-- General Syntax
CREATE VIEW view_name AS
<SELECT QUERY>CREATE OR REPLACE VIEW view_name AS | SELECT * | |
| FROM table_A | |
| FULL OUTER JOIN table_B | |
| ON table_A.col = table_B.col | |
| WHERE table_A.col IS null | |
| OR table_B.col IS null |
| tokens = nltk.word_tokenize(text.lower()) | |
| text = nltk.Text(tokens) | |
| tags = nltk.pos_tag(text) |
| handles_0, labels_0 = axes[0].get_legend_handles_labels() | |
| handles_1, labels_1 = axes[1].get_legend_handles_labels() | |
| handels = handles_0 + handles_1 | |
| labels = labels_0 + labels_1 | |
| fig.legend(handels, labels, loc=(0.83, 0.85)) | |
| """Here, the main function is `.get_legend_handles_labels()` | |
| it will return the labels and handles for individual plots |
| from sklearn import set_config | |
| set_config(display='diagram') | |
| pipeline |
| def new_ft(operation): | |
| ft = {} | |
| for i in range(len(num_features)): | |
| for j in range(i+1, len(num_features)): | |
| ft1 = num_features[i] | |
| ft2 = num_features[j] | |
| oparated = eval(f"combined_xy[ft1] {operation} combined_xy[ft2]") | |
| corr = oparated.corr(combined_xy["co2"]) | |
| ft[f"{ft1} {operation} {ft2}"] = corr | |
| ser = pd.Series(ft) |
| # For most plots | |
| plt.legend([], [], frameon=False); | |
| # For pairplot | |
| temp = sns.pairplot(...) | |
| temp._legend.remove() |
| plt.figure(figsize=(10, 6)) | |
| corr = df.corr() | |
| mask = np.zeros_like(corr) | |
| mask[np.triu_indices_from(mask)] = True | |
| sns.heatmap(corr, mask=mask, square=True, cmap="Blues") |