 0.055417123250398916, 0.04065840272887033, 0.9351432627640175, 0.9686553593111805, 0.010133401322457101, 0.800538704474111, 0.010133401322457101, 0.040533605289828405, 0.010133401322457101, 0.09120061190211391, 0.020266802644914202, 0.039856775817415487, 0.0056938251167736416, 0.03606089240623306, 0.0056938251167736416, 0.06263207628451005, 0.05883619287332763, 0.09489708527956069, 0.0816114933404222, 0.0037958834111824274, 0.02467324217268578, 0.20307976249825987, 0.09299914357396948, 0.022775300467094566, 0.028469125583868205, 0.03036706728945942, 0.10438679380751675, 0.0683259014012837, 0.011387650233547283, 0.022775300467094566, 0.9482323868130259, 0.9764338037850783, 0.9731934010536342, 0.9638018091484646, 0.9577326316256388, 0.9486805359344305, 0.0223959997963324, 0.014930666530888264, 0.007465333265444132, 0.0447919995926648, 0.17170266510521504, 0.014930666530888264, 0.014930666530888264, 0.0223959997963324, 0.1791679983706592, 0.0447919995926648, 0.44791999592664794, 0.035873140145335665, 0.7174628029067133, 0.035873140145335665, 0.12555599050867483, 0.0538097102180035, 0.017936570072667832, 0.006289491134025346, 0.990594853608992, 0.9197470162326317, 0.0353748852397166, 0.9425125611138429, 0.010158134804529815, 0.010158134804529815, 0.13205575245888762, 0.010158134804529815, 0.030474404413589447, 0.02031626960905963, 0.030474404413589447, 0.010158134804529815, 0.7009113015125573, 0.02031626960905963, 0.010158134804529815, 0.06207298092227889, 0.05320541221909619, 0.008867568703182699, 0.026602706109548097, 0.026602706109548097, 0.008867568703182699, 0.07980811832864429, 0.6828027901450678, 0.035470274812730795, 0.008867568703182699, 0.004795782388202578, 0.2709617049334457, 0.1534650364224825, 0.09831353895815285, 0.06474306224073481, 0.10071143015225414, 0.07673251821124125, 0.04076415029972191, 0.007193673582303868, 0.01918312955281031, 0.014387347164607735, 0.031172585523316757, 0.014387347164607735, 0.004795782388202578, 0.04555993268792449, 0.014387347164607735, 0.007193673582303868, 0.03357047671741805, 0.002397891194101289, 0.946391246454288, 0.9871539852148853, 0.9111925951170547, 0.033134276186074715, 0.04970141427911207, 0.29858459348708766, 0.0042859032557955165, 0.024286785116174596, 0.06285991441833425, 0.021429516278977583, 0.017143613023182066, 0.03428722604636413, 0.005714537674394022, 0.05857401116253873, 0.18857974325500274, 0.01285770976738655, 0.03142995720916712, 0.04000176372075816, 0.07286035534852378, 0.09428987162750137, 0.008571806511591033, 0.0014286344185985055, 0.021429516278977583, 0.014289004876738379, 0.9716523316182099, 0.9566219669704533, 0.020353658871711772, 0.033247938775648994, 0.9309422857181717, 0.9199218309178182, 0.043805801472277056, 0.9521586359568844, 0.0549026781502483, 0.022304212998538374, 0.06862834768781038, 0.11323677368488713, 0.012009960845366817, 0.012009960845366817, 0.07892259984098193, 0.0549026781502483, 0.11838389976147291, 0.08750114330195824, 0.09607968676293453, 0.022304212998538374, 0.0017157086921952595, 0.11152106499269186, 0.07720689114878668, 0.04632413468927201, 0.020588504306343115, 0.9250005365360076, 0.011871926075470092, 0.015263904954175832, 0.08479947196764351, 0.07123155645282055, 0.028831820468998796, 0.042399735983821754, 0.04409572542317463, 0.07631952477087917, 0.11871926075470092, 0.0627516092560562, 0.06953556701346768, 0.06105561981670333, 0.033919788787057405, 0.006783957757411481, 0.03900775710511602, 0.07801551421023203, 0.04748770430188037, 0.005087968318058611, 0.10345535580052509, 0.9741191425228679, 0.08355001205971978, 0.015544188290180424, 0.017487211826452978, 0.04080349426172361, 0.06800582376953936, 0.10103722388617276, 0.015544188290180424, 0.2020744477723455, 0.18264421240961998, 0.007772094145090212, 0.09326512974108254, 0.060233729624449145, 0.015544188290180424, 0.007772094145090212, 0.005829070608817659, 0.03886047072545106, 0.034974423652905956, 0.007772094145090212, 0.07605857333871983, 0.8873500222850648, 0.02535285777957328, 0.9821480846449839, 0.00982148084644984, 0.012969519014406959, 0.014590708891207829, 0.07457473433284001, 0.061605215318433056, 0.022696658275212177, 0.038908557043220875, 0.014590708891207829, 0.043772126673623485, 0.07295354445603915, 0.056741645688030445, 0.012969519014406959, 0.18967921558570178, 0.048635696304026095, 0.0697111647024374, 0.025939038028813918, 0.025939038028813918, 0.050256886180826965, 0.038908557043220875, 0.12321043063686611, 0.03201026957147115, 0.7682464697153076, 0.17605648264309134, 0.9639745046458891, 0.05546410502055653, 0.027732052510278264, 0.027732052510278264, 0.8596936278186261, 0.9444008358292206, 0.0290083522946048, 0.8992589211327487, 0.03899868488587124, 0.054598158840219735, 0.12089592314620085, 0.19499342442935622, 0.03509881639728412, 0.09359684372609098, 0.0038998684885871242, 0.0038998684885871242, 0.15209487105489783, 0.22229250384946608, 0.011699605465761372, 0.06629776430598111, 0.03596239977442265, 0.12906132255493735, 0.05142287070548285, 0.02386290078489727, 0.06957211918977091, 0.03999556610426444, 0.0719247995488453, 0.08402429853837066, 0.011427304601218411, 0.03125703905627389, 0.0349541081919622, 0.04234824646333882, 0.024198997979050754, 0.07394138271376618, 0.09377111716882167, 0.03192923344458085, 0.04100385768672489, 0.04604531559902713, 0.044700926822413195, 0.017813151290134582, 0.05448349001403091, 0.9080581669005152, 0.018161163338010305]}};\n", | |
"\n", | |
"function LDAvis_load_lib(url, callback){\n", | |
" var s = document.createElement('script');\n", | |
" s.src = url;\n", | |
" s.async = true;\n", | |
" s.onreadystatechange = s.onload = callback;\n", | |
" s.onerror = function(){console.warn(\"failed to load library \" + url);};\n", | |
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
"}\n", | |
"\n", | |
"if(typeof(LDAvis) !== \"undefined\"){\n", | |
" // already loaded: just create the visualization\n", | |
" !function(LDAvis){\n", | |
" new LDAvis(\"#\" + \"ldavis_el768025710221694568148448306\", ldavis_el768025710221694568148448306_data);\n", | |
" }(LDAvis);\n", | |
"}else if(typeof define === \"function\" && define.amd){\n", | |
" // require.js is available: use it to load d3/LDAvis\n", | |
" require.config({paths: {d3: \"https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min\"}});\n", | |
" require([\"d3\"], function(d3){\n", | |
" window.d3 = d3;\n", | |
" LDAvis_load_lib(\"https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.js\", function(){\n", | |
" new LDAvis(\"#\" + \"ldavis_el768025710221694568148448306\", ldavis_el768025710221694568148448306_data);\n", | |
" });\n", | |
" });\n", | |
"}else{\n", | |
" // require.js not available: dynamically load d3 & LDAvis\n", | |
" LDAvis_load_lib(\"https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js\", function(){\n", | |
" LDAvis_load_lib(\"https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.js\", function(){\n", | |
" new LDAvis(\"#\" + \"ldavis_el768025710221694568148448306\", ldavis_el768025710221694568148448306_data);\n", | |
" })\n", | |
" });\n", | |
"}\n", | |
"</script>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"execution_count": 60, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pyLDAvis.display(LDAvis_prepared)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Describing text with LDA\n", | |
"Beyond data exploration, one of the key uses for an LDA model is providing a compact, quantitative description of natural language text. Once an LDA model has been trained, it can be used to represent free text as a mixture of the topics the model learned from the original corpus. This mixture can be interpreted as a probability distribution across the topics, so the LDA representation of a paragraph of text might look like 50% _Topic A_, 20% _Topic B_, 20% _Topic C_, and 10% _Topic D_.\n", | |
"\n", | |
"To use an LDA model to generate a vector representation of new text, you'll need to apply any text preprocessing steps you used on the model's training corpus to the new text, too. For our model, the preprocessing steps we used include:\n", | |
"1. Using spaCy to remove punctuation and lemmatize the text\n", | |
"1. Applying our first-order phrase model to join word pairs\n", | |
"1. Applying our second-order phrase model to join longer phrases\n", | |
"1. Removing stopwords\n", | |
"1. Creating a bag-of-words representation\n", | |
"\n", | |
"Once you've applied these preprocessing steps to the new text, it's ready to pass directly to the model to create an LDA representation. The `lda_description(...)` function will perform all these steps for us, including printing the resulting topical description of the input text." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 73, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_sample_desc(desc):\n", | |
" \"\"\"\n", | |
" retrieve a particular review index\n", | |
" from the reviews file and return it\n", | |
" \"\"\"\n", | |
" \n", | |
" return list(it.islice(line_review(desc_txt_filepath),\n", | |
" desc, desc+1))[0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 74, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def lda_description(desc_text, min_topic_freq=0.05):\n", | |
" \"\"\"\n", | |
" accept the original text of a review and (1) parse it with spaCy,\n", | |
" (2) apply text pre-proccessing steps, (3) create a bag-of-words\n", | |
" representation, (4) create an LDA representation, and\n", | |
" (5) print a sorted list of the top topics in the LDA representation\n", | |
" \"\"\"\n", | |
" \n", | |
" # parse the review text with spaCy\n", | |
" parsed_desc = nlp(desc_text)\n", | |
" \n", | |
" # lemmatize the text and remove punctuation and whitespace\n", | |
" unigram_desc = [token.lemma_ for token in parsed_desc\n", | |
" if not punct_space(token)]\n", | |
" \n", | |
" # apply the first-order and secord-order phrase models\n", | |
" bigram_desc = bigram_model[unigram_desc]\n", | |
" trigram_desc = trigram_model[bigram_desc]\n", | |
" \n", | |
" # remove any remaining stopwords\n", | |
" trigram_desc = [term for term in trigram_desc\n", | |
" if not term in spacy.en.stop_words.STOP_WORDS]\n", | |
" \n", | |
" # create a bag-of-words representation\n", | |
" desc_bow = trigram_dictionary.doc2bow(trigram_desc)\n", | |
" \n", | |
" # create an LDA representation\n", | |
" desc_lda = lda[desc_bow]\n", | |
" \n", | |
" # sort with the most highly related topics first\n", | |
" desc_lda = sorted(desc_lda, key=lambda topic_lda: -topic_lda[1])\n", | |
" \n", | |
" for topic_number, freq in desc_lda:\n", | |
" if freq < min_topic_freq:\n", | |
" break\n", | |
" \n", | |
" # print the most highly related topic names and frequencies\n", | |
" print('{:2} {}'.format(topic_names[topic_number],\n", | |
" round(freq, 2)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 75, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\"A UK watchdog says so-called Islamic State plans \"\"indiscriminate attacks on innocent civilians\"\".\"\r\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"sample_desc = get_sample_desc(25)\n", | |
"print(sample_desc)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 76, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Entertainment 0.51\n", | |
"Crime 0.21\n", | |
"Travel Ban 0.16\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\models\\phrases.py:274: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n", | |
" warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n" | |
] | |
} | |
], | |
"source": [ | |
"lda_description(sample_desc)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 78, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\"Former Coronation Street actress Paula Williamson, 36, spoke about her seven-year career in the sex industry to Bronson during a visit to HMP Wakefield.\"\r\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"sample_desc= get_sample_desc(100)\n", | |
"print(sample_desc)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 80, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"US Budget 0.37\n", | |
"UNK4 0.25\n", | |
"TV series 0.18\n", | |
"UNK3 0.11\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gensim\\models\\phrases.py:274: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n", | |
" warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n" | |
] | |
} | |
], | |
"source": [ | |
"lda_description(sample_desc)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Word Vector Embedding with Word2Vec" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Pop quiz! Can you complete this text snippet?\n", | |
"\n", | |
"<br><br>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<br><br><br>\n", | |
"You just demonstrated the core machine learning concept behind word vector embedding models!\n", | |
"<br><br><br>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The goal of *word vector embedding models*, or *word vector models* for short, is to learn dense, numerical vector representations for each term in a corpus vocabulary. If the model is successful, the vectors it learns about each term should encode some information about the *meaning* or *concept* the term represents, and the relationship between it and other terms in the vocabulary. Word vector models are also fully unsupervised &mdash they learn all of these meanings and relationships solely by analyzing the text of the corpus, without any advance knowledge provided.\n", | |
"\n", | |
"Perhaps the best-known word vector model is [word2vec](https://arxiv.org/pdf/1301.3781v3.pdf), originally proposed in 2013. The general idea of word2vec is, for a given *focus word*, to use the *context* of the word — i.e., the other words immediately before and after it — to provide hints about what the focus word might mean. To do this, word2vec uses a *sliding window* technique, where it considers snippets of text only a few tokens long at a time.\n", | |
"\n", | |
"At the start of the learning process, the model initializes random vectors for all terms in the corpus vocabulary. The model then slides the window across every snippet of text in the corpus, with each word taking turns as the focus word. Each time the model considers a new snippet, it tries to learn some information about the focus word based on the surrouding context, and it \"nudges\" the words' vector representations accordingly. One complete pass sliding the window across all of the corpus text is known as a training *epoch*. It's common to train a word2vec model for multiple passes/epochs over the corpus. Over time, the model rearranges the terms' vector representations such that terms that frequently appear in similar contexts have vector representations that are *close* to each other in vector space.\n", | |
"\n", | |
"For a deeper dive into word2vec's machine learning process, see [here](https://arxiv.org/pdf/1411.2738v4.pdf).\n", | |
"\n", | |
"Word2vec has a number of user-defined hyperparameters, including:\n", | |
"- The dimensionality of the vectors. Typical choices include a few dozen to several hundred.\n", | |
"- The width of the sliding window, in tokens. Five is a common default choice, but narrower and wider windows are possible.\n", | |
"- The number of training epochs.\n", | |
"\n", | |
"For using word2vec in Python, [gensim](https://rare-technologies.com/deep-learning-with-word2vec-and-gensim/) comes to the rescue again! It offers a [highly-optimized](https://rare-technologies.com/word2vec-in-python-part-two-optimizing/), [parallelized](https://rare-technologies.com/parallelizing-word2vec-in-python/) implementation of the word2vec algorithm with its [Word2Vec](https://radimrehurek.com/gensim/models/word2vec.html) class." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 81, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from gensim.models import Word2Vec\n", | |
"\n", | |
"trigram_sentences = LineSentence(trigram_sentences_filepath)\n", | |
"word2vec_filepath = os.path.join(intermediate_directory, 'word2vec_model_all')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We'll train our word2vec model using the normalized sentences with our phrase models applied. We'll use 100-dimensional vectors, and set up our training process to run for twelve epochs." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 82, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"12 training epochs so far.\n", | |
"Wall time: 3min 29s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"# this is a bit time consuming - make the if statement True\n", | |
"# if you want to train the word2vec model yourself.\n", | |
"if 1 == 1:\n", | |
"\n", | |
" # initiate the model and perform the first epoch of training\n", | |
" recall2vec = Word2Vec(trigram_sentences, size=100, window=5,\n", | |
" min_count=20, sg=1, workers=1)\n", | |
" \n", | |
" recall2vec.save(word2vec_filepath)\n", | |
"\n", | |
" # perform another 11 epochs of training\n", | |
" for i in range(1,12):\n", | |
"\n", | |
" recall2vec.train(trigram_sentences)\n", | |
" recall2vec.save(word2vec_filepath)\n", | |
" \n", | |
"# load the finished model from disk\n", | |
"recall2vec = Word2Vec.load(word2vec_filepath)\n", | |
"recall2vec.init_sims()\n", | |
"\n", | |
"print('{} training epochs so far.'.format(recall2vec.train_count))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 83, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"3,574 terms in the recall2vec vocabulary.\n" | |
] | |
} | |
], | |
"source": [ | |
"print('{:,} terms in the recall2vec vocabulary.'.format(len(recall2vec.wv.vocab)))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's take a peek at the word vectors our model has learned. We'll create a pandas DataFrame with the terms as the row labels, and the 100 dimensions of the word vector model as the columns." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 84, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>...</th>\n", | |
" <th>90</th>\n", | |
" <th>91</th>\n", | |
" <th>92</th>\n", | |
" <th>93</th>\n", | |
" <th>94</th>\n", | |
" <th>95</th>\n", | |
" <th>96</th>\n", | |
" <th>97</th>\n", | |
" <th>98</th>\n", | |
" <th>99</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>the</th>\n", | |
" <td>0.002429</td>\n", | |
" <td>-0.117696</td>\n", | |
" <td>0.081637</td>\n", | |
" <td>0.150256</td>\n", | |
" <td>-0.095737</td>\n", | |
" <td>-0.037604</td>\n", | |
" <td>-0.194618</td>\n", | |
" <td>0.193092</td>\n", | |
" <td>-0.062545</td>\n", | |
" <td>-0.091891</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.116249</td>\n", | |
" <td>-0.061802</td>\n", | |
" <td>-0.029034</td>\n", | |
" <td>-0.070177</td>\n", | |
" <td>0.058084</td>\n", | |
" <td>-0.125219</td>\n", | |
" <td>0.022664</td>\n", | |
" <td>0.004382</td>\n", | |
" <td>0.231636</td>\n", | |
" <td>-0.051400</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>be</th>\n", | |
" <td>-0.038380</td>\n", | |
" <td>-0.065649</td>\n", | |
" <td>0.117450</td>\n", | |
" <td>0.012678</td>\n", | |
" <td>0.115999</td>\n", | |
" <td>-0.044034</td>\n", | |
" <td>-0.129380</td>\n", | |
" <td>-0.026304</td>\n", | |
" <td>-0.020176</td>\n", | |
" <td>0.016766</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.265466</td>\n", | |
" <td>-0.267629</td>\n", | |
" <td>0.014311</td>\n", | |
" <td>0.022319</td>\n", | |
" <td>0.065673</td>\n", | |
" <td>-0.072681</td>\n", | |
" <td>0.056618</td>\n", | |
" <td>0.022661</td>\n", | |
" <td>0.291493</td>\n", | |
" <td>0.028192</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>a</th>\n", | |
" <td>0.039630</td>\n", | |
" <td>-0.006076</td>\n", | |
" <td>0.242709</td>\n", | |
" <td>0.164494</td>\n", | |
" <td>0.018715</td>\n", | |
" <td>-0.068876</td>\n", | |
" <td>-0.149067</td>\n", | |
" <td>-0.053870</td>\n", | |
" <td>0.104615</td>\n", | |
" <td>0.087219</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.199871</td>\n", | |
" <td>-0.231434</td>\n", | |
" <td>-0.076976</td>\n", | |
" <td>0.149460</td>\n", | |
" <td>-0.022972</td>\n", | |
" <td>-0.125215</td>\n", | |
" <td>0.128036</td>\n", | |
" <td>0.174413</td>\n", | |
" <td>0.088293</td>\n", | |
" <td>-0.063436</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>to</th>\n", | |
" <td>-0.074343</td>\n", | |
" <td>0.023017</td>\n", | |
" <td>0.080571</td>\n", | |
" <td>0.234742</td>\n", | |
" <td>0.036571</td>\n", | |
" <td>-0.074866</td>\n", | |
" <td>-0.095007</td>\n", | |
" <td>0.001376</td>\n", | |
" <td>-0.018024</td>\n", | |
" <td>0.207994</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.191816</td>\n", | |
" <td>-0.027370</td>\n", | |
" <td>0.034580</td>\n", | |
" <td>-0.003843</td>\n", | |
" <td>-0.249868</td>\n", | |
" <td>-0.157277</td>\n", | |
" <td>0.223993</td>\n", | |
" <td>0.033954</td>\n", | |
" <td>0.169415</td>\n", | |
" <td>-0.245618</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>of</th>\n", | |
" <td>0.029145</td>\n", | |
" <td>0.105133</td>\n", | |
" <td>0.138611</td>\n", | |
" <td>-0.015117</td>\n", | |
" <td>-0.082952</td>\n", | |
" <td>-0.043018</td>\n", | |
" <td>-0.057190</td>\n", | |
" <td>0.133605</td>\n", | |
" <td>0.013662</td>\n", | |
" <td>-0.029294</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.153332</td>\n", | |
" <td>-0.123974</td>\n", | |
" <td>0.109207</td>\n", | |
" <td>0.017210</td>\n", | |
" <td>0.092598</td>\n", | |
" <td>0.000070</td>\n", | |
" <td>0.040338</td>\n", | |
" <td>-0.110079</td>\n", | |
" <td>0.351764</td>\n", | |
" <td>-0.242360</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>in</th>\n", | |
" <td>0.082453</td>\n", | |
" <td>0.014389</td>\n", | |
" <td>0.113877</td>\n", | |
" <td>0.200570</td>\n", | |
" <td>-0.021273</td>\n", | |
" <td>-0.104283</td>\n", | |
" <td>-0.158816</td>\n", | |
" <td>0.223708</td>\n", | |
" <td>0.124502</td>\n", | |
" <td>-0.078993</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.154863</td>\n", | |
" <td>-0.156308</td>\n", | |
" <td>-0.082026</td>\n", | |
" <td>-0.000164</td>\n", | |
" <td>-0.042860</td>\n", | |
" <td>-0.214295</td>\n", | |
" <td>0.300133</td>\n", | |
" <td>-0.075646</td>\n", | |
" <td>0.136757</td>\n", | |
" <td>0.020359</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>and</th>\n", | |
" <td>0.123636</td>\n", | |
" <td>-0.019682</td>\n", | |
" <td>0.003538</td>\n", | |
" <td>0.083421</td>\n", | |
" <td>0.139577</td>\n", | |
" <td>-0.012999</td>\n", | |
" <td>-0.114522</td>\n", | |
" <td>0.128361</td>\n", | |
" <td>-0.057063</td>\n", | |
" <td>-0.096928</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.130418</td>\n", | |
" <td>-0.228353</td>\n", | |
" <td>0.051937</td>\n", | |
" <td>-0.094229</td>\n", | |
" <td>-0.036228</td>\n", | |
" <td>-0.058150</td>\n", | |
" <td>0.202557</td>\n", | |
" <td>-0.038099</td>\n", | |
" <td>0.248225</td>\n", | |
" <td>-0.318656</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>have</th>\n", | |
" <td>-0.028097</td>\n", | |
" <td>-0.062568</td>\n", | |
" <td>0.158553</td>\n", | |
" <td>0.223041</td>\n", | |
" <td>-0.063416</td>\n", | |
" <td>0.090147</td>\n", | |
" <td>-0.140434</td>\n", | |
" <td>-0.127836</td>\n", | |
" <td>-0.066042</td>\n", | |
" <td>0.055509</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.207106</td>\n", | |
" <td>-0.418309</td>\n", | |
" <td>-0.066265</td>\n", | |
" <td>-0.014496</td>\n", | |
" <td>-0.090792</td>\n", | |
" <td>0.014138</td>\n", | |
" <td>0.120813</td>\n", | |
" <td>-0.016787</td>\n", | |
" <td>0.286776</td>\n", | |
" <td>-0.064353</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>for</th>\n", | |
" <td>-0.017072</td>\n", | |
" <td>-0.013024</td>\n", | |
" <td>0.094448</td>\n", | |
" <td>0.220435</td>\n", | |
" <td>0.138748</td>\n", | |
" <td>0.002925</td>\n", | |
" <td>-0.191999</td>\n", | |
" <td>-0.112060</td>\n", | |
" <td>0.058797</td>\n", | |
" <td>-0.070895</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.355704</td>\n", | |
" <td>-0.272579</td>\n", | |
" <td>-0.247733</td>\n", | |
" <td>0.096593</td>\n", | |
" <td>-0.039814</td>\n", | |
" <td>-0.175989</td>\n", | |
" <td>0.241105</td>\n", | |
" <td>-0.023037</td>\n", | |
" <td>0.163303</td>\n", | |
" <td>-0.083945</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>on</th>\n", | |
" <td>-0.040842</td>\n", | |
" <td>0.136549</td>\n", | |
" <td>0.212088</td>\n", | |
" <td>0.160631</td>\n", | |
" <td>0.218874</td>\n", | |
" <td>0.080837</td>\n", | |
" <td>-0.124079</td>\n", | |
" <td>0.023630</td>\n", | |
" <td>0.019694</td>\n", | |
" <td>-0.104102</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.109263</td>\n", | |
" <td>-0.078680</td>\n", | |
" <td>-0.118618</td>\n", | |
" <td>-0.062546</td>\n", | |
" <td>-0.272106</td>\n", | |
" <td>-0.074692</td>\n", | |
" <td>0.196852</td>\n", | |
" <td>-0.097493</td>\n", | |
" <td>0.118408</td>\n", | |
" <td>-0.159755</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>that</th>\n", | |
" <td>0.093854</td>\n", | |
" <td>0.048086</td>\n", | |
" <td>0.189431</td>\n", | |
" <td>0.150064</td>\n", | |
" <td>0.201977</td>\n", | |
" <td>-0.129287</td>\n", | |
" <td>-0.113823</td>\n", | |
" <td>-0.035287</td>\n", | |
" <td>-0.024984</td>\n", | |
" <td>0.184889</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.382150</td>\n", | |
" <td>-0.345845</td>\n", | |
" <td>0.201678</td>\n", | |
" <td>-0.030638</td>\n", | |
" <td>-0.071151</td>\n", | |
" <td>-0.068005</td>\n", | |
" <td>-0.081576</td>\n", | |
" <td>-0.001712</td>\n", | |
" <td>0.108104</td>\n", | |
" <td>-0.065577</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>'s</th>\n", | |
" <td>0.107918</td>\n", | |
" <td>-0.099459</td>\n", | |
" <td>0.062600</td>\n", | |
" <td>0.280599</td>\n", | |
" <td>-0.160545</td>\n", | |
" <td>-0.148823</td>\n", | |
" <td>-0.434433</td>\n", | |
" <td>0.109987</td>\n", | |
" <td>-0.161235</td>\n", | |
" <td>-0.090311</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.206353</td>\n", | |
" <td>-0.080761</td>\n", | |
" <td>0.029325</td>\n", | |
" <td>-0.183005</td>\n", | |
" <td>0.239528</td>\n", | |
" <td>-0.194297</td>\n", | |
" <td>0.020890</td>\n", | |
" <td>-0.084427</td>\n", | |
" <td>0.049696</td>\n", | |
" <td>0.263197</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>with</th>\n", | |
" <td>0.089093</td>\n", | |
" <td>-0.118851</td>\n", | |
" <td>0.213242</td>\n", | |
" <td>0.171211</td>\n", | |
" <td>0.021800</td>\n", | |
" <td>0.052413</td>\n", | |
" <td>-0.128442</td>\n", | |
" <td>0.122767</td>\n", | |
" <td>0.155626</td>\n", | |
" <td>0.061677</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.248516</td>\n", | |
" <td>-0.212480</td>\n", | |
" <td>-0.080773</td>\n", | |
" <td>-0.139916</td>\n", | |
" <td>-0.198563</td>\n", | |
" <td>-0.048316</td>\n", | |
" <td>0.340835</td>\n", | |
" <td>0.040646</td>\n", | |
" <td>0.261817</td>\n", | |
" <td>-0.172303</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>as</th>\n", | |
" <td>0.133016</td>\n", | |
" <td>0.121538</td>\n", | |
" <td>0.013165</td>\n", | |
" <td>0.166905</td>\n", | |
" <td>0.041944</td>\n", | |
" <td>-0.204601</td>\n", | |
" <td>-0.252500</td>\n", | |
" <td>-0.114080</td>\n", | |
" <td>0.014661</td>\n", | |
" <td>-0.205491</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.044368</td>\n", | |
" <td>-0.406310</td>\n", | |
" <td>0.077290</td>\n", | |
" <td>-0.117506</td>\n", | |
" <td>-0.068170</td>\n", | |
" <td>-0.354395</td>\n", | |
" <td>0.179773</td>\n", | |
" <td>0.079178</td>\n", | |
" <td>0.162803</td>\n", | |
" <td>-0.297174</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>his</th>\n", | |
" <td>0.171508</td>\n", | |
" <td>-0.290043</td>\n", | |
" <td>0.047867</td>\n", | |
" <td>0.210284</td>\n", | |
" <td>-0.155969</td>\n", | |
" <td>-0.216889</td>\n", | |
" <td>-0.224248</td>\n", | |
" <td>-0.156078</td>\n", | |
" <td>0.065083</td>\n", | |
" <td>-0.049467</td>\n", | |
" <td>...</td>\n", | |
" <td>0.113901</td>\n", | |
" <td>-0.386885</td>\n", | |
" <td>-0.039495</td>\n", | |
" <td>-0.136518</td>\n", | |
" <td>-0.224259</td>\n", | |
" <td>0.100869</td>\n", | |
" <td>-0.115878</td>\n", | |
" <td>-0.000225</td>\n", | |
" <td>0.332125</td>\n", | |
" <td>-0.111637</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>say</th>\n", | |
" <td>0.493930</td>\n", | |
" <td>-0.095527</td>\n", | |
" <td>0.093631</td>\n", | |
" <td>0.201500</td>\n", | |
" <td>0.020013</td>\n", | |
" <td>0.116634</td>\n", | |
" <td>-0.480928</td>\n", | |
" <td>0.015777</td>\n", | |
" <td>-0.019351</td>\n", | |
" <td>-0.060809</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.406270</td>\n", | |
" <td>-0.325448</td>\n", | |
" <td>-0.084951</td>\n", | |
" <td>-0.056228</td>\n", | |
" <td>0.207731</td>\n", | |
" <td>-0.123777</td>\n", | |
" <td>0.180303</td>\n", | |
" <td>0.251365</td>\n", | |
" <td>0.002213</td>\n", | |
" <td>-0.080268</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>’s</th>\n", | |
" <td>0.130829</td>\n", | |
" <td>-0.153473</td>\n", | |
" <td>0.135104</td>\n", | |
" <td>0.017754</td>\n", | |
" <td>-0.276074</td>\n", | |
" <td>-0.299559</td>\n", | |
" <td>-0.412439</td>\n", | |
" <td>0.087559</td>\n", | |
" <td>-0.172711</td>\n", | |
" <td>-0.124084</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.282549</td>\n", | |
" <td>-0.116469</td>\n", | |
" <td>0.150934</td>\n", | |
" <td>-0.113941</td>\n", | |
" <td>0.254529</td>\n", | |
" <td>-0.150956</td>\n", | |
" <td>-0.007050</td>\n", | |
" <td>-0.046397</td>\n", | |
" <td>0.246985</td>\n", | |
" <td>0.100586</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>from</th>\n", | |
" <td>0.103806</td>\n", | |
" <td>0.199351</td>\n", | |
" <td>0.091876</td>\n", | |
" <td>0.157300</td>\n", | |
" <td>-0.009988</td>\n", | |
" <td>-0.102036</td>\n", | |
" <td>-0.154254</td>\n", | |
" <td>0.211758</td>\n", | |
" <td>-0.143986</td>\n", | |
" <td>-0.028054</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.380072</td>\n", | |
" <td>-0.084805</td>\n", | |
" <td>-0.003880</td>\n", | |
" <td>-0.052789</td>\n", | |
" <td>-0.195883</td>\n", | |
" <td>0.008878</td>\n", | |
" <td>0.346471</td>\n", | |
" <td>0.033958</td>\n", | |
" <td>0.218801</td>\n", | |
" <td>-0.250586</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>it</th>\n", | |
" <td>-0.054202</td>\n", | |
" <td>-0.032125</td>\n", | |
" <td>0.198204</td>\n", | |
" <td>0.250412</td>\n", | |
" <td>0.024657</td>\n", | |
" <td>-0.186574</td>\n", | |
" <td>0.112915</td>\n", | |
" <td>-0.295744</td>\n", | |
" <td>-0.139313</td>\n", | |
" <td>0.251547</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.279481</td>\n", | |
" <td>-0.156260</td>\n", | |
" <td>0.041205</td>\n", | |
" <td>-0.178788</td>\n", | |
" <td>-0.041812</td>\n", | |
" <td>-0.115585</td>\n", | |
" <td>0.026354</td>\n", | |
" <td>-0.061815</td>\n", | |
" <td>0.290082</td>\n", | |
" <td>-0.032485</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>at</th>\n", | |
" <td>0.079581</td>\n", | |
" <td>-0.000693</td>\n", | |
" <td>0.018640</td>\n", | |
" <td>0.242077</td>\n", | |
" <td>0.086511</td>\n", | |
" <td>0.104776</td>\n", | |
" <td>-0.264976</td>\n", | |
" <td>0.343815</td>\n", | |
" <td>0.189448</td>\n", | |
" <td>-0.222301</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.184719</td>\n", | |
" <td>-0.042091</td>\n", | |
" <td>-0.178990</td>\n", | |
" <td>0.091708</td>\n", | |
" <td>-0.253203</td>\n", | |
" <td>-0.055851</td>\n", | |
" <td>0.155620</td>\n", | |
" <td>0.083591</td>\n", | |
" <td>0.149747</td>\n", | |
" <td>0.083020</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>will</th>\n", | |
" <td>-0.042439</td>\n", | |
" <td>-0.020270</td>\n", | |
" <td>0.201362</td>\n", | |
" <td>0.076684</td>\n", | |
" <td>0.260038</td>\n", | |
" <td>-0.066543</td>\n", | |
" <td>-0.191507</td>\n", | |
" <td>0.144495</td>\n", | |
" <td>-0.255550</td>\n", | |
" <td>0.070531</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.232788</td>\n", | |
" <td>-0.348006</td>\n", | |
" <td>-0.207393</td>\n", | |
" <td>-0.122815</td>\n", | |
" <td>0.107602</td>\n", | |
" <td>-0.291866</td>\n", | |
" <td>0.068789</td>\n", | |
" <td>-0.266164</td>\n", | |
" <td>0.141740</td>\n", | |
" <td>-0.026873</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>by</th>\n", | |
" <td>0.019896</td>\n", | |
" <td>-0.030638</td>\n", | |
" <td>0.243529</td>\n", | |
" <td>0.038790</td>\n", | |
" <td>-0.104134</td>\n", | |
" <td>0.029319</td>\n", | |
" <td>-0.174362</td>\n", | |
" <td>-0.143550</td>\n", | |
" <td>-0.082092</td>\n", | |
" <td>-0.052250</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.407827</td>\n", | |
" <td>-0.404954</td>\n", | |
" <td>0.021610</td>\n", | |
" <td>0.131534</td>\n", | |
" <td>-0.212842</td>\n", | |
" <td>-0.027826</td>\n", | |
" <td>0.210552</td>\n", | |
" <td>0.021041</td>\n", | |
" <td>0.064949</td>\n", | |
" <td>-0.098548</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>but</th>\n", | |
" <td>-0.051860</td>\n", | |
" <td>0.073157</td>\n", | |
" <td>-0.099655</td>\n", | |
" <td>0.341471</td>\n", | |
" <td>0.409402</td>\n", | |
" <td>-0.102062</td>\n", | |
" <td>-0.066381</td>\n", | |
" <td>-0.158641</td>\n", | |
" <td>-0.071911</td>\n", | |
" <td>0.131325</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.314212</td>\n", | |
" <td>-0.253961</td>\n", | |
" <td>-0.236251</td>\n", | |
" <td>-0.016752</td>\n", | |
" <td>0.125307</td>\n", | |
" <td>-0.181046</td>\n", | |
" <td>0.145657</td>\n", | |
" <td>0.077196</td>\n", | |
" <td>0.255184</td>\n", | |
" <td>0.091203</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>after</th>\n", | |
" <td>-0.280454</td>\n", | |
" <td>-0.092870</td>\n", | |
" <td>0.193905</td>\n", | |
" <td>0.113299</td>\n", | |
" <td>-0.209316</td>\n", | |
" <td>-0.172729</td>\n", | |
" <td>-0.426950</td>\n", | |
" <td>0.028789</td>\n", | |
" <td>0.167250</td>\n", | |
" <td>-0.184772</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.276633</td>\n", | |
" <td>-0.256954</td>\n", | |
" <td>0.016954</td>\n", | |
" <td>-0.041827</td>\n", | |
" <td>-0.026944</td>\n", | |
" <td>0.051736</td>\n", | |
" <td>0.325163</td>\n", | |
" <td>-0.049565</td>\n", | |
" <td>0.106467</td>\n", | |
" <td>-0.021257</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>he</th>\n", | |
" <td>-0.252683</td>\n", | |
" <td>-0.152927</td>\n", | |
" <td>0.174465</td>\n", | |
" <td>0.095605</td>\n", | |
" <td>-0.000625</td>\n", | |
" <td>-0.176990</td>\n", | |
" <td>0.091624</td>\n", | |
" <td>-0.197264</td>\n", | |
" <td>0.027711</td>\n", | |
" <td>0.212121</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.008932</td>\n", | |
" <td>-0.614262</td>\n", | |
" <td>0.028741</td>\n", | |
" <td>0.034528</td>\n", | |
" <td>-0.187046</td>\n", | |
" <td>-0.093244</td>\n", | |
" <td>0.056804</td>\n", | |
" <td>-0.056108</td>\n", | |
" <td>0.381933</td>\n", | |
" <td>0.039332</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>an</th>\n", | |
" <td>-0.005633</td>\n", | |
" <td>-0.174258</td>\n", | |
" <td>0.170194</td>\n", | |
" <td>0.324523</td>\n", | |
" <td>0.190754</td>\n", | |
" <td>0.159505</td>\n", | |
" <td>0.127698</td>\n", | |
" <td>0.307520</td>\n", | |
" <td>-0.027873</td>\n", | |
" <td>-0.035499</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.052373</td>\n", | |
" <td>-0.405566</td>\n", | |
" <td>0.001079</td>\n", | |
" <td>0.196531</td>\n", | |
" <td>0.033124</td>\n", | |
" <td>0.091576</td>\n", | |
" <td>0.149526</td>\n", | |
" <td>0.278049</td>\n", | |
" <td>0.180986</td>\n", | |
" <td>-0.062273</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>their</th>\n", | |
" <td>0.122311</td>\n", | |
" <td>-0.164332</td>\n", | |
" <td>-0.035862</td>\n", | |
" <td>0.147095</td>\n", | |
" <td>0.021767</td>\n", | |
" <td>-0.100748</td>\n", | |
" <td>-0.170448</td>\n", | |
" <td>0.171713</td>\n", | |
" <td>-0.105358</td>\n", | |
" <td>-0.015916</td>\n", | |
" <td>...</td>\n", | |
" <td>0.151549</td>\n", | |
" <td>-0.126537</td>\n", | |
" <td>-0.016259</td>\n", | |
" <td>-0.084716</td>\n", | |
" <td>-0.083166</td>\n", | |
" <td>-0.054485</td>\n", | |
" <td>0.069355</td>\n", | |
" <td>0.014472</td>\n", | |
" <td>0.015852</td>\n", | |
" <td>-0.424737</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>new</th>\n", | |
" <td>0.153179</td>\n", | |
" <td>0.181721</td>\n", | |
" <td>0.033603</td>\n", | |
" <td>-0.165886</td>\n", | |
" <td>0.016452</td>\n", | |
" <td>0.073054</td>\n", | |
" <td>0.088210</td>\n", | |
" <td>0.013292</td>\n", | |
" <td>0.030326</td>\n", | |
" <td>0.393300</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.122008</td>\n", | |
" <td>-0.201035</td>\n", | |
" <td>0.085460</td>\n", | |
" <td>0.167302</td>\n", | |
" <td>-0.171616</td>\n", | |
" <td>0.072928</td>\n", | |
" <td>-0.210929</td>\n", | |
" <td>-0.031279</td>\n", | |
" <td>0.036854</td>\n", | |
" <td>-0.311985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>not</th>\n", | |
" <td>-0.054297</td>\n", | |
" <td>0.020709</td>\n", | |
" <td>0.233996</td>\n", | |
" <td>0.225498</td>\n", | |
" <td>-0.110124</td>\n", | |
" <td>0.232670</td>\n", | |
" <td>0.093244</td>\n", | |
" <td>-0.412237</td>\n", | |
" <td>-0.215938</td>\n", | |
" <td>0.074204</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.609410</td>\n", | |
" <td>-0.422543</td>\n", | |
" <td>-0.104661</td>\n", | |
" <td>-0.021803</td>\n", | |
" <td>0.103312</td>\n", | |
" <td>0.252440</td>\n", | |
" <td>0.035054</td>\n", | |
" <td>-0.171981</td>\n", | |
" <td>0.129241</td>\n", | |
" <td>0.091124</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>its</th>\n", | |
" <td>0.284080</td>\n", | |
" <td>0.123173</td>\n", | |
" <td>0.278765</td>\n", | |
" <td>0.098248</td>\n", | |
" <td>-0.150397</td>\n", | |
" <td>-0.243362</td>\n", | |
" <td>-0.248603</td>\n", | |
" <td>0.066457</td>\n", | |
" <td>-0.131231</td>\n", | |
" <td>-0.010582</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.075695</td>\n", | |
" <td>-0.138076</td>\n", | |
" <td>0.035898</td>\n", | |
" <td>-0.324406</td>\n", | |
" <td>0.155565</td>\n", | |
" <td>0.171583</td>\n", | |
" <td>0.192598</td>\n", | |
" <td>-0.114135</td>\n", | |
" <td>0.060844</td>\n", | |
" <td>0.022733</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>not_enough</th>\n", | |
" <td>-0.094114</td>\n", | |
" <td>0.655539</td>\n", | |
" <td>0.626017</td>\n", | |
" <td>-0.217886</td>\n", | |
" <td>0.167621</td>\n", | |
" <td>-0.072231</td>\n", | |
" <td>0.309021</td>\n", | |
" <td>-0.250300</td>\n", | |
" <td>0.606297</td>\n", | |
" <td>0.567899</td>\n", | |
" <td>...</td>\n", | |
" <td>-1.623047</td>\n", | |
" <td>-0.510145</td>\n", | |
" <td>0.267852</td>\n", | |
" <td>-0.092845</td>\n", | |
" <td>-0.470826</td>\n", | |
" <td>-0.076695</td>\n", | |
" <td>-0.124101</td>\n", | |
" <td>-0.398636</td>\n", | |
" <td>-0.561430</td>\n", | |
" <td>0.478688</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>ranking</th>\n", | |
" <td>0.201723</td>\n", | |
" <td>-0.029949</td>\n", | |
" <td>0.289470</td>\n", | |
" <td>-0.733708</td>\n", | |
" <td>-0.170238</td>\n", | |
" <td>1.398432</td>\n", | |
" <td>-0.349454</td>\n", | |
" <td>0.714751</td>\n", | |
" <td>0.140537</td>\n", | |
" <td>0.285269</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.330462</td>\n", | |
" <td>-0.259038</td>\n", | |
" <td>0.025241</td>\n", | |
" <td>0.164333</td>\n", | |
" <td>-0.237639</td>\n", | |
" <td>-0.039643</td>\n", | |
" <td>0.115805</td>\n", | |
" <td>-0.261110</td>\n", | |
" <td>-0.064060</td>\n", | |
" <td>0.887719</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>antonio</th>\n", | |
" <td>-0.030697</td>\n", | |
" <td>-1.538885</td>\n", | |
" <td>0.484067</td>\n", | |
" <td>0.909993</td>\n", | |
" <td>0.407148</td>\n", | |
" <td>0.424210</td>\n", | |
" <td>0.146013</td>\n", | |
" <td>-0.730521</td>\n", | |
" <td>-0.060478</td>\n", | |
" <td>0.085379</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.659557</td>\n", | |
" <td>-0.091135</td>\n", | |
" <td>-0.286684</td>\n", | |
" <td>-0.350696</td>\n", | |
" <td>0.157299</td>\n", | |
" <td>-1.042287</td>\n", | |
" <td>0.082264</td>\n", | |
" <td>0.011264</td>\n", | |
" <td>0.102585</td>\n", | |
" <td>0.571744</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>sight</th>\n", | |
" <td>-1.224476</td>\n", | |
" <td>0.187305</td>\n", | |
" <td>0.203670</td>\n", | |
" <td>0.580851</td>\n", | |
" <td>-0.644513</td>\n", | |
" <td>-0.268522</td>\n", | |
" <td>-0.144188</td>\n", | |
" <td>0.297203</td>\n", | |
" <td>0.025232</td>\n", | |
" <td>0.954260</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.150982</td>\n", | |
" <td>-0.302174</td>\n", | |
" <td>0.505027</td>\n", | |
" <td>-0.005202</td>\n", | |
" <td>0.272650</td>\n", | |
" <td>-0.635197</td>\n", | |
" <td>-0.547206</td>\n", | |
" <td>0.037410</td>\n", | |
" <td>0.074470</td>\n", | |
" <td>-0.178576</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>advantage</th>\n", | |
" <td>0.622663</td>\n", | |
" <td>0.296375</td>\n", | |
" <td>0.850668</td>\n", | |
" <td>-0.228654</td>\n", | |
" <td>0.418743</td>\n", | |
" <td>-0.174389</td>\n", | |
" <td>0.262017</td>\n", | |
" <td>0.058859</td>\n", | |
" <td>0.379051</td>\n", | |
" <td>0.102179</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.707169</td>\n", | |
" <td>-0.221860</td>\n", | |
" <td>0.282483</td>\n", | |
" <td>-0.726319</td>\n", | |
" <td>-0.781960</td>\n", | |
" <td>-0.128981</td>\n", | |
" <td>0.388335</td>\n", | |
" <td>0.194783</td>\n", | |
" <td>-0.324332</td>\n", | |
" <td>-0.569256</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>world_champion</th>\n", | |
" <td>-0.285938</td>\n", | |
" <td>0.124571</td>\n", | |
" <td>0.176119</td>\n", | |
" <td>1.228446</td>\n", | |
" <td>0.026598</td>\n", | |
" <td>0.410035</td>\n", | |
" <td>-0.064291</td>\n", | |
" <td>0.206982</td>\n", | |
" <td>-0.231103</td>\n", | |
" <td>-0.156042</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.332884</td>\n", | |
" <td>-0.530765</td>\n", | |
" <td>0.222084</td>\n", | |
" <td>-0.142474</td>\n", | |
" <td>-0.651072</td>\n", | |
" <td>-0.155838</td>\n", | |
" <td>-0.514741</td>\n", | |
" <td>0.075556</td>\n", | |
" <td>-0.029474</td>\n", | |
" <td>0.679655</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>pipeline</th>\n", | |
" <td>0.744847</td>\n", | |
" <td>1.070185</td>\n", | |
" <td>-0.039550</td>\n", | |
" <td>0.570992</td>\n", | |
" <td>0.570726</td>\n", | |
" <td>-0.719932</td>\n", | |
" <td>-0.344005</td>\n", | |
" <td>-0.125998</td>\n", | |
" <td>-0.077002</td>\n", | |
" <td>0.206826</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.338752</td>\n", | |
" <td>0.389430</td>\n", | |
" <td>-0.053337</td>\n", | |
" <td>0.551466</td>\n", | |
" <td>0.434493</td>\n", | |
" <td>-0.113832</td>\n", | |
" <td>-0.230845</td>\n", | |
" <td>0.228762</td>\n", | |
" <td>-0.729973</td>\n", | |
" <td>-0.094345</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>commerce</th>\n", | |
" <td>0.799601</td>\n", | |
" <td>-0.485471</td>\n", | |
" <td>-0.237045</td>\n", | |
" <td>-0.010754</td>\n", | |
" <td>0.047780</td>\n", | |
" <td>0.104614</td>\n", | |
" <td>-0.332199</td>\n", | |
" <td>0.473448</td>\n", | |
" <td>0.004946</td>\n", | |
" <td>0.683338</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.873561</td>\n", | |
" <td>-0.819303</td>\n", | |
" <td>0.663663</td>\n", | |
" <td>0.199147</td>\n", | |
" <td>-0.248849</td>\n", | |
" <td>-0.134445</td>\n", | |
" <td>0.100175</td>\n", | |
" <td>-0.408534</td>\n", | |
" <td>0.197245</td>\n", | |
" <td>1.066751</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hello</th>\n", | |
" <td>0.049729</td>\n", | |
" <td>-0.111662</td>\n", | |
" <td>0.030879</td>\n", | |
" <td>0.231366</td>\n", | |
" <td>1.303890</td>\n", | |
" <td>-0.240264</td>\n", | |
" <td>0.135847</td>\n", | |
" <td>-0.237629</td>\n", | |
" <td>-0.640210</td>\n", | |
" <td>0.976841</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.068632</td>\n", | |
" <td>-0.545131</td>\n", | |
" <td>0.403947</td>\n", | |
" <td>0.188938</td>\n", | |
" <td>0.327679</td>\n", | |
" <td>0.362776</td>\n", | |
" <td>-0.805201</td>\n", | |
" <td>0.101312</td>\n", | |
" <td>0.428273</td>\n", | |
" <td>-0.541816</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>ciro_immobile</th>\n", | |
" <td>0.078922</td>\n", | |
" <td>0.030445</td>\n", | |
" <td>0.677406</td>\n", | |
" <td>1.054021</td>\n", | |
" <td>-0.438968</td>\n", | |
" <td>-0.997223</td>\n", | |
" <td>0.584563</td>\n", | |
" <td>-0.522375</td>\n", | |
" <td>0.171615</td>\n", | |
" <td>0.665406</td>\n", | |
" <td>...</td>\n", | |
" <td>0.500395</td>\n", | |
" <td>-1.398964</td>\n", | |
" <td>0.397761</td>\n", | |
" <td>0.300816</td>\n", | |
" <td>0.072580</td>\n", | |
" <td>0.198801</td>\n", | |
" <td>0.108731</td>\n", | |
" <td>-0.045659</td>\n", | |
" <td>0.654901</td>\n", | |
" <td>-0.462221</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>trademark</th>\n", | |
" <td>0.499815</td>\n", | |
" <td>0.139723</td>\n", | |
" <td>-0.122960</td>\n", | |
" <td>-0.396945</td>\n", | |
" <td>0.074634</td>\n", | |
" <td>-0.253119</td>\n", | |
" <td>-0.114092</td>\n", | |
" <td>-0.216992</td>\n", | |
" <td>0.738331</td>\n", | |
" <td>0.201665</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.722312</td>\n", | |
" <td>-0.237891</td>\n", | |
" <td>0.188983</td>\n", | |
" <td>-0.134771</td>\n", | |
" <td>0.592018</td>\n", | |
" <td>0.599179</td>\n", | |
" <td>0.785352</td>\n", | |
" <td>0.247860</td>\n", | |
" <td>-0.705473</td>\n", | |
" <td>-0.257353</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>refer_to</th>\n", | |
" <td>-0.062879</td>\n", | |
" <td>0.077788</td>\n", | |
" <td>-0.374180</td>\n", | |
" <td>0.468723</td>\n", | |
" <td>0.353635</td>\n", | |
" <td>0.131391</td>\n", | |
" <td>0.633991</td>\n", | |
" <td>0.109901</td>\n", | |
" <td>-0.282035</td>\n", | |
" <td>0.264723</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.721140</td>\n", | |
" <td>-0.962518</td>\n", | |
" <td>-0.101024</td>\n", | |
" <td>0.428971</td>\n", | |
" <td>-0.780233</td>\n", | |
" <td>-0.247224</td>\n", | |
" <td>-0.250521</td>\n", | |
" <td>0.017568</td>\n", | |
" <td>0.353447</td>\n", | |
" <td>-0.612467</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>sign_up</th>\n", | |
" <td>-0.252607</td>\n", | |
" <td>-0.721285</td>\n", | |
" <td>-0.062100</td>\n", | |
" <td>0.437720</td>\n", | |
" <td>0.980251</td>\n", | |
" <td>-0.016084</td>\n", | |
" <td>-0.149467</td>\n", | |
" <td>0.760577</td>\n", | |
" <td>0.664475</td>\n", | |
" <td>0.186012</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.933546</td>\n", | |
" <td>-0.592306</td>\n", | |
" <td>0.077836</td>\n", | |
" <td>0.694950</td>\n", | |
" <td>-0.125671</td>\n", | |
" <td>-0.063421</td>\n", | |
" <td>0.060527</td>\n", | |
" <td>-0.170805</td>\n", | |
" <td>-0.192611</td>\n", | |
" <td>0.015800</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>candy</th>\n", | |
" <td>0.171377</td>\n", | |
" <td>0.952507</td>\n", | |
" <td>0.485432</td>\n", | |
" <td>0.059742</td>\n", | |
" <td>-0.103659</td>\n", | |
" <td>-0.541383</td>\n", | |
" <td>0.331817</td>\n", | |
" <td>0.439239</td>\n", | |
" <td>-0.517162</td>\n", | |
" <td>0.518952</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.783613</td>\n", | |
" <td>0.272791</td>\n", | |
" <td>0.576765</td>\n", | |
" <td>0.115468</td>\n", | |
" <td>-0.322823</td>\n", | |
" <td>0.524259</td>\n", | |
" <td>-0.479514</td>\n", | |
" <td>-0.336677</td>\n", | |
" <td>0.357923</td>\n", | |
" <td>-0.509631</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>miami</th>\n", | |
" <td>0.431808</td>\n", | |
" <td>0.485360</td>\n", | |
" <td>-0.258010</td>\n", | |
" <td>-0.030971</td>\n", | |
" <td>0.839913</td>\n", | |
" <td>0.439697</td>\n", | |
" <td>-0.278369</td>\n", | |
" <td>-0.373473</td>\n", | |
" <td>0.230637</td>\n", | |
" <td>0.312374</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.011426</td>\n", | |
" <td>-0.862144</td>\n", | |
" <td>-1.416061</td>\n", | |
" <td>-0.243965</td>\n", | |
" <td>0.828267</td>\n", | |
" <td>-0.180654</td>\n", | |
" <td>-0.382431</td>\n", | |
" <td>-0.093430</td>\n", | |
" <td>-0.152998</td>\n", | |
" <td>-0.178208</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>physical</th>\n", | |
" <td>-0.598984</td>\n", | |
" <td>0.181450</td>\n", | |
" <td>0.074859</td>\n", | |
" <td>0.204118</td>\n", | |
" <td>-0.006442</td>\n", | |
" <td>0.395756</td>\n", | |
" <td>0.570412</td>\n", | |
" <td>0.205016</td>\n", | |
" <td>-0.061954</td>\n", | |
" <td>0.414210</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.148652</td>\n", | |
" <td>-0.780257</td>\n", | |
" <td>0.972387</td>\n", | |
" <td>0.527897</td>\n", | |
" <td>-0.543720</td>\n", | |
" <td>0.092487</td>\n", | |
" <td>0.383912</td>\n", | |
" <td>-0.118773</td>\n", | |
" <td>-0.293702</td>\n", | |
" <td>-0.146384</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>recover</th>\n", | |
" <td>0.730891</td>\n", | |
" <td>0.883145</td>\n", | |
" <td>-0.160776</td>\n", | |
" <td>1.012670</td>\n", | |
" <td>0.640895</td>\n", | |
" <td>0.124774</td>\n", | |
" <td>-0.033443</td>\n", | |
" <td>-0.090705</td>\n", | |
" <td>0.564360</td>\n", | |
" <td>-0.220390</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.390584</td>\n", | |
" <td>-0.560045</td>\n", | |
" <td>0.072854</td>\n", | |
" <td>0.432087</td>\n", | |
" <td>0.117072</td>\n", | |
" <td>-0.579653</td>\n", | |
" <td>0.061056</td>\n", | |
" <td>-0.139276</td>\n", | |
" <td>0.751752</td>\n", | |
" <td>0.225760</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>sustain</th>\n", | |
" <td>-0.221599</td>\n", | |
" <td>-0.629878</td>\n", | |
" <td>-0.173603</td>\n", | |
" <td>1.353064</td>\n", | |
" <td>-0.214283</td>\n", | |
" <td>-0.208931</td>\n", | |
" <td>-0.334680</td>\n", | |
" <td>0.673992</td>\n", | |
" <td>-0.728771</td>\n", | |
" <td>-0.604576</td>\n", | |
" <td>...</td>\n", | |
" <td>0.269625</td>\n", | |
" <td>-0.254749</td>\n", | |
" <td>-0.076043</td>\n", | |
" <td>-0.295920</td>\n", | |
" <td>0.247204</td>\n", | |
" <td>-0.156045</td>\n", | |
" <td>-0.054930</td>\n", | |
" <td>-0.128302</td>\n", | |
" <td>-0.225513</td>\n", | |
" <td>0.259037</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>catholic</th>\n", | |
" <td>-0.828640</td>\n", | |
" <td>0.114157</td>\n", | |
" <td>-0.252447</td>\n", | |
" <td>0.470119</td>\n", | |
" <td>-0.066177</td>\n", | |
" <td>0.724520</td>\n", | |
" <td>-0.735754</td>\n", | |
" <td>0.026392</td>\n", | |
" <td>-0.518175</td>\n", | |
" <td>0.308917</td>\n", | |
" <td>...</td>\n", | |
" <td>0.437098</td>\n", | |
" <td>-0.487706</td>\n", | |
" <td>0.084492</td>\n", | |
" <td>0.454513</td>\n", | |
" <td>0.574732</td>\n", | |
" <td>-0.347128</td>\n", | |
" <td>-0.320074</td>\n", | |
" <td>-0.063053</td>\n", | |
" <td>0.497562</td>\n", | |
" <td>0.301398</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>haven't</th>\n", | |
" <td>0.507012</td>\n", | |
" <td>0.010656</td>\n", | |
" <td>-0.293064</td>\n", | |
" <td>0.072675</td>\n", | |
" <td>0.145872</td>\n", | |
" <td>0.713825</td>\n", | |
" <td>-0.252026</td>\n", | |
" <td>0.019099</td>\n", | |
" <td>-0.364322</td>\n", | |
" <td>-0.184802</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.161201</td>\n", | |
" <td>-0.599765</td>\n", | |
" <td>-0.249576</td>\n", | |
" <td>0.608555</td>\n", | |
" <td>-0.422503</td>\n", | |
" <td>-0.494418</td>\n", | |
" <td>0.109678</td>\n", | |
" <td>-0.752551</td>\n", | |
" <td>0.096510</td>\n", | |
" <td>0.191669</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>100,000</th>\n", | |
" <td>0.361202</td>\n", | |
" <td>-0.753392</td>\n", | |
" <td>0.987674</td>\n", | |
" <td>0.240236</td>\n", | |
" <td>-0.025776</td>\n", | |
" <td>-0.460963</td>\n", | |
" <td>-0.215952</td>\n", | |
" <td>-0.847847</td>\n", | |
" <td>0.273376</td>\n", | |
" <td>0.420312</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.619123</td>\n", | |
" <td>0.190498</td>\n", | |
" <td>0.018086</td>\n", | |
" <td>0.558629</td>\n", | |
" <td>0.094480</td>\n", | |
" <td>-0.478777</td>\n", | |
" <td>0.142151</td>\n", | |
" <td>-0.755201</td>\n", | |
" <td>-0.123881</td>\n", | |
" <td>0.042677</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>upgrade</th>\n", | |
" <td>-0.012784</td>\n", | |
" <td>-0.138323</td>\n", | |
" <td>-0.451248</td>\n", | |
" <td>0.682032</td>\n", | |
" <td>0.498691</td>\n", | |
" <td>0.185636</td>\n", | |
" <td>0.930943</td>\n", | |
" <td>0.320989</td>\n", | |
" <td>0.307036</td>\n", | |
" <td>1.008475</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.028922</td>\n", | |
" <td>-0.118396</td>\n", | |
" <td>-0.311720</td>\n", | |
" <td>0.532235</td>\n", | |
" <td>-0.178842</td>\n", | |
" <td>-0.743159</td>\n", | |
" <td>-0.301638</td>\n", | |
" <td>0.266679</td>\n", | |
" <td>-0.604421</td>\n", | |
" <td>-0.661528</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>organizer</th>\n", | |
" <td>0.336194</td>\n", | |
" <td>0.882553</td>\n", | |
" <td>-0.121645</td>\n", | |
" <td>0.277824</td>\n", | |
" <td>0.397778</td>\n", | |
" <td>-0.411582</td>\n", | |
" <td>-0.574646</td>\n", | |
" <td>0.409801</td>\n", | |
" <td>0.119394</td>\n", | |
" <td>0.048563</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.954704</td>\n", | |
" <td>0.255724</td>\n", | |
" <td>-0.660715</td>\n", | |
" <td>-0.701783</td>\n", | |
" <td>0.726125</td>\n", | |
" <td>-0.365561</td>\n", | |
" <td>-0.770863</td>\n", | |
" <td>0.607819</td>\n", | |
" <td>0.382359</td>\n", | |
" <td>0.145916</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>cause_by</th>\n", | |
" <td>-0.021795</td>\n", | |
" <td>0.969837</td>\n", | |
" <td>0.861347</td>\n", | |
" <td>0.724383</td>\n", | |
" <td>0.549279</td>\n", | |
" <td>0.285342</td>\n", | |
" <td>-0.244288</td>\n", | |
" <td>0.443533</td>\n", | |
" <td>-0.150323</td>\n", | |
" <td>-0.044506</td>\n", | |
" <td>...</td>\n", | |
" <td>0.055570</td>\n", | |
" <td>-0.238164</td>\n", | |
" <td>1.029564</td>\n", | |
" <td>-0.509440</td>\n", | |
" <td>0.245553</td>\n", | |
" <td>0.390072</td>\n", | |
" <td>0.136188</td>\n", | |
" <td>-0.759734</td>\n", | |
" <td>-0.296547</td>\n", | |
" <td>0.645483</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>we_know</th>\n", | |
" <td>-0.499787</td>\n", | |
" <td>0.213263</td>\n", | |
" <td>-0.333230</td>\n", | |
" <td>-0.215939</td>\n", | |
" <td>0.425414</td>\n", | |
" <td>-0.005458</td>\n", | |
" <td>0.641097</td>\n", | |
" <td>0.486520</td>\n", | |
" <td>-0.827362</td>\n", | |
" <td>0.272523</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.876714</td>\n", | |
" <td>-0.162277</td>\n", | |
" <td>0.748110</td>\n", | |
" <td>-0.004144</td>\n", | |
" <td>1.271405</td>\n", | |
" <td>-0.213628</td>\n", | |
" <td>-0.570346</td>\n", | |
" <td>-0.133997</td>\n", | |
" <td>-0.092709</td>\n", | |
" <td>0.171419</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>robin</th>\n", | |
" <td>0.634702</td>\n", | |
" <td>-0.401851</td>\n", | |
" <td>0.602035</td>\n", | |
" <td>0.632417</td>\n", | |
" <td>-0.611379</td>\n", | |
" <td>0.719042</td>\n", | |
" <td>-0.960486</td>\n", | |
" <td>-0.927092</td>\n", | |
" <td>0.614439</td>\n", | |
" <td>0.191374</td>\n", | |
" <td>...</td>\n", | |
" <td>1.139387</td>\n", | |
" <td>-0.230930</td>\n", | |
" <td>0.102474</td>\n", | |
" <td>0.884600</td>\n", | |
" <td>-0.038467</td>\n", | |
" <td>0.895778</td>\n", | |
" <td>-0.252214</td>\n", | |
" <td>-0.616806</td>\n", | |
" <td>0.670850</td>\n", | |
" <td>-0.122526</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>second_season</th>\n", | |
" <td>0.225271</td>\n", | |
" <td>0.363482</td>\n", | |
" <td>-0.254534</td>\n", | |
" <td>0.821283</td>\n", | |
" <td>-0.270632</td>\n", | |
" <td>0.838620</td>\n", | |
" <td>0.219087</td>\n", | |
" <td>-0.154190</td>\n", | |
" <td>0.112581</td>\n", | |
" <td>-0.167201</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.380116</td>\n", | |
" <td>-0.505385</td>\n", | |
" <td>-0.342129</td>\n", | |
" <td>0.302236</td>\n", | |
" <td>0.271572</td>\n", | |
" <td>-0.100411</td>\n", | |
" <td>-1.278507</td>\n", | |
" <td>-0.061038</td>\n", | |
" <td>-0.365958</td>\n", | |
" <td>0.282088</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>psa_group</th>\n", | |
" <td>0.790442</td>\n", | |
" <td>-0.037463</td>\n", | |
" <td>-0.028965</td>\n", | |
" <td>0.502319</td>\n", | |
" <td>-0.216150</td>\n", | |
" <td>-0.210333</td>\n", | |
" <td>-0.501655</td>\n", | |
" <td>1.124272</td>\n", | |
" <td>0.198881</td>\n", | |
" <td>0.043538</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.453107</td>\n", | |
" <td>-0.672462</td>\n", | |
" <td>-0.601512</td>\n", | |
" <td>-0.051346</td>\n", | |
" <td>-0.381387</td>\n", | |
" <td>-0.292804</td>\n", | |
" <td>0.184509</td>\n", | |
" <td>0.359980</td>\n", | |
" <td>-0.430942</td>\n", | |
" <td>-0.408788</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>wideout</th>\n", | |
" <td>0.137189</td>\n", | |
" <td>0.162664</td>\n", | |
" <td>-0.302007</td>\n", | |
" <td>0.751640</td>\n", | |
" <td>0.292836</td>\n", | |
" <td>0.073071</td>\n", | |
" <td>-0.417419</td>\n", | |
" <td>0.519182</td>\n", | |
" <td>-0.909194</td>\n", | |
" <td>0.243708</td>\n", | |
" <td>...</td>\n", | |
" <td>-1.043700</td>\n", | |
" <td>-1.066392</td>\n", | |
" <td>-0.737779</td>\n", | |
" <td>0.633879</td>\n", | |
" <td>-0.501979</td>\n", | |
" <td>-0.016485</td>\n", | |
" <td>-0.403879</td>\n", | |
" <td>-0.129087</td>\n", | |
" <td>0.032780</td>\n", | |
" <td>0.369346</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>every_week</th>\n", | |
" <td>0.387804</td>\n", | |
" <td>-0.128606</td>\n", | |
" <td>-1.109899</td>\n", | |
" <td>0.574474</td>\n", | |
" <td>-0.973595</td>\n", | |
" <td>0.051985</td>\n", | |
" <td>-0.443664</td>\n", | |
" <td>0.547075</td>\n", | |
" <td>0.484658</td>\n", | |
" <td>0.809539</td>\n", | |
" <td>...</td>\n", | |
" <td>-1.128321</td>\n", | |
" <td>-0.469462</td>\n", | |
" <td>0.188889</td>\n", | |
" <td>0.110277</td>\n", | |
" <td>-0.764626</td>\n", | |
" <td>-0.380393</td>\n", | |
" <td>-0.640461</td>\n", | |
" <td>0.177771</td>\n", | |
" <td>0.653821</td>\n", | |
" <td>-0.147864</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>3574 rows × 100 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0 1 2 3 4 5 \\\n", | |
"the 0.002429 -0.117696 0.081637 0.150256 -0.095737 -0.037604 \n", | |
"be -0.038380 -0.065649 0.117450 0.012678 0.115999 -0.044034 \n", | |
"a 0.039630 -0.006076 0.242709 0.164494 0.018715 -0.068876 \n", | |
"to -0.074343 0.023017 0.080571 0.234742 0.036571 -0.074866 \n", | |
"of 0.029145 0.105133 0.138611 -0.015117 -0.082952 -0.043018 \n", | |
"in 0.082453 0.014389 0.113877 0.200570 -0.021273 -0.104283 \n", | |
"and 0.123636 -0.019682 0.003538 0.083421 0.139577 -0.012999 \n", | |
"have -0.028097 -0.062568 0.158553 0.223041 -0.063416 0.090147 \n", | |
"for -0.017072 -0.013024 0.094448 0.220435 0.138748 0.002925 \n", | |
"on -0.040842 0.136549 0.212088 0.160631 0.218874 0.080837 \n", | |
"that 0.093854 0.048086 0.189431 0.150064 0.201977 -0.129287 \n", | |
"'s 0.107918 -0.099459 0.062600 0.280599 -0.160545 -0.148823 \n", | |
"with 0.089093 -0.118851 0.213242 0.171211 0.021800 0.052413 \n", | |
"as 0.133016 0.121538 0.013165 0.166905 0.041944 -0.204601 \n", | |
"his 0.171508 -0.290043 0.047867 0.210284 -0.155969 -0.216889 \n", | |
"say 0.493930 -0.095527 0.093631 0.201500 0.020013 0.116634 \n", | |
"’s 0.130829 -0.153473 0.135104 0.017754 -0.276074 -0.299559 \n", | |
"from 0.103806 0.199351 0.091876 0.157300 -0.009988 -0.102036 \n", | |
"it -0.054202 -0.032125 0.198204 0.250412 0.024657 -0.186574 \n", | |
"at 0.079581 -0.000693 0.018640 0.242077 0.086511 0.104776 \n", | |
"will -0.042439 -0.020270 0.201362 0.076684 0.260038 -0.066543 \n", | |
"by 0.019896 -0.030638 0.243529 0.038790 -0.104134 0.029319 \n", | |
"but -0.051860 0.073157 -0.099655 0.341471 0.409402 -0.102062 \n", | |
"after -0.280454 -0.092870 0.193905 0.113299 -0.209316 -0.172729 \n", | |
"he -0.252683 -0.152927 0.174465 0.095605 -0.000625 -0.176990 \n", | |
"an -0.005633 -0.174258 0.170194 0.324523 0.190754 0.159505 \n", | |
"their 0.122311 -0.164332 -0.035862 0.147095 0.021767 -0.100748 \n", | |
"new 0.153179 0.181721 0.033603 -0.165886 0.016452 0.073054 \n", | |
"not -0.054297 0.020709 0.233996 0.225498 -0.110124 0.232670 \n", | |
"its 0.284080 0.123173 0.278765 0.098248 -0.150397 -0.243362 \n", | |
"... ... ... ... ... ... ... \n", | |
"not_enough -0.094114 0.655539 0.626017 -0.217886 0.167621 -0.072231 \n", | |
"ranking 0.201723 -0.029949 0.289470 -0.733708 -0.170238 1.398432 \n", | |
"antonio -0.030697 -1.538885 0.484067 0.909993 0.407148 0.424210 \n", | |
"sight -1.224476 0.187305 0.203670 0.580851 -0.644513 -0.268522 \n", | |
"advantage 0.622663 0.296375 0.850668 -0.228654 0.418743 -0.174389 \n", | |
"world_champion -0.285938 0.124571 0.176119 1.228446 0.026598 0.410035 \n", | |
"pipeline 0.744847 1.070185 -0.039550 0.570992 0.570726 -0.719932 \n", | |
"commerce 0.799601 -0.485471 -0.237045 -0.010754 0.047780 0.104614 \n", | |
"hello 0.049729 -0.111662 0.030879 0.231366 1.303890 -0.240264 \n", | |
"ciro_immobile 0.078922 0.030445 0.677406 1.054021 -0.438968 -0.997223 \n", | |
"trademark 0.499815 0.139723 -0.122960 -0.396945 0.074634 -0.253119 \n", | |
"refer_to -0.062879 0.077788 -0.374180 0.468723 0.353635 0.131391 \n", | |
"sign_up -0.252607 -0.721285 -0.062100 0.437720 0.980251 -0.016084 \n", | |
"candy 0.171377 0.952507 0.485432 0.059742 -0.103659 -0.541383 \n", | |
"miami 0.431808 0.485360 -0.258010 -0.030971 0.839913 0.439697 \n", | |
"physical -0.598984 0.181450 0.074859 0.204118 -0.006442 0.395756 \n", | |
"recover 0.730891 0.883145 -0.160776 1.012670 0.640895 0.124774 \n", | |
"sustain -0.221599 -0.629878 -0.173603 1.353064 -0.214283 -0.208931 \n", | |
"catholic -0.828640 0.114157 -0.252447 0.470119 -0.066177 0.724520 \n", | |
"haven't 0.507012 0.010656 -0.293064 0.072675 0.145872 0.713825 \n", | |
"100,000 0.361202 -0.753392 0.987674 0.240236 -0.025776 -0.460963 \n", | |
"upgrade -0.012784 -0.138323 -0.451248 0.682032 0.498691 0.185636 \n", | |
"organizer 0.336194 0.882553 -0.121645 0.277824 0.397778 -0.411582 \n", | |
"cause_by -0.021795 0.969837 0.861347 0.724383 0.549279 0.285342 \n", | |
"we_know -0.499787 0.213263 -0.333230 -0.215939 0.425414 -0.005458 \n", | |
"robin 0.634702 -0.401851 0.602035 0.632417 -0.611379 0.719042 \n", | |
"second_season 0.225271 0.363482 -0.254534 0.821283 -0.270632 0.838620 \n", | |
"psa_group 0.790442 -0.037463 -0.028965 0.502319 -0.216150 -0.210333 \n", | |
"wideout 0.137189 0.162664 -0.302007 0.751640 0.292836 0.073071 \n", | |
"every_week 0.387804 -0.128606 -1.109899 0.574474 -0.973595 0.051985 \n", | |
"\n", | |
" 6 7 8 9 ... 90 \\\n", | |
"the -0.194618 0.193092 -0.062545 -0.091891 ... -0.116249 \n", | |
"be -0.129380 -0.026304 -0.020176 0.016766 ... -0.265466 \n", | |
"a -0.149067 -0.053870 0.104615 0.087219 ... -0.199871 \n", | |
"to -0.095007 0.001376 -0.018024 0.207994 ... -0.191816 \n", | |
"of -0.057190 0.133605 0.013662 -0.029294 ... -0.153332 \n", | |
"in -0.158816 0.223708 0.124502 -0.078993 ... -0.154863 \n", | |
"and -0.114522 0.128361 -0.057063 -0.096928 ... -0.130418 \n", | |
"have -0.140434 -0.127836 -0.066042 0.055509 ... -0.207106 \n", | |
"for -0.191999 -0.112060 0.058797 -0.070895 ... -0.355704 \n", | |
"on -0.124079 0.023630 0.019694 -0.104102 ... -0.109263 \n", | |
"that -0.113823 -0.035287 -0.024984 0.184889 ... -0.382150 \n", | |
"'s -0.434433 0.109987 -0.161235 -0.090311 ... -0.206353 \n", | |
"with -0.128442 0.122767 0.155626 0.061677 ... -0.248516 \n", | |
"as -0.252500 -0.114080 0.014661 -0.205491 ... -0.044368 \n", | |
"his -0.224248 -0.156078 0.065083 -0.049467 ... 0.113901 \n", | |
"say -0.480928 0.015777 -0.019351 -0.060809 ... -0.406270 \n", | |
"’s -0.412439 0.087559 -0.172711 -0.124084 ... -0.282549 \n", | |
"from -0.154254 0.211758 -0.143986 -0.028054 ... -0.380072 \n", | |
"it 0.112915 -0.295744 -0.139313 0.251547 ... -0.279481 \n", | |
"at -0.264976 0.343815 0.189448 -0.222301 ... -0.184719 \n", | |
"will -0.191507 0.144495 -0.255550 0.070531 ... -0.232788 \n", | |
"by -0.174362 -0.143550 -0.082092 -0.052250 ... -0.407827 \n", | |
"but -0.066381 -0.158641 -0.071911 0.131325 ... -0.314212 \n", | |
"after -0.426950 0.028789 0.167250 -0.184772 ... -0.276633 \n", | |
"he 0.091624 -0.197264 0.027711 0.212121 ... -0.008932 \n", | |
"an 0.127698 0.307520 -0.027873 -0.035499 ... -0.052373 \n", | |
"their -0.170448 0.171713 -0.105358 -0.015916 ... 0.151549 \n", | |
"new 0.088210 0.013292 0.030326 0.393300 ... -0.122008 \n", | |
"not 0.093244 -0.412237 -0.215938 0.074204 ... -0.609410 \n", | |
"its -0.248603 0.066457 -0.131231 -0.010582 ... -0.075695 \n", | |
"... ... ... ... ... ... ... \n", | |
"not_enough 0.309021 -0.250300 0.606297 0.567899 ... -1.623047 \n", | |
"ranking -0.349454 0.714751 0.140537 0.285269 ... -0.330462 \n", | |
"antonio 0.146013 -0.730521 -0.060478 0.085379 ... -0.659557 \n", | |
"sight -0.144188 0.297203 0.025232 0.954260 ... -0.150982 \n", | |
"advantage 0.262017 0.058859 0.379051 0.102179 ... -0.707169 \n", | |
"world_champion -0.064291 0.206982 -0.231103 -0.156042 ... -0.332884 \n", | |
"pipeline -0.344005 -0.125998 -0.077002 0.206826 ... -0.338752 \n", | |
"commerce -0.332199 0.473448 0.004946 0.683338 ... -0.873561 \n", | |
"hello 0.135847 -0.237629 -0.640210 0.976841 ... -0.068632 \n", | |
"ciro_immobile 0.584563 -0.522375 0.171615 0.665406 ... 0.500395 \n", | |
"trademark -0.114092 -0.216992 0.738331 0.201665 ... -0.722312 \n", | |
"refer_to 0.633991 0.109901 -0.282035 0.264723 ... -0.721140 \n", | |
"sign_up -0.149467 0.760577 0.664475 0.186012 ... -0.933546 \n", | |
"candy 0.331817 0.439239 -0.517162 0.518952 ... -0.783613 \n", | |
"miami -0.278369 -0.373473 0.230637 0.312374 ... -0.011426 \n", | |
"physical 0.570412 0.205016 -0.061954 0.414210 ... -0.148652 \n", | |
"recover -0.033443 -0.090705 0.564360 -0.220390 ... -0.390584 \n", | |
"sustain -0.334680 0.673992 -0.728771 -0.604576 ... 0.269625 \n", | |
"catholic -0.735754 0.026392 -0.518175 0.308917 ... 0.437098 \n", | |
"haven't -0.252026 0.019099 -0.364322 -0.184802 ... -0.161201 \n", | |
"100,000 -0.215952 -0.847847 0.273376 0.420312 ... -0.619123 \n", | |
"upgrade 0.930943 0.320989 0.307036 1.008475 ... -0.028922 \n", | |
"organizer -0.574646 0.409801 0.119394 0.048563 ... -0.954704 \n", | |
"cause_by -0.244288 0.443533 -0.150323 -0.044506 ... 0.055570 \n", | |
"we_know 0.641097 0.486520 -0.827362 0.272523 ... -0.876714 \n", | |
"robin -0.960486 -0.927092 0.614439 0.191374 ... 1.139387 \n", | |
"second_season 0.219087 -0.154190 0.112581 -0.167201 ... -0.380116 \n", | |
"psa_group -0.501655 1.124272 0.198881 0.043538 ... -0.453107 \n", | |
"wideout -0.417419 0.519182 -0.909194 0.243708 ... -1.043700 \n", | |
"every_week -0.443664 0.547075 0.484658 0.809539 ... -1.128321 \n", | |
"\n", | |
" 91 92 93 94 95 96 \\\n", | |
"the -0.061802 -0.029034 -0.070177 0.058084 -0.125219 0.022664 \n", | |
"be -0.267629 0.014311 0.022319 0.065673 -0.072681 0.056618 \n", | |
"a -0.231434 -0.076976 0.149460 -0.022972 -0.125215 0.128036 \n", | |
"to -0.027370 0.034580 -0.003843 -0.249868 -0.157277 0.223993 \n", | |
"of -0.123974 0.109207 0.017210 0.092598 0.000070 0.040338 \n", | |
"in -0.156308 -0.082026 -0.000164 -0.042860 -0.214295 0.300133 \n", | |
"and -0.228353 0.051937 -0.094229 -0.036228 -0.058150 0.202557 \n", | |
"have -0.418309 -0.066265 -0.014496 -0.090792 0.014138 0.120813 \n", | |
"for -0.272579 -0.247733 0.096593 -0.039814 -0.175989 0.241105 \n", | |
"on -0.078680 -0.118618 -0.062546 -0.272106 -0.074692 0.196852 \n", | |
"that -0.345845 0.201678 -0.030638 -0.071151 -0.068005 -0.081576 \n", | |
"'s -0.080761 0.029325 -0.183005 0.239528 -0.194297 0.020890 \n", | |
"with -0.212480 -0.080773 -0.139916 -0.198563 -0.048316 0.340835 \n", | |
"as -0.406310 0.077290 -0.117506 -0.068170 -0.354395 0.179773 \n", | |
"his -0.386885 -0.039495 -0.136518 -0.224259 0.100869 -0.115878 \n", | |
"say -0.325448 -0.084951 -0.056228 0.207731 -0.123777 0.180303 \n", | |
"’s -0.116469 0.150934 -0.113941 0.254529 -0.150956 -0.007050 \n", | |
"from -0.084805 -0.003880 -0.052789 -0.195883 0.008878 0.346471 \n", | |
"it -0.156260 0.041205 -0.178788 -0.041812 -0.115585 0.026354 \n", | |
"at -0.042091 -0.178990 0.091708 -0.253203 -0.055851 0.155620 \n", | |
"will -0.348006 -0.207393 -0.122815 0.107602 -0.291866 0.068789 \n", | |
"by -0.404954 0.021610 0.131534 -0.212842 -0.027826 0.210552 \n", | |
"but -0.253961 -0.236251 -0.016752 0.125307 -0.181046 0.145657 \n", | |
"after -0.256954 0.016954 -0.041827 -0.026944 0.051736 0.325163 \n", | |
"he -0.614262 0.028741 0.034528 -0.187046 -0.093244 0.056804 \n", | |
"an -0.405566 0.001079 0.196531 0.033124 0.091576 0.149526 \n", | |
"their -0.126537 -0.016259 -0.084716 -0.083166 -0.054485 0.069355 \n", | |
"new -0.201035 0.085460 0.167302 -0.171616 0.072928 -0.210929 \n", | |
"not -0.422543 -0.104661 -0.021803 0.103312 0.252440 0.035054 \n", | |
"its -0.138076 0.035898 -0.324406 0.155565 0.171583 0.192598 \n", | |
"... ... ... ... ... ... ... \n", | |
"not_enough -0.510145 0.267852 -0.092845 -0.470826 -0.076695 -0.124101 \n", | |
"ranking -0.259038 0.025241 0.164333 -0.237639 -0.039643 0.115805 \n", | |
"antonio -0.091135 -0.286684 -0.350696 0.157299 -1.042287 0.082264 \n", | |
"sight -0.302174 0.505027 -0.005202 0.272650 -0.635197 -0.547206 \n", | |
"advantage -0.221860 0.282483 -0.726319 -0.781960 -0.128981 0.388335 \n", | |
"world_champion -0.530765 0.222084 -0.142474 -0.651072 -0.155838 -0.514741 \n", | |
"pipeline 0.389430 -0.053337 0.551466 0.434493 -0.113832 -0.230845 \n", | |
"commerce -0.819303 0.663663 0.199147 -0.248849 -0.134445 0.100175 \n", | |
"hello -0.545131 0.403947 0.188938 0.327679 0.362776 -0.805201 \n", | |
"ciro_immobile -1.398964 0.397761 0.300816 0.072580 0.198801 0.108731 \n", | |
"trademark -0.237891 0.188983 -0.134771 0.592018 0.599179 0.785352 \n", | |
"refer_to -0.962518 -0.101024 0.428971 -0.780233 -0.247224 -0.250521 \n", | |
"sign_up -0.592306 0.077836 0.694950 -0.125671 -0.063421 0.060527 \n", | |
"candy 0.272791 0.576765 0.115468 -0.322823 0.524259 -0.479514 \n", | |
"miami -0.862144 -1.416061 -0.243965 0.828267 -0.180654 -0.382431 \n", | |
"physical -0.780257 0.972387 0.527897 -0.543720 0.092487 0.383912 \n", | |
"recover -0.560045 0.072854 0.432087 0.117072 -0.579653 0.061056 \n", | |
"sustain -0.254749 -0.076043 -0.295920 0.247204 -0.156045 -0.054930 \n", | |
"catholic -0.487706 0.084492 0.454513 0.574732 -0.347128 -0.320074 \n", | |
"haven't -0.599765 -0.249576 0.608555 -0.422503 -0.494418 0.109678 \n", | |
"100,000 0.190498 0.018086 0.558629 0.094480 -0.478777 0.142151 \n", | |
"upgrade -0.118396 -0.311720 0.532235 -0.178842 -0.743159 -0.301638 \n", | |
"organizer 0.255724 -0.660715 -0.701783 0.726125 -0.365561 -0.770863 \n", | |
"cause_by -0.238164 1.029564 -0.509440 0.245553 0.390072 0.136188 \n", | |
"we_know -0.162277 0.748110 -0.004144 1.271405 -0.213628 -0.570346 \n", | |
"robin -0.230930 0.102474 0.884600 -0.038467 0.895778 -0.252214 \n", | |
"second_season -0.505385 -0.342129 0.302236 0.271572 -0.100411 -1.278507 \n", | |
"psa_group -0.672462 -0.601512 -0.051346 -0.381387 -0.292804 0.184509 \n", | |
"wideout -1.066392 -0.737779 0.633879 -0.501979 -0.016485 -0.403879 \n", | |
"every_week -0.469462 0.188889 0.110277 -0.764626 -0.380393 -0.640461 \n", | |
"\n", | |
" 97 98 99 \n", | |
"the 0.004382 0.231636 -0.051400 \n", | |
"be 0.022661 0.291493 0.028192 \n", | |
"a 0.174413 0.088293 -0.063436 \n", | |
"to 0.033954 0.169415 -0.245618 \n", | |
"of -0.110079 0.351764 -0.242360 \n", | |
"in -0.075646 0.136757 0.020359 \n", | |
"and -0.038099 0.248225 -0.318656 \n", | |
"have -0.016787 0.286776 -0.064353 \n", | |
"for -0.023037 0.163303 -0.083945 \n", | |
"on -0.097493 0.118408 -0.159755 \n", | |
"that -0.001712 0.108104 -0.065577 \n", | |
"'s -0.084427 0.049696 0.263197 \n", | |
"with 0.040646 0.261817 -0.172303 \n", | |
"as 0.079178 0.162803 -0.297174 \n", | |
"his -0.000225 0.332125 -0.111637 \n", | |
"say 0.251365 0.002213 -0.080268 \n", | |
"’s -0.046397 0.246985 0.100586 \n", | |
"from 0.033958 0.218801 -0.250586 \n", | |
"it -0.061815 0.290082 -0.032485 \n", | |
"at 0.083591 0.149747 0.083020 \n", | |
"will -0.266164 0.141740 -0.026873 \n", | |
"by 0.021041 0.064949 -0.098548 \n", | |
"but 0.077196 0.255184 0.091203 \n", | |
"after -0.049565 0.106467 -0.021257 \n", | |
"he -0.056108 0.381933 0.039332 \n", | |
"an 0.278049 0.180986 -0.062273 \n", | |
"their 0.014472 0.015852 -0.424737 \n", | |
"new -0.031279 0.036854 -0.311985 \n", | |
"not -0.171981 0.129241 0.091124 \n", | |
"its -0.114135 0.060844 0.022733 \n", | |
"... ... ... ... \n", | |
"not_enough -0.398636 -0.561430 0.478688 \n", | |
"ranking -0.261110 -0.064060 0.887719 \n", | |
"antonio 0.011264 0.102585 0.571744 \n", | |
"sight 0.037410 0.074470 -0.178576 \n", | |
"advantage 0.194783 -0.324332 -0.569256 \n", | |
"world_champion 0.075556 -0.029474 0.679655 \n", | |
"pipeline 0.228762 -0.729973 -0.094345 \n", | |
"commerce -0.408534 0.197245 1.066751 \n", | |
"hello 0.101312 0.428273 -0.541816 \n", | |
"ciro_immobile -0.045659 0.654901 -0.462221 \n", | |
"trademark 0.247860 -0.705473 -0.257353 \n", | |
"refer_to 0.017568 0.353447 -0.612467 \n", | |
"sign_up -0.170805 -0.192611 0.015800 \n", | |
"candy -0.336677 0.357923 -0.509631 \n", | |
"miami -0.093430 -0.152998 -0.178208 \n", | |
"physical -0.118773 -0.293702 -0.146384 \n", | |
"recover -0.139276 0.751752 0.225760 \n", | |
"sustain -0.128302 -0.225513 0.259037 \n", | |
"catholic -0.063053 0.497562 0.301398 \n", | |
"haven't -0.752551 0.096510 0.191669 \n", | |
"100,000 -0.755201 -0.123881 0.042677 \n", | |
"upgrade 0.266679 -0.604421 -0.661528 \n", | |
"organizer 0.607819 0.382359 0.145916 \n", | |
"cause_by -0.759734 -0.296547 0.645483 \n", | |
"we_know -0.133997 -0.092709 0.171419 \n", | |
"robin -0.616806 0.670850 -0.122526 \n", | |
"second_season -0.061038 -0.365958 0.282088 \n", | |
"psa_group 0.359980 -0.430942 -0.408788 \n", | |
"wideout -0.129087 0.032780 0.369346 \n", | |
"every_week 0.177771 0.653821 -0.147864 \n", | |
"\n", | |
"[3574 rows x 100 columns]" | |
] | |
}, | |
"execution_count": 84, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# build a list of the terms, integer indices,\n", | |
"# and term counts from the food2vec model vocabulary\n", | |
"ordered_vocab = [(term, voc.index, voc.count)\n", | |
" for term, voc in recall2vec.wv.vocab.items()]\n", | |
"\n", | |
"# sort by the term counts, so the most common terms appear first\n", | |
"ordered_vocab = sorted(ordered_vocab, key=lambda term_index: -term_index[2])\n", | |
"\n", | |
"# unzip the terms, integer indices, and counts into separate lists\n", | |
"ordered_terms, term_indices, term_counts = zip(*ordered_vocab)\n", | |
"\n", | |
"# create a DataFrame with the food2vec vectors as data,\n", | |
"# and the terms as row labels\n", | |
"word_vectors = pd.DataFrame(recall2vec.wv.syn0[term_indices, :],\n", | |
" index=ordered_terms)\n", | |
"\n", | |
"word_vectors" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### So... what can we do with all these numbers?\n", | |
"The first thing we can use them for is to simply look up related words and phrases for a given term of interest." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 85, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_related_terms(token, topn=5):\n", | |
" \"\"\"\n", | |
" look up the topn most similar terms to token\n", | |
" and print them as a formatted list\n", | |
" \"\"\"\n", | |
"\n", | |
" for word, similarity in recall2vec.most_similar(positive=[token], topn=topn):\n", | |
"\n", | |
" print('{:20} {}'.format(word, round(similarity, 3)))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Its News: So? Donald Trump.." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 89, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"donald_trump 0.649\n", | |
"president_donald_trump 0.648\n", | |
"u.s._president_donald 0.646\n", | |
"president_trump 0.632\n", | |
"trump_'s 0.632\n" | |
] | |
} | |
], | |
"source": [ | |
"get_related_terms('trump')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### What happened to Arsenal?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 87, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"bayern_munich 0.73\n", | |
"manchester_city 0.697\n", | |
"liverpool 0.689\n", | |
"manchester_united 0.682\n", | |
"alexis_sanchez 0.677\n" | |
] | |
} | |
], | |
"source": [ | |
"get_related_terms('arsenal')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Terms related to travel to US?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 90, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"executive_order 0.471\n", | |
"refugee 0.421\n", | |
"new_executive_order 0.397\n", | |
"bar 0.395\n", | |
"requirement 0.386\n", | |
"trip 0.385\n", | |
"new_travel_ban 0.382\n", | |
"traveler 0.381\n", | |
"ban 0.381\n", | |
"ambassador 0.381\n", | |
"united_states 0.38\n", | |
"country 0.377\n", | |
"boeing 0.364\n", | |
"entry 0.364\n", | |
"temporarily 0.364\n", | |
"visit 0.357\n", | |
"v 0.355\n", | |
"restrict 0.353\n", | |
"citizen 0.353\n", | |
"arrive 0.352\n" | |
] | |
} | |
], | |
"source": [ | |
"get_related_terms('travel', topn=20)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Word algebra!\n", | |
"No self-respecting word2vec demo would be complete without a healthy dose of *word algebra*, also known as *analogy completion*.\n", | |
"\n", | |
"The core idea is that once words are represented as numerical vectors, you can do math with them. The mathematical procedure goes like this:\n", | |
"1. Provide a set of words or phrases that you'd like to add or subtract.\n", | |
"1. Look up the vectors that represent those terms in the word vector model.\n", | |
"1. Add and subtract those vectors to produce a new, combined vector.\n", | |
"1. Look up the most similar vector(s) to this new, combined vector via cosine similarity.\n", | |
"1. Return the word(s) associated with the similar vector(s).\n", | |
"\n", | |
"But more generally, you can think of the vectors that represent each word as encoding some information about the *meaning* or *concepts* of the word. What happens when you ask the model to combine the meaning and concepts of words in new ways? Let's see." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 91, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def word_algebra(add=[], subtract=[], topn=1):\n", | |
" \"\"\"\n", | |
" combine the vectors associated with the words provided\n", | |
" in add= and subtract=, look up the topn most similar\n", | |
" terms to the combined vector, and print the result(s)\n", | |
" \"\"\"\n", | |
" answers = recall2vec.most_similar(positive=add, negative=subtract, topn=topn)\n", | |
" \n", | |
" for term, similarity in answers:\n", | |
" print(term)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### League + Sevilla = ? \n", | |
"Which soccer league does sevilla featured in?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 95, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"champions_league\n" | |
] | |
} | |
], | |
"source": [ | |
"word_algebra(add=['league', 'sevilla'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"OK, so the model knows that *Sevilla* featured in *Champions League*. What else?" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Channel - Game + Series = ?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 98, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"fx\n" | |
] | |
} | |
], | |
"source": [ | |
"word_algebra(add=['channel', 'series'], subtract=['game'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we're getting a bit more nuanced. The model has discovered that:\n", | |
"- Both *lunch* and *dinner* are meals\n", | |
"- The main difference between them is time of day\n", | |
"- Day and night are times of day\n", | |
"- Lunch is associated with day, and dinner is associated with night\n", | |
"\n", | |
"What else?" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### President - Trump + Obama = ?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 101, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"former_president\n" | |
] | |
} | |
], | |
"source": [ | |
"word_algebra(add=['president', 'obama'], subtract=['trump'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Word Vector Visualization with t-SNE" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"[t-Distributed Stochastic Neighbor Embedding](https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf), or *t-SNE* for short, is a dimensionality reduction technique to assist with visualizing high-dimensional datasets. It attempts to map high-dimensional data onto a low two- or three-dimensional representation such that the relative distances between points are preserved as closely as possible in both high-dimensional and low-dimensional space.\n", | |
"\n", | |
"scikit-learn provides a convenient implementation of the t-SNE algorithm with its [TSNE](http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) class." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 102, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.manifold import TSNE" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Our input for t-SNE will be the DataFrame of word vectors we created before. Let's first:\n", | |
"1. Drop stopwords — it's probably not too interesting to visualize *the*, *of*, *or*, and so on\n", | |
"1. Take only the 5,000 most frequent terms in the vocabulary — no need to visualize all ~50,000 terms right now." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 103, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"tsne_input = word_vectors.drop(spacy.en.stop_words.STOP_WORDS, errors='ignore')\n", | |
"tsne_input = tsne_input.head(1000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 104, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>...</th>\n", | |
" <th>90</th>\n", | |
" <th>91</th>\n", | |
" <th>92</th>\n", | |
" <th>93</th>\n", | |
" <th>94</th>\n", | |
" <th>95</th>\n", | |
" <th>96</th>\n", | |
" <th>97</th>\n", | |
" <th>98</th>\n", | |
" <th>99</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>'s</th>\n", | |
" <td>0.107918</td>\n", | |
" <td>-0.099459</td>\n", | |
" <td>0.062600</td>\n", | |
" <td>0.280599</td>\n", | |
" <td>-0.160545</td>\n", | |
" <td>-0.148823</td>\n", | |
" <td>-0.434433</td>\n", | |
" <td>0.109987</td>\n", | |
" <td>-0.161235</td>\n", | |
" <td>-0.090311</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.206353</td>\n", | |
" <td>-0.080761</td>\n", | |
" <td>0.029325</td>\n", | |
" <td>-0.183005</td>\n", | |
" <td>0.239528</td>\n", | |
" <td>-0.194297</td>\n", | |
" <td>0.020890</td>\n", | |
" <td>-0.084427</td>\n", | |
" <td>0.049696</td>\n", | |
" <td>0.263197</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>’s</th>\n", | |
" <td>0.130829</td>\n", | |
" <td>-0.153473</td>\n", | |
" <td>0.135104</td>\n", | |
" <td>0.017754</td>\n", | |
" <td>-0.276074</td>\n", | |
" <td>-0.299559</td>\n", | |
" <td>-0.412439</td>\n", | |
" <td>0.087559</td>\n", | |
" <td>-0.172711</td>\n", | |
" <td>-0.124084</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.282549</td>\n", | |
" <td>-0.116469</td>\n", | |
" <td>0.150934</td>\n", | |
" <td>-0.113941</td>\n", | |
" <td>0.254529</td>\n", | |
" <td>-0.150956</td>\n", | |
" <td>-0.007050</td>\n", | |
" <td>-0.046397</td>\n", | |
" <td>0.246985</td>\n", | |
" <td>0.100586</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>new</th>\n", | |
" <td>0.153179</td>\n", | |
" <td>0.181721</td>\n", | |
" <td>0.033603</td>\n", | |
" <td>-0.165886</td>\n", | |
" <td>0.016452</td>\n", | |
" <td>0.073054</td>\n", | |
" <td>0.088210</td>\n", | |
" <td>0.013292</td>\n", | |
" <td>0.030326</td>\n", | |
" <td>0.393300</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.122008</td>\n", | |
" <td>-0.201035</td>\n", | |
" <td>0.085460</td>\n", | |
" <td>0.167302</td>\n", | |
" <td>-0.171616</td>\n", | |
" <td>0.072928</td>\n", | |
" <td>-0.210929</td>\n", | |
" <td>-0.031279</td>\n", | |
" <td>0.036854</td>\n", | |
" <td>-0.311985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>people</th>\n", | |
" <td>-0.051667</td>\n", | |
" <td>0.017035</td>\n", | |
" <td>0.020685</td>\n", | |
" <td>-0.109309</td>\n", | |
" <td>0.701161</td>\n", | |
" <td>0.015426</td>\n", | |
" <td>-0.047808</td>\n", | |
" <td>-0.041350</td>\n", | |
" <td>0.221359</td>\n", | |
" <td>0.300733</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.664428</td>\n", | |
" <td>-0.472518</td>\n", | |
" <td>0.516659</td>\n", | |
" <td>0.041798</td>\n", | |
" <td>-0.269182</td>\n", | |
" <td>0.083803</td>\n", | |
" <td>0.351930</td>\n", | |
" <td>-0.601797</td>\n", | |
" <td>0.352331</td>\n", | |
" <td>-0.094488</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>good</th>\n", | |
" <td>0.066196</td>\n", | |
" <td>-0.024190</td>\n", | |
" <td>-0.075152</td>\n", | |
" <td>0.286012</td>\n", | |
" <td>0.416342</td>\n", | |
" <td>0.374844</td>\n", | |
" <td>0.138737</td>\n", | |
" <td>-0.079997</td>\n", | |
" <td>0.251452</td>\n", | |
" <td>-0.123866</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.068765</td>\n", | |
" <td>-0.313415</td>\n", | |
" <td>-0.211218</td>\n", | |
" <td>-0.094767</td>\n", | |
" <td>-0.085571</td>\n", | |
" <td>-0.343961</td>\n", | |
" <td>-0.187723</td>\n", | |
" <td>-0.341004</td>\n", | |
" <td>0.163113</td>\n", | |
" <td>-0.309968</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 100 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0 1 2 3 4 5 6 \\\n", | |
"'s 0.107918 -0.099459 0.062600 0.280599 -0.160545 -0.148823 -0.434433 \n", | |
"’s 0.130829 -0.153473 0.135104 0.017754 -0.276074 -0.299559 -0.412439 \n", | |
"new 0.153179 0.181721 0.033603 -0.165886 0.016452 0.073054 0.088210 \n", | |
"people -0.051667 0.017035 0.020685 -0.109309 0.701161 0.015426 -0.047808 \n", | |
"good 0.066196 -0.024190 -0.075152 0.286012 0.416342 0.374844 0.138737 \n", | |
"\n", | |
" 7 8 9 ... 90 91 92 \\\n", | |
"'s 0.109987 -0.161235 -0.090311 ... -0.206353 -0.080761 0.029325 \n", | |
"’s 0.087559 -0.172711 -0.124084 ... -0.282549 -0.116469 0.150934 \n", | |
"new 0.013292 0.030326 0.393300 ... -0.122008 -0.201035 0.085460 \n", | |
"people -0.041350 0.221359 0.300733 ... -0.664428 -0.472518 0.516659 \n", | |
"good -0.079997 0.251452 -0.123866 ... -0.068765 -0.313415 -0.211218 \n", | |
"\n", | |
" 93 94 95 96 97 98 99 \n", | |
"'s -0.183005 0.239528 -0.194297 0.020890 -0.084427 0.049696 0.263197 \n", | |
"’s -0.113941 0.254529 -0.150956 -0.007050 -0.046397 0.246985 0.100586 \n", | |
"new 0.167302 -0.171616 0.072928 -0.210929 -0.031279 0.036854 -0.311985 \n", | |
"people 0.041798 -0.269182 0.083803 0.351930 -0.601797 0.352331 -0.094488 \n", | |
"good -0.094767 -0.085571 -0.343961 -0.187723 -0.341004 0.163113 -0.309968 \n", | |
"\n", | |
"[5 rows x 100 columns]" | |
] | |
}, | |
"execution_count": 104, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tsne_input.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 105, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"tsne_filepath = os.path.join(intermediate_directory,\n", | |
" 'tsne_model')\n", | |
"\n", | |
"tsne_vectors_filepath = os.path.join(intermediate_directory,\n", | |
" 'tsne_vectors.npy')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 106, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 13.4 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"\n", | |
"if 1 == 1:\n", | |
" \n", | |
" tsne = TSNE()\n", | |
" tsne_vectors = tsne.fit_transform(tsne_input.values)\n", | |
" \n", | |
" with open(tsne_filepath, 'wb') as f:\n", | |
" pickle.dump(tsne, f)\n", | |
"\n", | |
" pd.np.save(tsne_vectors_filepath, tsne_vectors)\n", | |
" \n", | |
"with open(tsne_filepath, \"rb\") as f:\n", | |
" tsne = pickle.load(f)\n", | |
" \n", | |
"tsne_vectors = pd.np.load(tsne_vectors_filepath)\n", | |
"\n", | |
"tsne_vectors = pd.DataFrame(tsne_vectors,\n", | |
" index=pd.Index(tsne_input.index),\n", | |
" columns=['x_coord', 'y_coord'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we have a two-dimensional representation of our data! Let's take a look." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 107, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>x_coord</th>\n", | |
" <th>y_coord</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>'s</th>\n", | |
" <td>9.415721</td>\n", | |
" <td>11.288566</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>’s</th>\n", | |
" <td>8.405776</td>\n", | |
" <td>9.269558</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>new</th>\n", | |
" <td>8.004002</td>\n", | |
" <td>6.649834</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>people</th>\n", | |
" <td>-2.045634</td>\n", | |
" <td>8.869362</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>good</th>\n", | |
" <td>5.944308</td>\n", | |
" <td>3.195368</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" x_coord y_coord\n", | |
"'s 9.415721 11.288566\n", | |
"’s 8.405776 9.269558\n", | |
"new 8.004002 6.649834\n", | |
"people -2.045634 8.869362\n", | |
"good 5.944308 3.195368" | |
] | |
}, | |
"execution_count": 107, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tsne_vectors.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 108, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"tsne_vectors['word'] = tsne_vectors.index" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Plotting with Bokeh" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 109, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"C:\\Users\\aashis_tiwari\\AppData\\Local\\Continuum\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\bokeh\\core\\json_encoder.py:52: DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise an error in the future\n", | |
" NP_EPOCH = np.datetime64('1970-01-01T00:00:00Z')\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
" <div class=\"bk-root\">\n", | |
" <a href=\"http://bokeh.pydata.org\" target=\"_blank\" class=\"bk-logo bk-logo-small bk-logo-notebook\"></a>\n", | |
" <span id=\"2d785175-6517-4954-bb04-97394d22f7af\">Loading BokehJS ...</span>\n", | |
" </div>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/javascript": [ | |
"\n", | |
"(function(global) {\n", | |
" function now() {\n", | |
" return new Date();\n", | |
" }\n", | |
"\n", | |
" var force = true;\n", | |
"\n", | |
" if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n", | |
" window._bokeh_onload_callbacks = [];\n", | |
" window._bokeh_is_loading = undefined;\n", | |
" }\n", | |
"\n", | |
"\n", | |
" \n", | |
" if (typeof (window._bokeh_timeout) === \"undefined\" || force === true) {\n", | |
" window._bokeh_timeout = Date.now() + 5000;\n", | |
" window._bokeh_failed_load = false;\n", | |
" }\n", | |
"\n", | |
" var NB_LOAD_WARNING = {'data': {'text/html':\n", | |
" \"<div style='background-color: #fdd'>\\n\"+\n", | |
" \"<p>\\n\"+\n", | |
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", | |
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", | |
" \"</p>\\n\"+\n", | |
" \"<ul>\\n\"+\n", | |
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n", | |
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n", | |
" \"</ul>\\n\"+\n", | |
" \"<code>\\n\"+\n", | |
" \"from bokeh.resources import INLINE\\n\"+\n", | |
" \"output_notebook(resources=INLINE)\\n\"+\n", | |
" \"</code>\\n\"+\n", | |
" \"</div>\"}};\n", | |
"\n", | |
" function display_loaded() {\n", | |
" if (window.Bokeh !== undefined) {\n", | |
" document.getElementById(\"2d785175-6517-4954-bb04-97394d22f7af\").textContent = \"BokehJS successfully loaded.\";\n", | |
" } else if (Date.now() < window._bokeh_timeout) {\n", | |
" setTimeout(display_loaded, 100)\n", | |
" }\n", | |
" }\n", | |
"\n", | |
" function run_callbacks() {\n", | |
" window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", | |
" delete window._bokeh_onload_callbacks\n", | |
" console.info(\"Bokeh: all callbacks have finished\");\n", | |
" }\n", | |
"\n", | |
" function load_libs(js_urls, callback) {\n", | |
" window._bokeh_onload_callbacks.push(callback);\n", | |
" if (window._bokeh_is_loading > 0) {\n", | |
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", | |
" return null;\n", | |
" }\n", | |
" if (js_urls == null || js_urls.length === 0) {\n", | |
" run_callbacks();\n", | |
" return null;\n", | |
" }\n", | |
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", | |
" window._bokeh_is_loading = js_urls.length;\n", | |
" for (var i = 0; i < js_urls.length; i++) {\n", | |
" var url = js_urls[i];\n", | |
" var s = document.createElement('script');\n", | |
" s.src = url;\n", | |
" s.async = false;\n", | |
" s.onreadystatechange = s.onload = function() {\n", | |
" window._bokeh_is_loading--;\n", | |
" if (window._bokeh_is_loading === 0) {\n", | |
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n", | |
" run_callbacks()\n", | |
" }\n", | |
" };\n", | |
" s.onerror = function() {\n", | |
" console.warn(\"failed to load library \" + url);\n", | |
" };\n", | |
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", | |
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
" }\n", | |
" };var element = document.getElementById(\"2d785175-6517-4954-bb04-97394d22f7af\");\n", | |
" if (element == null) {\n", | |
" console.log(\"Bokeh: ERROR: autoload.js configured with elementid '2d785175-6517-4954-bb04-97394d22f7af' but no matching script tag was found. \")\n", | |
" return false;\n", | |
" }\n", | |
"\n", | |
" var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.js\"];\n", | |
"\n", | |
" var inline_js = [\n", | |
" function(Bokeh) {\n", | |
" Bokeh.set_log_level(\"info\");\n", | |
" },\n", | |
" \n", | |
" function(Bokeh) {\n", | |
" \n", | |
" document.getElementById(\"2d785175-6517-4954-bb04-97394d22f7af\").textContent = \"BokehJS is loading...\";\n", | |
" },\n", | |
" function(Bokeh) {\n", | |
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.css\");\n", | |
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.css\");\n", | |
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.css\");\n", | |
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.css\");\n", | |
" }\n", | |
" ];\n", | |
"\n", | |
" function run_inline_js() {\n", | |
" \n", | |
" if ((window.Bokeh !== undefined) || (force === true)) {\n", | |
" for (var i = 0; i < inline_js.length; i++) {\n", | |
" inline_js[i](window.Bokeh);\n", | |
" }if (force === true) {\n", | |
" display_loaded();\n", | |
" }} else if (Date.now() < window._bokeh_timeout) {\n", | |
" setTimeout(run_inline_js, 100);\n", | |
" } else if (!window._bokeh_failed_load) {\n", | |
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", | |
" window._bokeh_failed_load = true;\n", | |
" } else if (force !== true) {\n", | |
" var cell = $(document.getElementById(\"2d785175-6517-4954-bb04-97394d22f7af\")).parents('.cell').data().cell;\n", | |
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", | |
" }\n", | |
"\n", | |
" }\n", | |
"\n", | |
" if (window._bokeh_is_loading === 0) {\n", | |
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", | |
" run_inline_js();\n", | |
" } else {\n", | |
" load_libs(js_urls, function() {\n", | |
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", | |
" run_inline_js();\n", | |
" });\n", | |
" }\n", | |
"}(this));" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"from bokeh.plotting import figure, show, output_notebook\n", | |
"from bokeh.models import HoverTool, ColumnDataSource, value\n", | |
"\n", | |
"output_notebook()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 110, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
"\n", | |
" <div class=\"bk-root\">\n", | |
" <div class=\"bk-plotdiv\" id=\"a4a8bae1-c444-4dab-873d-10e91ed15d6f\"></div>\n", | |
" </div>\n", | |
"<script type=\"text/javascript\">\n", | |
" \n", | |
" (function(global) {\n", | |
" function now() {\n", | |
" return new Date();\n", | |
" }\n", | |
" \n", | |
" var force = false;\n", | |
" \n", | |
" if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n", | |
" window._bokeh_onload_callbacks = [];\n", | |
" window._bokeh_is_loading = undefined;\n", | |
" }\n", | |
" \n", | |
" \n", | |
" \n", | |
" if (typeof (window._bokeh_timeout) === \"undefined\" || force === true) {\n", | |
" window._bokeh_timeout = Date.now() + 0;\n", | |
" window._bokeh_failed_load = false;\n", | |
" }\n", | |
" \n", | |
" var NB_LOAD_WARNING = {'data': {'text/html':\n", | |
" \"<div style='background-color: #fdd'>\\n\"+\n", | |
" \"<p>\\n\"+\n", | |
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", | |
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", | |
" \"</p>\\n\"+\n", | |
" \"<ul>\\n\"+\n", | |
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n", | |
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n", | |
" \"</ul>\\n\"+\n", | |
" \"<code>\\n\"+\n", | |
" \"from bokeh.resources import INLINE\\n\"+\n", | |
" \"output_notebook(resources=INLINE)\\n\"+\n", | |
" \"</code>\\n\"+\n", | |
" \"</div>\"}};\n", | |
" \n", | |
" function display_loaded() {\n", | |
" if (window.Bokeh !== undefined) {\n", | |
" document.getElementById(\"a4a8bae1-c444-4dab-873d-10e91ed15d6f\").textContent = \"BokehJS successfully loaded.\";\n", | |
" } else if (Date.now() < window._bokeh_timeout) {\n", | |
" setTimeout(display_loaded, 100)\n", | |
" }\n", | |
" }\n", | |
" \n", | |
" function run_callbacks() {\n", | |
" window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", | |
" delete window._bokeh_onload_callbacks\n", | |
" console.info(\"Bokeh: all callbacks have finished\");\n", | |
" }\n", | |
" \n", | |
" function load_libs(js_urls, callback) {\n", | |
" window._bokeh_onload_callbacks.push(callback);\n", | |
" if (window._bokeh_is_loading > 0) {\n", | |
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", | |
" return null;\n", | |
" }\n", | |
" if (js_urls == null || js_urls.length === 0) {\n", | |
" run_callbacks();\n", | |
" return null;\n", | |
" }\n", | |
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", | |
" window._bokeh_is_loading = js_urls.length;\n", | |
" for (var i = 0; i < js_urls.length; i++) {\n", | |
" var url = js_urls[i];\n", | |
" var s = document.createElement('script');\n", | |
" s.src = url;\n", | |
" s.async = false;\n", | |
" s.onreadystatechange = s.onload = function() {\n", | |
" window._bokeh_is_loading--;\n", | |
" if (window._bokeh_is_loading === 0) {\n", | |
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n", | |
" run_callbacks()\n", | |
" }\n", | |
" };\n", | |
" s.onerror = function() {\n", | |
" console.warn(\"failed to load library \" + url);\n", | |
" };\n", | |
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", | |
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
" }\n", | |
" };var element = document.getElementById(\"a4a8bae1-c444-4dab-873d-10e91ed15d6f\");\n", | |
" if (element == null) {\n", | |
" console.log(\"Bokeh: ERROR: autoload.js configured with elementid 'a4a8bae1-c444-4dab-873d-10e91ed15d6f' but no matching script tag was found. \")\n", | |
" return false;\n", | |
" }\n", | |
" \n", | |
" var js_urls = [];\n", | |
" \n", | |
" var inline_js = [\n", | |
" function(Bokeh) {\n", | |
" (function() {\n", | |
" var fn = function() {\n", | |
" var docs_json = {\"0dd614dd-3db3-4043-ab1b-7d74b5a963d7\":{\"roots\":{\"references\":[{\"attributes\":{\"overlay\":{\"id\":\"d1fd94ac-2df6-4049-b666-1912bfa3f858\",\"type\":\"BoxAnnotation\"},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"4320a99f-1d44-4f69-aff7-8a0d0f221a69\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"dimension\":1,\"grid_line_color\":{\"value\":null},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"9218ee43-0680-4a4b-8509-7bf2ffccd546\",\"type\":\"BasicTicker\"}},\"id\":\"cefcc09f-afad-4c95-9a9b-f39dc86baf0a\",\"type\":\"Grid\"},{\"attributes\":{\"plot\":null,\"text\":\"t-SNE Word Embeddings\",\"text_font_size\":{\"value\":\"16pt\"}},\"id\":\"cebebfb7-641d-4351-bcb4-e2642b4dae4e\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"a0f08e8c-3e6c-49e9-a9c6-09f18ba87891\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"99833c52-1a27-49f9-a9e5-c3f1ebb38b33\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"callback\":null,\"overlay\":{\"id\":\"35ebda27-a4ff-4fe7-bebc-b4a53ca8d961\",\"type\":\"BoxAnnotation\"},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"renderers\":[{\"id\":\"53db5d5b-8d62-41a1-a82d-de86836c5d48\",\"type\":\"GlyphRenderer\"}]},\"id\":\"c33f4882-6995-41db-b498-8c28b3ab5e0d\",\"type\":\"BoxSelectTool\"},{\"attributes\":{},\"id\":\"a5044510-ccb9-42db-80a0-90db3d82a7c5\",\"type\":\"ToolEvents\"},{\"attributes\":{},\"id\":\"4790e402-3f62-4283-a551-20d282d8a636\",\"type\":\"BasicTicker\"},{\"attributes\":{\"grid_line_color\":{\"value\":null},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"4790e402-3f62-4283-a551-20d282d8a636\",\"type\":\"BasicTicker\"}},\"id\":\"dc7de540-dbac-4851-8d7f-7a0ff0d6fb96\",\"type\":\"Grid\"},{\"attributes\":{\"callback\":null},\"id\":\"4edf4492-052b-4c59-813c-3707e942a1fc\",\"type\":\"DataRange1d\"},{\"attributes\":{\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"ad7282df-33ba-463c-8db3-5d752fd5fcf6\",\"type\":\"PanTool\"},{\"attributes\":{\"callback\":null,\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"tooltips\":\"@word\"},\"id\":\"685bf24d-e9e9-4f09-8323-f06ca233744d\",\"type\":\"HoverTool\"},{\"attributes\":{\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"6963d55a-1d3f-4873-ae1f-7dff3b34c3aa\",\"type\":\"ResetTool\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"55716aed-68ec-4cc2-ada9-3fcc3fb03836\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"9218ee43-0680-4a4b-8509-7bf2ffccd546\",\"type\":\"BasicTicker\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"8dfbb3f9-bc97-4096-9141-ad74e8c750b9\",\"type\":\"Circle\"},{\"attributes\":{\"formatter\":{\"id\":\"a0f08e8c-3e6c-49e9-a9c6-09f18ba87891\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"9218ee43-0680-4a4b-8509-7bf2ffccd546\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"88a86ecb-d4e7-4170-8914-5d8a90866e04\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"9a492623-7ec0-4684-a46a-7bd44e33be2d\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_scroll\":{\"id\":\"99833c52-1a27-49f9-a9e5-c3f1ebb38b33\",\"type\":\"WheelZoomTool\"},\"active_tap\":\"auto\",\"tools\":[{\"id\":\"ad7282df-33ba-463c-8db3-5d752fd5fcf6\",\"type\":\"PanTool\"},{\"id\":\"99833c52-1a27-49f9-a9e5-c3f1ebb38b33\",\"type\":\"WheelZoomTool\"},{\"id\":\"4320a99f-1d44-4f69-aff7-8a0d0f221a69\",\"type\":\"BoxZoomTool\"},{\"id\":\"c33f4882-6995-41db-b498-8c28b3ab5e0d\",\"type\":\"BoxSelectTool\"},{\"id\":\"e21f8078-1aca-42c4-b6e1-67cff6aa4d3e\",\"type\":\"ResizeTool\"},{\"id\":\"6963d55a-1d3f-4873-ae1f-7dff3b34c3aa\",\"type\":\"ResetTool\"},{\"id\":\"685bf24d-e9e9-4f09-8323-f06ca233744d\",\"type\":\"HoverTool\"}]},\"id\":\"3d10f12d-ff7b-414e-9882-81c9712c920e\",\"type\":\"Toolbar\"},{\"attributes\":{\"callback\":null,\"column_names\":[\"x_coord\",\"index\",\"y_coord\",\"word\"],\"data\":{\"index\":[\"'s\",\"\\u2019s\",\"new\",\"people\",\"good\",\"president\",\"come\",\"day\",\"time\",\"win\",\"trump\",\"u.s.\",\"plan\",\"company\",\"report\",\"big\",\"year\",\"use\",\"do_not\",\"face\",\"work\",\"want\",\"game\",\"woman\",\"team\",\"leave\",\"government\",\"world\",\"internet\",\"like\",\"late\",\"country\",\"state\",\"find\",\"president_donald_trump\",\"start\",\"accord_to\",\"play\",\"way\",\"include\",\"follow\",\"man\",\"expect\",\"set\",\"tell\",\"imgur\",\"lead\",\"most_awesome_image_on\",\"claim\",\"help\",\"announce\",\"release\",\"need\",\"end\",\"white_house\",\"star\",\"look\",\"season\",\"party\",\"home\",\"change\",\"reddit\",\"point_and\",\"hold\",\"group\",\"sign\",\"million\",\"reveal\",\"$\",\"player\",\"return\",\"comment_so_far_on\",\"run\",\"city\",\"leader\",\"congress\",\"official\",\"today\",\"more_than\",\"say_he\",\"series\",\"child\",\"pay\",\"right\",\"police\",\"market\",\"head\",\"donald_trump\",\"know\",\"deal\",\"-PRON-_'\",\"share\",\"believe\",\"old\",\"\\u2019\",\"cut\",\"future\",\"business\",\"uk\",\"life\",\"high\",\"issue\",\"long\",\"job\",\"this_week\",\"ask\",\"try_to\",\"vote\",\"support\",\"charge\",\"live\",\"on_tuesday\",\"bill\",\"american\",\"juventus\",\"order\",\"offer\",\"open\",\"on_wednesday\",\"test\",\"power\",\"confirm\",\"launch\",\"hit\",\"great\",\"service\",\"begin\",\"decision\",\"force\",\"club\",\"warn\",\"think\",\"close\",\"post\",\"2017\",\"election\",\"lose\",\"public\",\"case\",\"kill\",\"month\",\"fan\",\"continue\",\"talk\",\"on_monday\",\"major\",\"film\",\"fight\",\"it_'\",\"thing\",\"england\",\"appear\",\"car\",\"bring\",\"political\",\"second\",\"despite\",\"record\",\"rule\",\"russia\",\"president_trump\",\"campaign\",\"stop\",\"office\",\"mean\",\"\\u00a3\",\"news\",\"death\",\"break\",\"question\",\"turn\",\"price\",\"place\",\"court\",\"rise\",\"large\",\"point\",\"goal\",\"budget\",\"on_thursday\",\"barcelona\",\"attack\",\"remain\",\"story\",\"policy\",\"president_donald_trump_'s\",\"bad\",\"seek\",\"increase\",\"event\",\"speech\",\"final\",\"tax\",\"fall\",\"action\",\"law\",\"join\",\"speak\",\"watch\",\"house\",\"trade\",\"roma\",\"last_year\",\"target\",\"napoli\",\"director\",\"monday\",\"fire\",\"inter\",\"early\",\"send\",\"host\",\"week\",\"write\",\"die\",\"tweet\",\"wednesday\",\"eu\",\"hand\",\"beat\",\"meet\",\"school\",\"grow\",\"billion\",\"accuse\",\"video\",\"part_of\",\"feel\",\"family\",\"british\",\"republican\",\"on_sunday\",\"add\",\"investor\",\"-PRON-_\\u2019\",\"champions_league\",\"statement\",\"china\",\"problem\",\"milan\",\"role\",\"on_friday\",\"likely\",\"australia\",\"little\",\"build\",\"london\",\"coach\",\"system\",\"sunday\",\"national\",\"manchester_united\",\"tuesday\",\"india\",\"money\",\"match\",\"result\",\"-PRON-_will\",\"race\",\"2016\",\"address\",\"march\",\"google\",\"ap\",\"ban\",\"score\",\"spend\",\"visit\",\"defeat\",\"washington\",\"raise\",\"at_least\",\"medium\",\"clear\",\"create\",\"feature\",\"provide\",\"moment\",\"military\",\"reach\",\"conservative\",\"buy\",\"on_saturday\",\"cost\",\"united_states\",\"key\",\"real_madrid\",\"near\",\"chief\",\"call_for\",\"arsenal\",\"miss\",\"republicans\",\"reportedly\",\"friday\",\"industry\",\"allow\",\"wo_not\",\"international\",\"receive\",\"mark\",\"promise\",\"driver\",\"-PRON-_have\",\"base\",\"ceo\",\"history\",\"premier_league\",\"movie\",\"title\",\"strike\",\"risk\",\"review\",\"free\",\"trump_administration\",\"stay\",\"liverpool\",\"project\",\"mp\",\"new_york\",\"sell\",\"stock\",\"chelsea\",\"manager\",\"theresa_may\",\"admit\",\"trump_'s\",\"discuss\",\"love\",\"list\",\"chance\",\"war\",\"past\",\"firm\",\"winner\",\"travel\",\"draw\",\"demand\",\"number_of\",\"battle\",\"challenge\",\"ahead_of\",\"john\",\"picture\",\"facebook\",\"judge\",\"consider\",\"federal\",\"washington_ap\",\"europe\",\"age\",\"form\",\"suggest\",\"look_at\",\"tv\",\"tie\",\"thursday\",\"pass\",\"sale\",\"effort\",\"huge\",\"episode\",\"global\",\"america\",\"victory\",\"arrest\",\"drop\",\"drive\",\"amid\",\"hear\",\"oscar\",\"line\",\"low\",\"economic\",\"actor\",\"financial\",\"can_not\",\"datum\",\"strong\",\"this_year\",\"administration\",\"security\",\"deliver\",\"young\",\"officer\",\"immigration\",\"happen\",\"secretary\",\"push\",\"photo\",\"loss\",\"authority\",\"away\",\"replace\",\"uber\",\"percent\",\"comment\",\"read\",\"injury\",\"recent\",\"potential\",\"prime_minister\",\"book\",\"last_week\",\"bank\",\"controversial\",\"worker\",\"cause\",\"hour\",\"due_to\",\"-PRON-_'re\",\"fail_to\",\"small\",\"son\",\"department\",\"track\",\"program\",\"hospital\",\"10\",\"online\",\"research\",\"agency\",\"detail\",\"rally\",\"design\",\"hop\",\"award\",\"russian\",\"investigation\",\"fear\",\"proposal\",\"suffer\",\"snap\",\"hope\",\"2\",\"struggle\",\"that_'\",\"rival\",\"david\",\"leak\",\"nearly\",\"phone\",\"fund\",\"prove\",\"block\",\"technology\",\"matter\",\"image\",\"member_of\",\"upcoming\",\"document\",\"economy\",\"outside\",\"investigate\",\"threat\",\"scene\",\"wear\",\"save\",\"brexit\",\"possible\",\"european\",\"-PRON-_\\u2019s\",\"debut\",\"real\",\"let\",\"social_medium\",\"term\",\"air\",\"scotland\",\"first_time\",\"control\",\"student\",\"rate\",\"insist\",\"level\",\"hard\",\"talk_about\",\"interest\",\"americans\",\"file\",\"-PRON-_\\u2019re\",\"message\",\"legal\",\"bos\",\"murder\",\"body\",\"affordable_care_act\",\"britain\",\"land\",\"decide\",\"apple\",\"shoot\",\"agent\",\"expert\",\"it_\\u2019\",\"friend\",\"deny\",\"user\",\"view\",\"lawmaker\",\"number\",\"center\",\"manchester_city\",\"weekend\",\"app\",\"answer\",\"energy\",\"finally\",\"seven\",\"executive\",\"health\",\"emerge\",\"striker\",\"tech\",\"football\",\"performance\",\"blame\",\"surprise\",\"league\",\"process\",\"ready\",\"act\",\"fast\",\"oil\",\"senior\",\"learn\",\"pick\",\"deal_with\",\"when_he\",\"nation\",\"stand\",\"justice\",\"different\",\"february\",\"cast\",\"customer\",\"meeting\",\"word\",\"attorney_general\",\"step\",\"democrats\",\"experience\",\"career\",\"parent\",\"french\",\"investment\",\"gop\",\"minister\",\"allegation\",\"local\",\"brand\",\"defend\",\"north_korea\",\"urge\",\"road\",\"source\",\"night\",\"contract\",\"consumer\",\"suspect\",\"you_can\",\"staff\",\"space\",\"propose\",\"plus\",\"reject\",\"trip\",\"university\",\"white\",\"girl\",\"victim\",\"penalty\",\"wrong\",\"concern\",\"enter\",\"cover\",\"current\",\"boost\",\"obama\",\"parliament\",\"update\",\"bbc\",\"area\",\"drug\",\"round\",\"private\",\"attempt_to\",\"incident\",\"minute\",\"success\",\"tough\",\"stage\",\"abuse\",\"sport\",\"bar\",\"member\",\"official_say\",\"human\",\"bid\",\"if_you\",\"arrive\",\"position\",\"avoid\",\"owner\",\"protest\",\"account\",\"link\",\"character\",\"wave\",\"publish\",\"idea\",\"approach\",\"snow\",\"water\",\"australian\",\"food\",\"measure\",\"protect\",\"secure\",\"chinese\",\"attorney_general_jeff_sessions\",\"discover\",\"giant\",\"half\",\"actually\",\"european_union\",\"involve\",\"veteran\",\"celebrate\",\"refuse_to\",\"special\",\"threaten\",\"spot\",\"agree\",\"a_lot_of\",\"prepare\",\"black\",\"cia\",\"doctor\",\"saturday\",\"finish\",\"choice\",\"annual\",\"catch\",\"there_'\",\"drama\",\"growth\",\"la_la_land\",\"gain\",\"mother\",\"fly\",\"poll\",\"captain\",\"100\",\"massive\",\"2018\",\"syria\",\"midfielder\",\"allegedly\",\"instead\",\"main\",\"art\",\"funding\",\"citizen\",\"bayern_munich\",\"evidence\",\"street\",\"1\",\"press\",\"partner\",\"spending\",\"try\",\"information\",\"2015\",\"eye\",\"explain\",\"affect\",\"germany\",\"m\",\"obamacare\",\"reason\",\"music\",\"park\",\"opposition\",\"site\",\"option\",\"store\",\"signal\",\"study\",\"foreign\",\"april\",\"malaysia\",\"couple\",\"committee\",\"as_part_of\",\"region\",\"coverage\",\"benefit\",\"capital\",\"course\",\"amazon\",\"fiorentina\",\"mind\",\"fine\",\"response\",\"leadership\",\"board\",\"champion\",\"claim_that\",\"short\",\"describe\",\"twitter\",\"meet_with\",\"room\",\"figure\",\"jose_mourinho\",\"ground\",\"inside\",\"female\",\"legend\",\"james\",\"device\",\"justice_department\",\"michael\",\"summer\",\"community\",\"governor\",\"3\",\"chancellor\",\"light\",\"hollywood\",\"welcome\",\"legislation\",\"complete\",\"father\",\"pm\",\"anti\",\"west\",\"competition\",\"probably\",\"day_after\",\"senator\",\"recently\",\"championship\",\"train\",\"moonlight\",\"scientist\",\"dozen\",\"chairman\",\"easy\",\"allege\",\"interview\",\"fed\",\"five_year\",\"scandal\",\"centre\",\"secret\",\"conference\",\"switch\",\"available\",\"analysis\",\"flight\",\"vehicle\",\"startup\",\"north\",\"5\",\"tool\",\"network\",\"produce\",\"less_than\",\"labour\",\"far\",\"present\",\"reduce\",\"would_not\",\"crime\",\"product\",\"direct\",\"improve\",\"defense\",\"fox\",\"barack_obama\",\"netherlands\",\"lawyer\",\"senate\",\"announcement\",\"union\",\"thousand_of\",\"focus_on\",\"per_cent\",\"fill\",\"when_it\",\"debate\",\"inc.\",\"resign\",\"samsung\",\"fact\",\"mexico\",\"insurance\",\"south\",\"german\",\"voter\",\"candidate\",\"donald_trump_'s\",\"deep\",\"unveil\",\"travel_ban\",\"away_from\",\"popular\",\"actress\",\"lie\",\"cash\",\"single\",\"introduce\",\"property\",\"warning\",\"impact\",\"employee\",\"mission\",\"win_over\",\"south_korea\",\"wall_street\",\"50\",\"democratic\",\"maker\",\"general\",\"conduct\",\"person\",\"value\",\"decade\",\"6\",\"this_season\",\"important\",\"chris\",\"critic\",\"damage\",\"health_care\",\"extend\",\"note\",\"guy\",\"border\",\"field\",\"30\",\"thanks_to\",\"develop\",\"police_say\",\"federal_reserve\",\"later\",\"peer\",\"bear\",\"pressure\",\"dead\",\"pro\",\"seat\",\"resident\",\"prison\",\"supporter\",\"patient\",\"happy\",\"trial\",\"poor\",\"last_month\",\"isis\",\"training\",\"pledge\",\"king\",\"operation\",\"next_week\",\"dollar\",\"criticism\",\"currently\",\"-PRON-\",\"computer\",\"11\",\"president_trump_'s\",\"storm\",\"true\",\"forward\",\"crowd\",\"card\",\"20\",\"12\",\"cite\",\"refugee\",\"development\",\"this_article_originally_appear\",\"pull\",\"hack\",\"date\",\"prevent\",\"tour\",\"check_out\",\"care\",\"here_'\",\"safety\",\"classic\",\"estimate\",\"vow\",\"arm\",\"morning\",\"immigrant\",\"president_trump_\\u2019s\",\"tony_bellew\",\"-PRON-_would\",\"tonight\",\"a_lot\",\"fresh\",\"boy\",\"screen\",\"soon\",\"cancer\",\"on_twitter\",\"ex\",\"mr\",\"council\",\"pair\",\"dutch\",\"wall\",\"declare\",\"zlatan_ibrahimovic\",\"fix\",\"california\",\"13\",\"sex\",\"united\",\"7\",\"politics\",\"injure\",\"model\",\"snapchat\",\"limit\",\"majority\",\"those_who\",\"david_haye\",\"in_january\",\"medical\",\"building\",\"praise\",\"turkey\",\"strategy\",\"platform\",\"income\",\"4\",\"door\",\"baby\",\"moon\",\"fa_cup\",\"so_far\",\"to_repeal_and\",\"remove\",\"surveillance\",\"tottenham\",\"japan\",\"wife\",\"check\",\"grant\",\"apply\",\"voice\",\"animal\",\"italy\",\"dog\",\"letter\",\"brother\",\"heart\",\"winter\",\"politician\",\"quickly\",\"opportunity\",\"red\",\"kid\",\"leicester_city\",\"average\",\"logan\",\"hot\",\"require\",\"this_summer\",\"arsene_wenger\",\"mosul\",\"crisis\",\"decline\",\"florida\",\"lazio\",\"atalanta\",\"condition\",\"intelligence\",\"investigation_into\",\"airport\",\"worth\",\"central\",\"pick_up\",\"accept\",\"pitch\",\"comic\",\"be_able_to\",\"identify\",\"such_as\",\"town\",\"highlight\",\"focus\",\"survey\"],\"word\":[\"'s\",\"\\u2019s\",\"new\",\"people\",\"good\",\"president\",\"come\",\"day\",\"time\",\"win\",\"trump\",\"u.s.\",\"plan\",\"company\",\"report\",\"big\",\"year\",\"use\",\"do_not\",\"face\",\"work\",\"want\",\"game\",\"woman\",\"team\",\"leave\",\"government\",\"world\",\"internet\",\"like\",\"late\",\"country\",\"state\",\"find\",\"president_donald_trump\",\"start\",\"accord_to\",\"play\",\"way\",\"include\",\"follow\",\"man\",\"expect\",\"set\",\"tell\",\"imgur\",\"lead\",\"most_awesome_image_on\",\"claim\",\"help\",\"announce\",\"release\",\"need\",\"end\",\"white_house\",\"star\",\"look\",\"season\",\"party\",\"home\",\"change\",\"reddit\",\"point_and\",\"hold\",\"group\",\"sign\",\"million\",\"reveal\",\"$\",\"player\",\"return\",\"comment_so_far_on\",\"run\",\"city\",\"leader\",\"congress\",\"official\",\"today\",\"more_than\",\"say_he\",\"series\",\"child\",\"pay\",\"right\",\"police\",\"market\",\"head\",\"donald_trump\",\"know\",\"deal\",\"-PRON-_'\",\"share\",\"believe\",\"old\",\"\\u2019\",\"cut\",\"future\",\"business\",\"uk\",\"life\",\"high\",\"issue\",\"long\",\"job\",\"this_week\",\"ask\",\"try_to\",\"vote\",\"support\",\"charge\",\"live\",\"on_tuesday\",\"bill\",\"american\",\"juventus\",\"order\",\"offer\",\"open\",\"on_wednesday\",\"test\",\"power\",\"confirm\",\"launch\",\"hit\",\"great\",\"service\",\"begin\",\"decision\",\"force\",\"club\",\"warn\",\"think\",\"close\",\"post\",\"2017\",\"election\",\"lose\",\"public\",\"case\",\"kill\",\"month\",\"fan\",\"continue\",\"talk\",\"on_monday\",\"major\",\"film\",\"fight\",\"it_'\",\"thing\",\"england\",\"appear\",\"car\",\"bring\",\"political\",\"second\",\"despite\",\"record\",\"rule\",\"russia\",\"president_trump\",\"campaign\",\"stop\",\"office\",\"mean\",\"\\u00a3\",\"news\",\"death\",\"break\",\"question\",\"turn\",\"price\",\"place\",\"court\",\"rise\",\"large\",\"point\",\"goal\",\"budget\",\"on_thursday\",\"barcelona\",\"attack\",\"remain\",\"story\",\"policy\",\"president_donald_trump_'s\",\"bad\",\"seek\",\"increase\",\"event\",\"speech\",\"final\",\"tax\",\"fall\",\"action\",\"law\",\"join\",\"speak\",\"watch\",\"house\",\"trade\",\"roma\",\"last_year\",\"target\",\"napoli\",\"director\",\"monday\",\"fire\",\"inter\",\"early\",\"send\",\"host\",\"week\",\"write\",\"die\",\"tweet\",\"wednesday\",\"eu\",\"hand\",\"beat\",\"meet\",\"school\",\"grow\",\"billion\",\"accuse\",\"video\",\"part_of\",\"feel\",\"family\",\"british\",\"republican\",\"on_sunday\",\"add\",\"investor\",\"-PRON-_\\u2019\",\"champions_league\",\"statement\",\"china\",\"problem\",\"milan\",\"role\",\"on_friday\",\"likely\",\"australia\",\"little\",\"build\",\"london\",\"coach\",\"system\",\"sunday\",\"national\",\"manchester_united\",\"tuesday\",\"india\",\"money\",\"match\",\"result\",\"-PRON-_will\",\"race\",\"2016\",\"address\",\"march\",\"google\",\"ap\",\"ban\",\"score\",\"spend\",\"visit\",\"defeat\",\"washington\",\"raise\",\"at_least\",\"medium\",\"clear\",\"create\",\"feature\",\"provide\",\"moment\",\"military\",\"reach\",\"conservative\",\"buy\",\"on_saturday\",\"cost\",\"united_states\",\"key\",\"real_madrid\",\"near\",\"chief\",\"call_for\",\"arsenal\",\"miss\",\"republicans\",\"reportedly\",\"friday\",\"industry\",\"allow\",\"wo_not\",\"international\",\"receive\",\"mark\",\"promise\",\"driver\",\"-PRON-_have\",\"base\",\"ceo\",\"history\",\"premier_league\",\"movie\",\"title\",\"strike\",\"risk\",\"review\",\"free\",\"trump_administration\",\"stay\",\"liverpool\",\"project\",\"mp\",\"new_york\",\"sell\",\"stock\",\"chelsea\",\"manager\",\"theresa_may\",\"admit\",\"trump_'s\",\"discuss\",\"love\",\"list\",\"chance\",\"war\",\"past\",\"firm\",\"winner\",\"travel\",\"draw\",\"demand\",\"number_of\",\"battle\",\"challenge\",\"ahead_of\",\"john\",\"picture\",\"facebook\",\"judge\",\"consider\",\"federal\",\"washington_ap\",\"europe\",\"age\",\"form\",\"suggest\",\"look_at\",\"tv\",\"tie\",\"thursday\",\"pass\",\"sale\",\"effort\",\"huge\",\"episode\",\"global\",\"america\",\"victory\",\"arrest\",\"drop\",\"drive\",\"amid\",\"hear\",\"oscar\",\"line\",\"low\",\"economic\",\"actor\",\"financial\",\"can_not\",\"datum\",\"strong\",\"this_year\",\"administration\",\"security\",\"deliver\",\"young\",\"officer\",\"immigration\",\"happen\",\"secretary\",\"push\",\"photo\",\"loss\",\"authority\",\"away\",\"replace\",\"uber\",\"percent\",\"comment\",\"read\",\"injury\",\"recent\",\"potential\",\"prime_minister\",\"book\",\"last_week\",\"bank\",\"controversial\",\"worker\",\"cause\",\"hour\",\"due_to\",\"-PRON-_'re\",\"fail_to\",\"small\",\"son\",\"department\",\"track\",\"program\",\"hospital\",\"10\",\"online\",\"research\",\"agency\",\"detail\",\"rally\",\"design\",\"hop\",\"award\",\"russian\",\"investigation\",\"fear\",\"proposal\",\"suffer\",\"snap\",\"hope\",\"2\",\"struggle\",\"that_'\",\"rival\",\"david\",\"leak\",\"nearly\",\"phone\",\"fund\",\"prove\",\"block\",\"technology\",\"matter\",\"image\",\"member_of\",\"upcoming\",\"document\",\"economy\",\"outside\",\"investigate\",\"threat\",\"scene\",\"wear\",\"save\",\"brexit\",\"possible\",\"european\",\"-PRON-_\\u2019s\",\"debut\",\"real\",\"let\",\"social_medium\",\"term\",\"air\",\"scotland\",\"first_time\",\"control\",\"student\",\"rate\",\"insist\",\"level\",\"hard\",\"talk_about\",\"interest\",\"americans\",\"file\",\"-PRON-_\\u2019re\",\"message\",\"legal\",\"bos\",\"murder\",\"body\",\"affordable_care_act\",\"britain\",\"land\",\"decide\",\"apple\",\"shoot\",\"agent\",\"expert\",\"it_\\u2019\",\"friend\",\"deny\",\"user\",\"view\",\"lawmaker\",\"number\",\"center\",\"manchester_city\",\"weekend\",\"app\",\"answer\",\"energy\",\"finally\",\"seven\",\"executive\",\"health\",\"emerge\",\"striker\",\"tech\",\"football\",\"performance\",\"blame\",\"surprise\",\"league\",\"process\",\"ready\",\"act\",\"fast\",\"oil\",\"senior\",\"learn\",\"pick\",\"deal_with\",\"when_he\",\"nation\",\"stand\",\"justice\",\"different\",\"february\",\"cast\",\"customer\",\"meeting\",\"word\",\"attorney_general\",\"step\",\"democrats\",\"experience\",\"career\",\"parent\",\"french\",\"investment\",\"gop\",\"minister\",\"allegation\",\"local\",\"brand\",\"defend\",\"north_korea\",\"urge\",\"road\",\"source\",\"night\",\"contract\",\"consumer\",\"suspect\",\"you_can\",\"staff\",\"space\",\"propose\",\"plus\",\"reject\",\"trip\",\"university\",\"white\",\"girl\",\"victim\",\"penalty\",\"wrong\",\"concern\",\"enter\",\"cover\",\"current\",\"boost\",\"obama\",\"parliament\",\"update\",\"bbc\",\"area\",\"drug\",\"round\",\"private\",\"attempt_to\",\"incident\",\"minute\",\"success\",\"tough\",\"stage\",\"abuse\",\"sport\",\"bar\",\"member\",\"official_say\",\"human\",\"bid\",\"if_you\",\"arrive\",\"position\",\"avoid\",\"owner\",\"protest\",\"account\",\"link\",\"character\",\"wave\",\"publish\",\"idea\",\"approach\",\"snow\",\"water\",\"australian\",\"food\",\"measure\",\"protect\",\"secure\",\"chinese\",\"attorney_general_jeff_sessions\",\"discover\",\"giant\",\"half\",\"actually\",\"european_union\",\"involve\",\"veteran\",\"celebrate\",\"refuse_to\",\"special\",\"threaten\",\"spot\",\"agree\",\"a_lot_of\",\"prepare\",\"black\",\"cia\",\"doctor\",\"saturday\",\"finish\",\"choice\",\"annual\",\"catch\",\"there_'\",\"drama\",\"growth\",\"la_la_land\",\"gain\",\"mother\",\"fly\",\"poll\",\"captain\",\"100\",\"massive\",\"2018\",\"syria\",\"midfielder\",\"allegedly\",\"instead\",\"main\",\"art\",\"funding\",\"citizen\",\"bayern_munich\",\"evidence\",\"street\",\"1\",\"press\",\"partner\",\"spending\",\"try\",\"information\",\"2015\",\"eye\",\"explain\",\"affect\",\"germany\",\"m\",\"obamacare\",\"reason\",\"music\",\"park\",\"opposition\",\"site\",\"option\",\"store\",\"signal\",\"study\",\"foreign\",\"april\",\"malaysia\",\"couple\",\"committee\",\"as_part_of\",\"region\",\"coverage\",\"benefit\",\"capital\",\"course\",\"amazon\",\"fiorentina\",\"mind\",\"fine\",\"response\",\"leadership\",\"board\",\"champion\",\"claim_that\",\"short\",\"describe\",\"twitter\",\"meet_with\",\"room\",\"figure\",\"jose_mourinho\",\"ground\",\"inside\",\"female\",\"legend\",\"james\",\"device\",\"justice_department\",\"michael\",\"summer\",\"community\",\"governor\",\"3\",\"chancellor\",\"light\",\"hollywood\",\"welcome\",\"legislation\",\"complete\",\"father\",\"pm\",\"anti\",\"west\",\"competition\",\"probably\",\"day_after\",\"senator\",\"recently\",\"championship\",\"train\",\"moonlight\",\"scientist\",\"dozen\",\"chairman\",\"easy\",\"allege\",\"interview\",\"fed\",\"five_year\",\"scandal\",\"centre\",\"secret\",\"conference\",\"switch\",\"available\",\"analysis\",\"flight\",\"vehicle\",\"startup\",\"north\",\"5\",\"tool\",\"network\",\"produce\",\"less_than\",\"labour\",\"far\",\"present\",\"reduce\",\"would_not\",\"crime\",\"product\",\"direct\",\"improve\",\"defense\",\"fox\",\"barack_obama\",\"netherlands\",\"lawyer\",\"senate\",\"announcement\",\"union\",\"thousand_of\",\"focus_on\",\"per_cent\",\"fill\",\"when_it\",\"debate\",\"inc.\",\"resign\",\"samsung\",\"fact\",\"mexico\",\"insurance\",\"south\",\"german\",\"voter\",\"candidate\",\"donald_trump_'s\",\"deep\",\"unveil\",\"travel_ban\",\"away_from\",\"popular\",\"actress\",\"lie\",\"cash\",\"single\",\"introduce\",\"property\",\"warning\",\"impact\",\"employee\",\"mission\",\"win_over\",\"south_korea\",\"wall_street\",\"50\",\"democratic\",\"maker\",\"general\",\"conduct\",\"person\",\"value\",\"decade\",\"6\",\"this_season\",\"important\",\"chris\",\"critic\",\"damage\",\"health_care\",\"extend\",\"note\",\"guy\",\"border\",\"field\",\"30\",\"thanks_to\",\"develop\",\"police_say\",\"federal_reserve\",\"later\",\"peer\",\"bear\",\"pressure\",\"dead\",\"pro\",\"seat\",\"resident\",\"prison\",\"supporter\",\"patient\",\"happy\",\"trial\",\"poor\",\"last_month\",\"isis\",\"training\",\"pledge\",\"king\",\"operation\",\"next_week\",\"dollar\",\"criticism\",\"currently\",\"-PRON-\",\"computer\",\"11\",\"president_trump_'s\",\"storm\",\"true\",\"forward\",\"crowd\",\"card\",\"20\",\"12\",\"cite\",\"refugee\",\"development\",\"this_article_originally_appear\",\"pull\",\"hack\",\"date\",\"prevent\",\"tour\",\"check_out\",\"care\",\"here_'\",\"safety\",\"classic\",\"estimate\",\"vow\",\"arm\",\"morning\",\"immigrant\",\"president_trump_\\u2019s\",\"tony_bellew\",\"-PRON-_would\",\"tonight\",\"a_lot\",\"fresh\",\"boy\",\"screen\",\"soon\",\"cancer\",\"on_twitter\",\"ex\",\"mr\",\"council\",\"pair\",\"dutch\",\"wall\",\"declare\",\"zlatan_ibrahimovic\",\"fix\",\"california\",\"13\",\"sex\",\"united\",\"7\",\"politics\",\"injure\",\"model\",\"snapchat\",\"limit\",\"majority\",\"those_who\",\"david_haye\",\"in_january\",\"medical\",\"building\",\"praise\",\"turkey\",\"strategy\",\"platform\",\"income\",\"4\",\"door\",\"baby\",\"moon\",\"fa_cup\",\"so_far\",\"to_repeal_and\",\"remove\",\"surveillance\",\"tottenham\",\"japan\",\"wife\",\"check\",\"grant\",\"apply\",\"voice\",\"animal\",\"italy\",\"dog\",\"letter\",\"brother\",\"heart\",\"winter\",\"politician\",\"quickly\",\"opportunity\",\"red\",\"kid\",\"leicester_city\",\"average\",\"logan\",\"hot\",\"require\",\"this_summer\",\"arsene_wenger\",\"mosul\",\"crisis\",\"decline\",\"florida\",\"lazio\",\"atalanta\",\"condition\",\"intelligence\",\"investigation_into\",\"airport\",\"worth\",\"central\",\"pick_up\",\"accept\",\"pitch\",\"comic\",\"be_able_to\",\"identify\",\"such_as\",\"town\",\"highlight\",\"focus\",\"survey\"],\"x_coord\":[9.415720728102817,8.405776163356837,8.004002308195377,-2.0456342300170767,5.944307888710529,-0.7549081187525264,10.256818909778705,6.594973624477396,5.1564045035568,12.807327507013817,-0.9124006244312026,2.42047970183709,0.9966817200987516,-5.613440067344827,11.44435559532984,8.07690859909601,4.923755876812853,1.8829242487107427,-0.5237656244986875,9.661820485058037,4.8681377827613606,2.883360897691693,15.946778409587,-2.891053656939718,13.797352612349824,13.129398352213041,0.365438113919866,8.64466891376936,-5.023251781523118,5.52277674141429,9.029763598914588,3.1643740353082874,3.6774551186372797,3.0306250176531457,0.13574679981915594,10.135830611255175,10.279528474540548,15.001956524760079,4.89493977914911,9.2894633606184,11.540985897977942,-2.2708766414919443,9.27766602930157,9.040215038249851,6.081591261149901,-4.796874815609678,12.626230797993195,-4.7953708917274085,10.241568311344237,3.3125170557853467,8.838275304313212,8.302618115586526,2.7958953288611594,11.09287120144677,-2.6054070997652943,15.628266202809158,6.121312019300343,15.72553995561499,5.707210015374666,6.3025762894333,6.659371038075474,-12.933622898227416,-13.441323585088265,8.446476481924655,-0.8349552139019678,11.081214905142707,4.4887713741723685,7.1038233548125245,4.620022906187271,16.493326085698527,11.381213035137575,-8.880617952305855,8.838064315924248,6.010976326973586,6.126065976515233,0.2091221460832131,-0.12950829263868469,10.528667919832248,4.341827603861029,17.96386679696704,14.374135269735739,-4.066150217233102,0.3750006016845886,3.023520256506017,-3.8141737043645616,8.866331075114799,8.755678940291443,-0.5114001654812309,2.4754529935841654,-0.18574951162022185,1.1851271623260047,8.458759879484962,5.429830128569886,2.4933435589781308,7.839839272419187,3.5286499297422576,8.307246713045712,-1.9674119390603613,8.360791361442162,5.682565479242861,7.766712891754464,4.875070914481248,6.099864639013919,8.108276722773907,9.857999491191688,2.131621495527482,4.92326862589901,6.2714343600045535,4.753977423358175,12.46420539067553,14.692901894504761,14.922398789048632,0.8322222358718193,-1.2766824314889185,19.784842110885453,1.0931285957691599,2.7604026808116724,10.267333610184124,11.842402690625372,12.21029293470487,5.323374930874553,8.650558492796245,7.817592102261962,7.519510046755514,7.563760185274548,-5.636382550976478,10.848530696259285,2.5957620600393594,7.439374108900999,17.714841378953626,6.0048059168434795,6.297053482080162,9.350748162244647,12.77711004252286,9.862059780730275,5.410920071249279,13.750813914345812,0.5867969319979154,-0.8766278491816143,-6.873370796564878,4.950887602833333,0.5835712895669564,11.58743924997271,7.343130371271553,11.944136676895656,7.45087547353973,16.515411560023036,7.445782439283075,1.8935670457935685,1.8156185997422676,16.72052755007679,10.023945862339284,-11.750393487959855,12.384682809719028,11.381465204559523,9.911106929786229,13.533517739147142,12.932764443386374,-0.012296765764863854,-0.9770110081497925,-0.8143591323288026,-1.1454878540559503,0.7940935914124929,-1.566439232299801,6.0503565796528465,0.3384918932292533,11.688665185219595,-8.42512173943939,12.357610131299856,1.5352418600093465,11.964714290616532,8.316603391431213,8.886839161329817,-1.3341353755484768,7.015954384260755,8.289791190259576,11.363353327719784,13.78124467528207,3.3647741927373533,13.05427861768922,21.04730341603745,7.743857027329343,14.797268594776686,12.520434676290476,2.8593879900515713,-1.1787009249260063,7.310469054150268,1.1800533762783962,5.088781751200319,12.596233840200112,-1.405755195346364,10.91103782418725,1.8343964393819565,7.47924050626543,10.74490957491055,0.21116221869647986,8.470417844949974,6.600955014062902,6.517917271157875,0.7287649471182535,9.232355194849282,20.337456949009038,12.591714196634527,7.621716481659524,20.289989448717957,-1.7741942017320504,12.694965180071808,8.471847686392467,19.827214794512756,9.562846966568019,13.486996407248702,11.015026867733273,4.98632331218203,6.836101565998713,-6.900076521233551,-2.2496276728794458,12.255866678850929,8.173353362977036,11.690077274396888,16.91539730925844,7.2937583088248426,-3.0047827241789897,8.168597718905607,4.524735539186706,-4.829137155341261,-7.258239202595541,9.073455752614265,3.862857443486758,-1.9471460555036932,-1.5605029865575897,1.5179704493216228,15.313913142229918,10.260922563044794,-3.494702731061897,0.5524523354991038,20.90835957269898,-3.6233784778961637,-4.816351868609828,4.979584951644198,20.034799955980425,15.641064551065032,11.138483048289768,7.712374721161029,12.545839653725148,4.8257471430059935,0.16032359908559313,5.84481773058325,16.878480766209016,1.9575799807235212,15.412850032970084,3.7045199034453007,22.331284325584644,12.388581633902326,12.550652993241092,-0.9950508830152894,16.09359448578631,8.958461634251483,-0.2559111913300237,8.370996036015878,12.639108056500703,-1.9575353574931487,10.262418972716691,-6.706515217246661,0.3805684099739175,2.722596279843447,19.775304743651688,4.154733964895109,19.332508185554786,15.502183627510076,4.534005645489913,-0.6872212133188089,3.2961514308762974,11.332769759099147,4.974698430198817,2.2659346573635455,9.653815007543958,2.822530015228504,5.5574858137224075,2.1599539843054156,13.055318759926383,3.4364970347741584,-0.6792889065568153,15.19548772064893,4.873952997684627,2.35322522947809,8.247392153456795,20.88065495088815,6.427086759112636,-4.621697873220895,2.934197816696569,21.863423230730312,12.22616285485802,1.4231283582295093,8.162661367539583,11.68693959563319,8.639282120930437,2.2461783662716224,-0.26315021727760746,10.23536176567979,9.797018580218712,10.544305193797125,0.697629402269164,-2.219696639409643,2.6272647059370917,-0.6929580562329657,15.107742610673407,13.605452612341049,21.31921202028393,16.577379919545415,14.893966094754184,7.9734741626342105,4.061830854613345,9.196947117794966,11.558841105696215,-0.3869702493800417,14.974586297124288,20.74063436635138,-7.041207531618908,7.212410409385943,4.42581376737603,-0.5820427828587081,8.656020503125761,20.000172760868267,17.020899972492796,8.2495133039802,5.045712568953631,-2.1706024301338047,7.975251881417864,0.7728460431301817,7.755404876854967,3.8878006218174104,-10.524028626654342,6.296517925161873,-3.854533589440066,14.813928594619492,3.344973658965242,11.00331656641909,5.380879234053342,5.5361114387619805,7.673009054976574,9.689276615163818,11.043943604363482,14.246498095989116,-6.848306725081611,-6.503741415363517,-1.2682552648920309,8.556505364329514,0.5964654708360833,-2.3059310858544673,1.3566190268537595,-6.258727750540657,11.799352623899164,9.727582161407485,5.8541907365256165,3.7711421575075756,13.022466289504482,12.779186464992547,0.7783912250738025,-0.8468198990224841,3.692160614309874,8.27694094970007,16.538001057602205,8.86775925920366,8.666594461783541,17.1661691536224,-3.8216228089145647,10.167393021911082,0.7460394172441905,13.442940492815849,2.0544503534195617,3.669886012508795,9.198742574378233,7.840594896752706,3.0834612288356205,16.095922276883503,-1.8829190178969788,-2.6078426584152004,-8.576402208429828,9.172154232881988,9.384529813097615,-1.0148257002508387,-0.16126677438707238,7.2905225496659405,2.175528206654769,-3.9156362431363227,-2.695286886726716,11.281677794334826,-1.0247679443951043,6.7821407926134425,-7.459021618424568,13.577543718463765,-3.3825076168428136,8.50744185153482,4.643087462694735,-5.645309263229841,5.735331698590929,-4.411861767767339,6.503681692225467,17.562154467224843,8.930882659862887,5.987356003076022,7.561837579103455,7.020145830229215,10.015139123435395,-1.8277022738065005,9.188083518757814,-3.375946280531048,14.082063281214161,4.415541883489331,12.353104224645378,0.6415445021775744,3.8191746025580326,3.3178195234717522,-9.449272368220974,-1.9938377930555797,9.844953886693398,3.3871920081556817,-3.387310582059749,11.729692579684642,-6.5023937810839705,-7.853114725666942,-1.8592502579680472,4.297544655644822,-3.587672197892602,1.8240624787908652,12.167273985323432,3.806877071679923,-0.7160680592437123,-1.4169046921473392,5.742615817940459,1.656526734314416,17.50461055976386,-7.852448109119977,4.204385337360379,10.73254423691669,4.515150166003592,1.7060833396815418,-6.692051454166887,14.47368367566405,-10.576331588460013,3.801044790701818,-6.405188426069328,-1.7111733562716336,7.357608855288207,1.5432852633738263,-3.8436981620427613,10.928582724373225,13.986467535279738,-1.496184011174889,14.741924858643614,-10.632016812193294,7.674129300678457,1.4253830150282087,-3.805248034305404,-1.9749643742550536,7.356734155687346,-1.8601218275070643,12.221167687247817,8.72929578995775,7.624630802588545,1.3453137480103177,0.6469759823585564,10.51124950705172,7.158480249524206,2.576827759862391,14.03467201665613,10.211339859680422,-10.788545683518457,16.94051994387467,4.45622846748726,4.39524156048824,-4.108859051241091,6.446038360858768,5.820884623096029,12.179055240128347,5.334246516816024,13.507054719657221,15.665727829151454,-5.704852836044384,-1.4306696841256705,0.7370780887911395,-6.892578136517261,3.654852928104214,17.047092555414903,-7.808919986998615,-0.8351836169410423,1.4674646489503078,8.897079856527286,5.889814830930985,6.824596890549509,-6.227491883782512,-7.434616385544333,-3.405576505923245,-4.540937173835269,1.5770380604539966,-4.981872155775399,10.478554003980337,-6.42722506148129,5.1748000749121905,1.5888205819446266,9.94550161604817,0.42202231458920325,20.85972535299639,17.22989783401822,-6.480221757219689,1.4303606704320573,9.026522318631121,8.933142590596534,11.83920935674623,-4.319465697549108,-3.061986832673567,6.819630741509398,18.510284681416305,-4.282588259797932,13.80192744881232,17.86508666040413,-6.663216006746766,12.4538400699266,16.273150494551725,2.930540545404464,10.459208899289182,-0.6646063221642371,9.764155092974798,5.593039398942376,-0.1027349541862742,4.443716224158282,15.69551218925657,9.972702373343683,11.259371066764496,3.025291155449977,8.892866055593402,-2.0647965793919076,3.801317861715715,8.791231515433998,15.781815149692742,-6.437237916141837,9.045474526853507,1.3580937105096056,-0.9712981518224878,4.491395088830782,1.5414807854739232,4.280790333765748,4.802585742305757,-5.185315205350815,10.7540982296121,-3.3872398905139653,2.1934637529074092,7.214676606848269,10.533212389829252,-2.857438949895481,-2.880995913106895,9.019655275237973,-5.400970547080555,3.3149195678177015,6.933067137286128,-0.3459841641055476,4.87112010944881,14.33352903763847,-1.634576623799522,-3.2626686622351597,-10.596443786874305,-4.643996240794731,5.026583460710157,1.8009343325395482,11.835225047116849,0.7300116919433504,19.23557636722334,-4.346459478433161,-2.574872114264344,-3.1608885247389633,-4.884084809568815,17.698587677652277,3.5377446428909662,-0.20874171075032483,5.255552478809784,10.300963876745021,10.28241275226024,4.8867577764270616,-0.7312042503255473,8.311568851000024,10.405241157359807,-6.293982913009368,7.055482209377962,-2.8114562724354784,14.239439910059643,-3.6546957129102586,3.8567278580792625,13.41628458292652,17.096300911550415,14.054429233689566,7.132407557147147,14.207385658812113,-4.956339822671714,15.143783661713062,2.153560131052537,4.828933405261876,-3.604373545187041,11.256804224224277,11.390214844805616,-10.370674874275187,7.897127151903615,8.598484847445096,3.476832860538944,0.6762017425425261,11.202259021689189,-10.786415569590169,13.435367072730958,17.482188685184955,-1.5092995908531899,8.313866945372583,3.1082821575305672,8.466148941722764,6.643347547043403,-10.799377121798711,-2.3336245182833224,-2.6212256978789368,2.0804265395419548,1.091927277907104,14.023621394893796,2.827194094626956,0.25600964388724506,-9.722111457617842,-5.204677214620947,3.4972473291117643,-9.814036166544136,9.224179814001198,13.448210165319686,13.559768306492401,2.3631417424969854,11.452960935019389,8.024556289213425,2.696626277403001,13.58935650775278,-0.1561766604505043,5.2453296063203165,10.556113859734824,-1.2301646735820237,-10.010520068625983,-2.654861204810483,15.272852627566147,13.941678419074947,2.347769904449297,9.766940775159688,7.363468126383074,2.053217530100315,15.641664084344782,7.7236914322570325,3.2325525058619573,6.50521849764281,-5.762813652023839,-3.0813306832830647,5.822286226063187,17.14694211924293,9.323861074487995,7.933922802325967,1.7929096001261164,-10.555217102966735,17.831969885962923,-3.4052112137249386,5.31944976748242,12.925752194653722,-7.704074212952544,3.8956273603588447,2.507755857683948,20.701232377883276,4.672004146343825,1.4364785711600205,10.959054334728588,12.165872260691266,-4.9495599834567034,3.4949727292310713,5.594405729696394,-8.818049401003748,12.673871374037232,8.633917577560796,6.697867846724753,14.501843167328767,1.6419261160345335,-1.0818968378780576,2.0224304970778566,2.784309936656889,0.399167160944387,6.054408825303716,3.601145199194445,-5.534626124480193,1.0593427913097186,1.468881892436902,1.5329486168930215,-8.329676610252452,-8.911274906469545,10.371123428222981,-5.924146075553105,-2.561346245863113,1.195741437477036,18.860622023109066,2.7657655578961053,11.711961088683331,1.7290385780558368,5.582914325333715,4.90370795956775,-6.711440466346989,19.134117613212005,4.741619457709853,10.83385307537891,2.8535140227112503,5.2447676061280335,-8.733509332539562,16.07713060820943,10.308597676485801,9.920855089046421,6.664436605675154,-7.694142352946034,7.680295341591702,0.9337224194629885,9.206778031273544,21.57970374323876,8.298793650878904,6.705141683831632,-2.2057292469982617,15.433272690889401,-2.361311478577138,-8.266165591583919,-2.2526622668840863,2.3404748979389676,14.805406858714127,-3.0513000462640667,-0.9894721727285469,10.910787787383953,7.282723975252147,9.613878579892017,3.6106559271031355,8.410859258097185,2.608741481825562,8.74078305480347,-8.487664822776258,6.242477627851381,4.883912485654636,5.850305524641761,8.778100568749231,2.1713280355655895,12.665197261658758,0.2308650480355383,7.484890051897169,16.009259643073896,6.874669604017724,3.2092683891948806,-9.639705060561019,2.1768027123223725,15.254261329667786,5.561426431157893,11.899066718663232,3.3954059603600864,6.601887786860888,3.6450506397104276,-3.9979445645299214,-0.29269755582338364,-9.042462766366175,10.921427468327273,4.926900754412411,8.460716303458494,12.048408489017882,-5.795560501091104,-11.790044802105836,-3.7437737709710355,5.853188331554179,10.538184969538104,-9.200801842921766,-1.4989198891416915,6.126438138586804,4.287073867784706,7.307108099955787,11.114883364175666,7.954406403412984,5.696190147764295,0.3264130989289818,-4.480378124886526,-3.528501305839786,4.633884703135828,8.477399517041349,1.271864293887023,0.6071347123347411,-3.0996700298173545,3.4552838389162357,-0.4662663158540133,1.1911332253960405,9.062375799549464,8.50940207280348,1.87251706837167,-9.037155512037831,5.950974339037289,12.492331262296991,6.200812542620528,7.061345646416384,-5.928374720666623,-0.4189640657584613,-7.451817279287411,4.247842457072095,8.530348150334454,3.7336429800703135,6.175072876584135,-1.6282744176459605,5.59394161550948,5.138088770605074,-0.5180705103339039,-0.4885077090837028,8.521940336815707,-1.6135990345031077,2.815425328493272,7.937867517107859,16.256236192937614,8.838711396126614,-0.8547747110715983,-7.997118660580563,7.0161315798073955,-3.0219857665893644,1.5580245720265822,12.82793228463992,-4.331051432053565,-10.956451330698494,15.278731890707514,-5.371918300560835,-3.862207934459541,3.4707137494046507,1.2161717119651305,-5.134248024417512,0.46783060619031586,-2.5827983079789907,-1.125373775891647,-2.416875862220555,4.475486585166652,11.528107063235426,18.96538061148603,7.047035134701704,13.90303060547673,6.734812869587423,3.29996961473162,1.8551621006667949,15.013210580927936,9.03565269293985,8.08258735816483,5.188102595578803,0.4638245602698412,4.757719768093942,17.903213232095812,-4.784077592094281,-3.897881135163858,6.598475895710371,2.5790371336349365,6.372675966249772,1.8273456205813952,16.720019534884532,-3.373418192168525,4.3798414068023215,5.187569207921445,-5.930836454185447,-6.1419704782346445,-3.7696874673559795,-3.479286789012162,15.31112488916701,-1.6254990873961481,18.350647999182673,11.745414805112526,6.571575349558968,7.511963734884837,0.45099102692285015,13.636677720567008,4.581930288532337,11.071579713858563,4.953024043729441,13.038666027166004,7.299632124060766,1.3939294270596028,-8.884989374424807,11.865524606676242,-1.6248435888453703,12.600524888906145,3.451623200753002,20.121149711106526,7.315975629046578,16.5284764485278,12.33907165029056,11.79057939434296,11.083674279433113,-2.80853046877665,2.7614718590634437,6.665115426221232,11.573461616385806,-10.727435082736317,7.4963053732845255,0.9066876198398667,19.703252972718715,12.419591780408659,-3.3677728604034822,6.81011997770702,4.336086685585258,16.496945705189972,3.210093071128414,1.6778021287138487,4.6924962579448755,6.066013084965874,-3.1824779786107023,-1.9382895367872321,15.638927927113647,11.324917178954944,11.192173319214445,3.1793905660167665,19.524181001422654,-3.4171235551701318,12.699597236613753,10.32977205905651,-7.812634132359735,-7.374489827441963,9.949140147472306,7.044392688122495,-0.3685426843676991,13.33107506615089,3.5074392042094558,0.05057800442773705,16.51036237593924,21.414106419956376,4.5589051448047675,-0.6727226012523416,1.7160396113982457,-4.236240663794442,10.57605627557265,11.389560067176,10.708571200304966,-7.3673434087626095,9.875975246668,-7.761635536402548,-0.8128136665887955,0.6366024229973171,-1.6784357276746185,15.635344867787929,12.133882768950107,-3.3128270550710366,5.994721491767723,9.068466101083642,3.192764347146846,9.466964302956658,-6.205204447713386,2.57568999470155,10.947983766126175,9.253659830373254,-6.193064941059647,-10.95703110281344,22.15222482363206,6.488500625584169,2.637839851310144,1.21593055145213,-0.1292932063013429,20.735628358484472,-4.71551382329724,-9.494235705600214,2.090638248375135,0.22612432433036317,6.1836818319140665,-6.983149474481736,-4.735639249784777,17.0156795559153,-5.496612919097637,6.881695383051913,-9.443614323200684,4.058720904257385,12.152074617560801,4.841725827649693,5.86933066024571,9.34936094187758,12.882048488624742,-7.734929065917422,21.339125307388827,9.97413315978625,5.069872395892148,9.38768479437079,-0.032557227936609076,-0.8836454854683551,21.935838697183236,6.29173300860836,15.528483559960948,-5.851892923976214,10.389159701361054,20.10963201497089,19.87849686658026,4.627664584237208,-1.3566243091179337,-2.1024342447686735,3.4361488363515442,-0.0019678854134179483,2.95036092394444,-7.567331989203925,5.101415054642313,16.76001025187427,16.788639854881843,-0.1005748909553146,14.005097379708381,7.367807501642988,5.576896238953007,12.883781665283543,5.760478286427407,10.699903592528514],\"y_coord\":[11.288565591108426,9.269558395788566,6.6498344370142,8.869362208005823,3.1953676017927304,-11.495444959959574,6.9771071313868855,11.733395820685306,10.054536707138457,6.223095740669872,-10.069549398914337,0.897314803810583,-1.3556756098447142,-0.23355339155729693,13.425703292289697,5.171450642318899,10.409934775747745,6.324599783181698,15.075274398747593,10.033228223052404,7.067240901233559,12.678561903361269,-0.21595909171042899,10.998739584573455,1.6291514898293702,8.4348079377111,0.11697243694092685,1.4841896621047819,3.1364233642161525,7.869071145429446,6.498077619526461,2.764964849239923,2.800862079451444,8.044684477816443,-9.889183479667246,8.606691176408816,13.440234751044423,-0.5501765381290121,7.210988563506586,8.591924773821669,8.437461308030608,11.322200816924438,9.255265143740102,9.935179728589587,13.686397085849235,-13.379185701900731,6.50162348004001,-13.380126600628296,14.95793714138227,6.200580189421816,17.048617315413384,18.68203504226863,12.545276262743634,7.205208758501695,-8.034592267107836,10.024267400371476,7.243561340870676,1.5983035071015295,-9.639038992622288,7.873427056845866,6.223117084660306,-9.79855353253948,-9.123425318934087,8.411487241945114,6.314603834539437,9.26013040317242,-5.623051880018614,11.777778129160536,-6.652083083302379,0.4054079671062043,5.84987192788497,-5.623278363145945,5.794980624485593,2.809997930041448,-9.278650504449908,-12.09077081613649,1.8285057854016664,10.953980187398756,9.895979539106827,12.583875138908349,11.182917969133777,8.267133043911615,-3.9652484909542154,5.081141454621129,6.058893262891291,-4.379356776427079,10.630237237759486,-11.480681021418812,11.312812532599981,-2.9986781090109247,15.660845992077583,-3.4327733781339513,14.377480117579259,9.534956474565545,11.037880503798437,-4.911328745410474,5.30291385403671,-0.7510011947624973,-6.515949549887006,8.975655678511718,-2.2422858030617663,4.63315462275132,9.498667974364626,5.107006155985853,5.3099572621043745,12.366572276255495,7.077480748758571,-9.752697573747541,14.706704443874157,15.235879756418903,-0.6494539090900077,-9.998676106324355,-2.353634113887715,8.109524724155085,-1.6296270841692788,3.7644823478929217,8.882999977999923,10.785672893297457,-10.791137766048504,2.792825526242268,5.613403540478738,15.65245743408103,16.82504435983681,-0.888149216481106,6.550036184363975,3.8506150125468395,7.479042060440042,-0.3499090837673505,7.637534122268185,1.4096640524635626,13.768530969447113,10.067527749605087,4.887552630407458,-5.411034607638218,-2.3435817321797128,-9.8295479743434,6.350454658321443,0.5242599255288207,4.300117050040929,11.413356008266188,11.415652953112295,9.446299971698906,5.363381530269347,12.5950496457136,-12.993657615872193,3.5244322953662888,10.964820244775712,7.312674499009718,16.146830917052807,14.976384130944293,3.9734010540367257,11.48198075080509,-1.6975928790116712,6.960341393062747,12.878705775011298,6.952398173880731,8.671841025219791,3.8496240112894067,3.572191892749464,0.41670462447640455,-11.668733148007306,0.9863565753691838,5.529063165473522,-8.204367600260657,8.559875196900409,-4.333977051297771,9.466402535202398,11.371766100111204,4.115751552656905,12.60506018781411,7.190234749987055,-3.3847781086028297,11.188471606149248,4.794649961125171,-2.9962023164835982,-6.0456978061254985,3.4911387675739847,0.19660486240716363,-2.67671189819397,-13.395568217854775,-0.7276423657126896,8.438182541110017,7.380595574425058,10.249670133966468,0.33967460945652217,-11.141913856037375,4.267533964493211,-0.7021529577532986,-1.932652568946625,10.275674388172611,-13.899370887697966,6.682193555718628,-2.4057081183417512,-1.3495624683865772,11.164976412633994,-1.523221336054894,14.969339747091327,13.657139189433789,10.3583195620433,7.251058161906023,-4.041442491344461,-2.9991166127730677,16.67363898867366,8.567890902386702,-1.451923440509751,16.455435462328907,-12.070460768952673,7.551519541185181,-1.1720704768192685,7.4098688728911455,10.389905309740145,10.884882668995704,9.144616812849614,15.349503537189651,11.782183436127875,-9.598102666207101,-12.019019338195289,-8.719282419570943,8.512312411202561,4.240843551211237,13.058578961066305,-0.04723667046342783,-5.818341001432207,-5.8047333941717145,12.623965019114047,6.419964331586352,10.125682840985746,12.553277454518867,8.618475230873019,7.79936964646907,-10.892334845014572,13.725327136240134,8.35347072511897,-4.068937100802182,16.08631276155336,-0.3376055925148658,-8.977346124571934,-6.0430161573582915,4.861376316482457,-1.8303906854276033,9.107921897731648,-13.126044540275087,9.265647639483806,-3.4135433864432883,9.766023171557986,10.89736618984244,3.0909056555751944,1.7006943650606432,6.31002047709221,13.656884938372016,1.5313723936855264,2.20462470616021,-13.369189487975918,-3.406275761928614,-3.344075397278201,-0.07703178506312318,-0.4142561346143943,15.269015550851142,6.082602949478406,16.728871221639313,-14.658104841292161,1.9647671456255698,1.066749717414384,3.1095464051585697,3.136543424590107,0.37490265770941567,9.73016064704657,7.363430120256779,4.768790319305816,2.8274263782702915,-0.9235842503061206,10.510586720175404,13.580083065214337,10.392713538529135,8.141267299333348,8.394868370582193,8.703620163464132,11.570381999113517,1.0321659355588086,6.751309708481643,-9.338537093614395,11.554466768681632,14.129966115111127,-3.4821932784401763,1.5870941440641761,4.929694862872562,0.9956337050577897,-0.21795826088318582,6.405659949359419,12.988671112746541,0.9100886775698005,13.464664979603645,-10.602026539149929,9.716415083783653,-12.152647626158375,-5.115931290001855,5.4572271492413975,15.028177838079745,16.538733167130776,9.373664454689663,7.837733395331026,-1.1643383723264247,11.166886370235268,15.75235096128322,7.044521393336084,16.81791299664795,1.752320848598615,2.1925419003590436,11.033211374981443,3.813628332439932,8.580320613247077,4.453511612239299,5.645636847479091,9.784144775159215,-7.492739414814197,6.0858051651103064,1.6063901515772416,-3.363398900223101,-9.715506687664243,2.7442990572563533,11.49399883564225,-3.5647528285029373,2.1406768734443613,2.7185460913061457,-8.861375996399861,13.23250310230283,-10.516558127955186,12.712903893056982,13.366852981470924,3.001125858666201,14.043128292904315,6.682424117184349,5.953173208021298,-2.915835858060342,2.8256559855274292,3.1382336620868183,5.999944557954088,14.617524164743031,-2.083778878497259,7.546872817637063,10.024176531120961,8.540683998294204,15.918550482311963,8.469427358499651,1.7733797334793922,3.2427733755548234,9.147261340727377,-0.3373250371483902,-7.142138872295321,2.7308258353602897,11.993165806173442,11.713386888530296,14.697723785048355,13.004076805969166,16.103237668405818,4.957115965389156,-13.556242765675792,-2.5277170995464084,11.77808937258246,3.869631895957103,5.758855223420505,9.007700570138702,-5.453663157986279,1.5389816746862985,4.371228110133588,12.587209764961852,3.497197654640827,10.793241934146826,8.622511032337266,12.029202585437476,-14.28772675211553,7.3771536162706255,-2.2289084954790974,-1.2503630214616415,10.345824814240503,-3.473368480731084,14.826366596209263,-0.33765648416325306,3.9274331499389996,-2.939208651876519,-9.604264828009594,-0.1578198418508675,13.584343231801379,9.63463379571341,6.061185548946192,-5.709511806707362,6.842225668322102,-6.159505053411704,7.5016181667984005,6.847868822106836,6.286411538442988,5.910344459647539,3.014005329251774,-11.961966118303287,2.1744989368392487,-6.06265886958933,17.236682950146633,10.758536580655637,8.155937485237319,6.03922148307868,17.63280376542522,-8.941423837224338,8.89151506455671,11.988728956197892,-3.3247098338155827,15.809520589700282,9.076826445647143,7.069703615836192,10.711087716046483,8.960035953749191,16.9033575425805,1.3089015403039925,16.951949169123154,12.828737837555284,2.88995607657382,0.9357320907928159,-1.6584526230780414,3.335218501960976,0.3255644434514613,3.8817432404928494,-3.2445477570638013,-0.337034893687502,19.14725293832157,14.753044418193717,6.424264026758172,5.173454305598035,-14.259526388861701,0.8642256978172294,1.1546548688510747,13.614215374476121,-4.64857779415299,8.342144259945714,1.9990465448373946,14.527762161159355,1.98305493606283,7.49226616612215,14.599062174597735,16.03342085154175,9.775866902597226,1.9351858103091992,9.919735322352391,-1.6663447840632108,-2.5385020222334815,11.456384308253277,3.9142568988019466,-1.8121807544155422,4.28432280788672,-4.805306115005672,6.527231922060053,10.472037450871259,1.9359489023221792,-4.492735139143456,-5.990289104755751,5.787941633977054,5.6964744333867285,-0.5579565617577178,10.195191195045386,7.025119435511189,-8.925203162856105,9.736674743329676,2.6665956421405124,17.318666398094738,3.7526196413410062,4.621229304276849,5.13111798214459,-4.715021088719728,7.374692020180776,9.139513468345648,4.132429035525461,6.994803395233508,-0.8448446450671798,8.508609889896272,-4.2470640625998355,13.773500389485118,2.9982097699435193,6.8712160377559135,11.332144216956083,8.649191232361314,-8.764276396927952,3.613218105685227,17.60662615960504,4.331728924522018,-0.2784937815246666,2.793431839906411,11.057391321517404,9.276269612937172,-11.457290054583924,-8.004005396482816,4.083924568707899,8.980087219972404,0.9924757694051023,11.366254869996572,5.46839596392943,15.520542551728111,16.56917746687724,11.364016459106526,14.869081926914824,1.6534070258832967,16.784116420453863,-9.025461604126988,8.238301018441645,6.097300955421513,1.9867457909973512,14.000299239258768,1.8870295347979096,12.666642858990778,-5.095442480609636,6.979349897692598,0.34582591310989524,1.1133255770477546,1.5375991204740118,5.9946047570492,1.2072644154935048,-1.6566064087935066,1.570224010394753,5.817946802977695,13.96526471253548,9.047790072100643,1.1529244218177321,4.5198535653557705,9.590866228443442,6.185515207208417,-3.4312547352455263,-4.43252786648494,1.587046545924219,9.235618891213635,1.9668731002195,0.023701700068507733,-6.768316574987535,2.705383134529781,8.208676686992828,3.03135796445455,8.178673723606957,-1.6193431798668432,10.153192098545086,3.6315330831261283,12.322725481210584,9.740809985310229,-7.822649617831132,12.95942018871928,-10.723734936189507,8.364616057907995,10.260525947123687,9.81150654340826,18.95934408995676,-2.63622648975456,-10.733366446621398,-9.742886387048271,15.288208785866686,7.824426550025524,-1.9051941269578425,13.450525472186756,-6.216045032294947,13.334215799563845,0.45575124687651525,2.4405555489451247,11.518752856046703,-2.759028384472824,-1.1830296406470544,6.511846985789209,-4.555313468609922,7.557520349438504,5.929220372089246,-4.816495340335447,9.772415829950122,11.818954245897286,7.302575501734595,7.7989509399057475,12.750965078810747,11.438631561048311,11.377198059458564,-0.18144293109147497,14.643735580080515,8.125644693084705,8.105750431093913,6.203700124051741,5.489812986448771,-3.7288303446956035,-10.548357871208427,-9.052390574503983,5.487639004774483,6.710388635926323,2.371380688893263,0.24325757845964469,12.282964967580234,-0.5316017515156434,5.9343288696981045,13.859348651073335,-1.395460249293198,8.941418428949895,6.0987906787896025,13.051742518514468,11.783882698724351,1.2487716848633943,3.538395795026582,0.15644978970751558,-7.458797394309111,-4.266752311137395,15.619802730540815,-4.6281788247781535,13.612014105932145,11.251962274868182,6.242405270552784,9.74019561845207,12.719037524690517,0.41583751350962256,12.176109363381247,10.885420168313864,5.666414556616962,18.724634712605372,7.06997925301756,12.139595228857273,-0.8689198745911594,9.130296949957398,7.044666099661507,-1.1628205644366276,-2.6526117167283387,4.584290123085813,5.16307597881286,1.2730193628690318,-9.765795154142609,-2.0803335920313697,-1.1808747346775155,8.503652702933358,-4.651803668809439,-8.165915961549798,13.658710860212771,0.315203107074877,9.601651779502074,4.625585227316174,10.589348420616686,4.050241186953397,2.847294271286049,-3.035701291290263,7.972599697717749,10.089487307207266,8.331783727656706,1.6873985988721212,3.9060131161881646,14.200290820183318,3.259331991671453,5.497504538856999,12.500672420255766,-1.401776041527066,14.943935626813447,10.249244018436798,-4.358806991788159,-14.897156211780333,-2.687818507116234,10.183126193733223,17.118415141443435,-10.194136269374985,1.9140459598838777,2.586696259284795,3.4878076125567734,-1.9504826269770432,6.662636045201606,0.9376306914657973,12.053097249827823,6.950573005844786,6.188424791142124,-6.392526212376171,-2.6063777406509177,2.6713782338391727,0.5678993639603325,14.994918036397245,-6.011385992248443,2.566140705752911,12.584092443316823,-3.3473138109282634,-2.6439350531672066,7.255880074427566,-0.36301006066676267,16.76173154795785,11.374722933893015,16.823977489528207,7.670182453819239,19.46779463788831,-4.97957557074511,-10.352406026277404,14.55015709798482,9.173551959376,3.280000110095897,-9.278222036090677,3.777716972661163,-1.7212166379204425,8.395871303856985,1.6498588835942236,-3.11094219663228,5.3296654278519355,4.39235112338962,-6.21204684544024,11.780858398007792,-7.37195100695097,9.550124545177532,0.9530523780486464,10.82057436132404,-3.5789980475881498,-0.7266327702298868,11.779750447829196,0.3295914197715669,-1.6957081307779063,7.702853920665361,6.037190934455369,7.264244957704462,-9.326171511554062,3.8834489186656276,3.7728310564313747,15.26092570568133,0.8145922472895436,9.677984833156444,5.62999323819099,13.093880582423571,7.420915505179527,4.168081640092947,2.1414956019839613,7.197402750446627,7.272412272451476,9.416174255389222,0.8104133464272198,15.542396740831162,-0.13949742190086317,-8.816236023205963,17.959611304459145,-1.658414249615374,8.041340114736022,-6.25267461786321,2.052540369354077,-8.178835986731288,4.943614323290375,-13.549913076328352,14.279381778923765,-8.70722959400629,6.377972851098496,11.50039695377806,-8.690435983891122,3.6475276864460513,0.8251118954619839,10.693765474880736,13.856751715367013,8.190258237297336,-9.970295666626642,14.789375474499716,3.4234801937575794,0.6304999068724676,-14.921946350367309,-2.2049586897679143,1.9598470503819068,16.979296246545122,6.487051442779158,14.578849398650846,18.171309894774183,-4.9653236333231705,11.222093739994305,4.40683392862079,5.941718854264725,2.172889987354202,17.71222799019365,8.48983737383944,4.04200769703662,13.836753813962902,5.14625880503569,-1.718565555871543,-1.850067192839031,0.8327083897236903,-0.8121604769091132,1.7903113254245957,13.100365801815826,16.074446736973208,10.750230303789351,-9.893543011925672,-2.990498920447732,11.761986540567182,-3.5024230900151916,14.2339760928004,9.946328427911727,-1.187475542485207,17.365648060236673,0.41604570806303953,0.8398691100454685,18.88638828884406,-10.552417625049708,-7.252412456738144,2.079717875774884,-7.600475682748909,17.20791747443166,-7.106602586103534,8.322690002809535,7.585877395854333,-6.379696269334788,11.588363036014112,8.539844722783862,14.318838055223708,-0.11902748068585947,-8.448160448331253,0.04735816491306337,19.159292239293894,1.785237901018083,-4.883486197772041,2.164397421888471,18.015893081446503,-10.098129912993494,-11.583175530430045,-11.247670530053027,13.141336656628479,17.113216979003255,-11.379307526808201,-5.825027445789476,0.9756115321740015,10.1469245003628,-12.445841384343826,-3.728186538512244,8.499741461411256,6.269521336518667,-3.419256348070271,-1.2530283159121396,7.764209832610947,1.503825376483141,4.2764009171524116,5.273897521857784,-6.247896076360388,-4.362931633347306,9.516660768735333,-12.33272635957676,-2.190758107711406,2.225356002900803,5.651945590899648,10.226723330909005,-2.721844352797246,10.656200459965264,-1.0352447398806512,0.5112349056466241,5.113857059662352,9.919736590046158,18.7183082185756,6.16094697062291,-4.872631072966547,6.4794652669974,8.840129473713986,-0.6932418035692653,2.1266745679160444,8.126385672225695,12.19203643987122,5.969565166680953,4.900264829030495,6.5370692456068715,-4.939332499254613,10.247742894570147,-8.08439627174572,10.228184382464569,6.874220892492872,9.69679981614873,15.37524418437376,-10.049924739322565,7.763640573039366,9.618287733483823,14.153904357460739,3.3584915179966037,11.824594035043646,4.070904573295038,5.344928493659982,-9.790712689745753,1.7386816924066184,1.8969420518052782,-0.8265193518970385,14.886520007848583,1.5501346829766622,5.479441493444285,-5.3698992025945405,9.219363190922227,10.717196412558812,15.771490592218084,0.6346833441489483,0.5927502496624875,-11.952887204395026,3.9868529104827086,5.3604338586066,2.7303778024532543,8.58362895976567,7.610097940094527,-0.4639206550284984,0.2779276867908216,14.340159586653135,-5.750855478045706,-1.714760204633909,11.185250407964773,7.447165977281024,0.5276261491628811,7.048076325570774,4.712594884017852,7.546747980513408,1.5640035441211182,1.7797833467903543,5.432339046599972,0.6140857357437051,12.61714659775729,-4.043849942103338,-0.13431667966492433,-1.653716403140441,11.910110751852553,10.102273531687342,-11.664628499967478,-6.504824546130882,-5.33507407745012,11.180197166194223,11.728456366411717,4.9943930516848845,11.385022660488955,-7.172640574968724,-2.9828532704937305,-2.243991620131899,6.289582779490045,14.818658446098842,-10.894702257975952,-0.0824580169175021,18.027013303977355,-7.244372834904711,10.766422916511974,15.314666609203403,3.023311496588889,5.284532606584166,7.016220067310928,10.686559332893683,10.15725456396006,-8.462943777635424,-1.439213847550251,12.029872507469284,12.207006686256806,-6.410003969235688,2.009335342026462,-1.300921316760661,6.8551122500290145,13.849216891492254,-6.506222580050376,17.184634093892832,2.071942383997614,2.788661709722179,13.581548547989529,2.310526525946951,3.2121502180215002,1.7224494699065664,-3.7989938439846807,1.312831165101241,11.581006426616204,9.03436576012923,4.353955091555779,1.7746765802061146,4.523663886325124,-11.227178601097801,5.10556423220152,5.046832807929541,1.8964055035323952,-6.0298607503060255,12.870002191363,7.3787619054776385,12.526785854965459,-13.194250902088653,4.402618819360498,0.9737810034384506,4.148419793052967,9.599696803555771,15.514233672732498,12.821927004866437,7.354392826656725,2.102428383718046,-8.250067727808386,4.756382058407269,10.54722736476105,-1.891385703583583,9.617372813768796,0.3331969280672231,-1.417794837183003,19.24739617029107,4.482720628936153,3.439057469752412,19.5754623285893,0.6108018697248612,2.4441186216609676,7.528873833609362,14.716085823038343,-11.804229914454853,-2.0535881463902235,-1.598987410268187,4.356155785321328,2.1649080548997675,1.2665939042289056,-0.16915134077400468,-4.7058290172823565,20.243818342067296,-4.916745060456838,15.150005041630909,6.080547712029085,11.24889912896105,-14.94828422824291,7.603441255061861,-2.8605280698279287,0.888619733512518,11.088537051253057,6.950650100010191,13.554681909118042]}},\"id\":\"e2969d72-4663-4c01-851e-d9a0cbd461ea\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"data_source\":{\"id\":\"e2969d72-4663-4c01-851e-d9a0cbd461ea\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"7f20c9e3-df51-4239-8435-71fa007b704b\",\"type\":\"Circle\"},\"hover_glyph\":{\"id\":\"55716aed-68ec-4cc2-ada9-3fcc3fb03836\",\"type\":\"Circle\"},\"nonselection_glyph\":{\"id\":\"8dfbb3f9-bc97-4096-9141-ad74e8c750b9\",\"type\":\"Circle\"},\"selection_glyph\":null},\"id\":\"53db5d5b-8d62-41a1-a82d-de86836c5d48\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"e21f8078-1aca-42c4-b6e1-67cff6aa4d3e\",\"type\":\"ResizeTool\"},{\"attributes\":{\"callback\":null},\"id\":\"0d61367f-c301-41a9-bdf9-b3aaaed5c3ec\",\"type\":\"DataRange1d\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"plot\":null,\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"d1fd94ac-2df6-4049-b666-1912bfa3f858\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"formatter\":{\"id\":\"9a492623-7ec0-4684-a46a-7bd44e33be2d\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"4790e402-3f62-4283-a551-20d282d8a636\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"5b3e607e-c258-4d3e-a612-c0a74dbccf45\",\"type\":\"LinearAxis\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"blue\"},\"line_alpha\":{\"value\":0.2},\"line_color\":{\"value\":\"blue\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"7f20c9e3-df51-4239-8435-71fa007b704b\",\"type\":\"Circle\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"plot\":null,\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"35ebda27-a4ff-4fe7-bebc-b4a53ca8d961\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"below\":[{\"id\":\"5b3e607e-c258-4d3e-a612-c0a74dbccf45\",\"type\":\"LinearAxis\"}],\"left\":[{\"id\":\"88a86ecb-d4e7-4170-8914-5d8a90866e04\",\"type\":\"LinearAxis\"}],\"outline_line_color\":{\"value\":null},\"plot_height\":800,\"plot_width\":800,\"renderers\":[{\"id\":\"5b3e607e-c258-4d3e-a612-c0a74dbccf45\",\"type\":\"LinearAxis\"},{\"id\":\"dc7de540-dbac-4851-8d7f-7a0ff0d6fb96\",\"type\":\"Grid\"},{\"id\":\"88a86ecb-d4e7-4170-8914-5d8a90866e04\",\"type\":\"LinearAxis\"},{\"id\":\"cefcc09f-afad-4c95-9a9b-f39dc86baf0a\",\"type\":\"Grid\"},{\"id\":\"d1fd94ac-2df6-4049-b666-1912bfa3f858\",\"type\":\"BoxAnnotation\"},{\"id\":\"35ebda27-a4ff-4fe7-bebc-b4a53ca8d961\",\"type\":\"BoxAnnotation\"},{\"id\":\"53db5d5b-8d62-41a1-a82d-de86836c5d48\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"cebebfb7-641d-4351-bcb4-e2642b4dae4e\",\"type\":\"Title\"},\"tool_events\":{\"id\":\"a5044510-ccb9-42db-80a0-90db3d82a7c5\",\"type\":\"ToolEvents\"},\"toolbar\":{\"id\":\"3d10f12d-ff7b-414e-9882-81c9712c920e\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"0d61367f-c301-41a9-bdf9-b3aaaed5c3ec\",\"type\":\"DataRange1d\"},\"y_range\":{\"id\":\"4edf4492-052b-4c59-813c-3707e942a1fc\",\"type\":\"DataRange1d\"}},\"id\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\",\"subtype\":\"Figure\",\"type\":\"Plot\"}],\"root_ids\":[\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\"]},\"title\":\"Bokeh Application\",\"version\":\"0.12.4\"}};\n", | |
" var render_items = [{\"docid\":\"0dd614dd-3db3-4043-ab1b-7d74b5a963d7\",\"elementid\":\"a4a8bae1-c444-4dab-873d-10e91ed15d6f\",\"modelid\":\"bbbedbbc-7c7d-4c77-a5f3-4cec5f1196d8\"}];\n", | |
" \n", | |
" Bokeh.embed.embed_items(docs_json, render_items);\n", | |
" };\n", | |
" if (document.readyState != \"loading\") fn();\n", | |
" else document.addEventListener(\"DOMContentLoaded\", fn);\n", | |
" })();\n", | |
" },\n", | |
" function(Bokeh) {\n", | |
" }\n", | |
" ];\n", | |
" \n", | |
" function run_inline_js() {\n", | |
" \n", | |
" if ((window.Bokeh !== undefined) || (force === true)) {\n", | |
" for (var i = 0; i < inline_js.length; i++) {\n", | |
" inline_js[i](window.Bokeh);\n", | |
" }if (force === true) {\n", | |
" display_loaded();\n", | |
" }} else if (Date.now() < window._bokeh_timeout) {\n", | |
" setTimeout(run_inline_js, 100);\n", | |
" } else if (!window._bokeh_failed_load) {\n", | |
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", | |
" window._bokeh_failed_load = true;\n", | |
" } else if (force !== true) {\n", | |
" var cell = $(document.getElementById(\"a4a8bae1-c444-4dab-873d-10e91ed15d6f\")).parents('.cell').data().cell;\n", | |
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", | |
" }\n", | |
" \n", | |
" }\n", | |
" \n", | |
" if (window._bokeh_is_loading === 0) {\n", | |
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", | |
" run_inline_js();\n", | |
" } else {\n", | |
" load_libs(js_urls, function() {\n", | |
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", | |
" run_inline_js();\n", | |
" });\n", | |
" }\n", | |
" }(this));\n", | |
"</script>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# add our DataFrame as a ColumnDataSource for Bokeh\n", | |
"plot_data = ColumnDataSource(tsne_vectors)\n", | |
"\n", | |
"# create the plot and configure the\n", | |
"# title, dimensions, and tools\n", | |
"tsne_plot = figure(title='t-SNE Word Embeddings',\n", | |
" plot_width = 800,\n", | |
" plot_height = 800,\n", | |
" tools= ('pan, wheel_zoom, box_zoom,'\n", | |
" 'box_select, resize, reset'),\n", | |
" active_scroll='wheel_zoom')\n", | |
"\n", | |
"# add a hover tool to display words on roll-over\n", | |
"tsne_plot.add_tools( HoverTool(tooltips = '@word') )\n", | |
"\n", | |
"# draw the words as circles on the plot\n", | |
"tsne_plot.circle('x_coord', 'y_coord', source=plot_data,\n", | |
" color='blue', line_alpha=0.2, fill_alpha=0.1,\n", | |
" size=10, hover_line_color='black')\n", | |
"\n", | |
"# configure visual elements of the plot\n", | |
"tsne_plot.title.text_font_size = value('16pt')\n", | |
"tsne_plot.xaxis.visible = False\n", | |
"tsne_plot.yaxis.visible = False\n", | |
"tsne_plot.grid.grid_line_color = None\n", | |
"tsne_plot.outline_line_color = None\n", | |
"\n", | |
"# engage!\n", | |
"show(tsne_plot);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Conclusion" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Whew! Let's round up the major components that we've seen:\n", | |
"1. Text processing with **spaCy**\n", | |
"1. Automated **phrase modeling**\n", | |
"1. Topic modeling with **LDA** $\\ \\longrightarrow\\ $ visualization with **pyLDAvis**\n", | |
"1. Word vector modeling with **word2vec** $\\ \\longrightarrow\\ $ visualization with **t-SNE**\n", | |
"\n", | |
"#### Why use these models?\n", | |
"Dense vector representations for text like LDA and word2vec can greatly improve performance for a number of common, text-heavy problems like:\n", | |
"- Text classification\n", | |
"- Search\n", | |
"- Recommendations\n", | |
"- Question answering" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment