Skip to content

Instantly share code, notes, and snippets.

View Abhayparashar31's full-sized avatar
:octocat:
Learning New Things

Abhay Parashar Abhayparashar31

:octocat:
Learning New Things
View GitHub Profile
class Employee:
def __init__(self,name,age,exp,salary): ## Defining The Constructor With Common data
## Instance Attributes ## instance attributes that are only accessable by the object of the class
self.name = name
self.age = age
self.exp = exp
self.salary = salary
def show(self): ## A Simple method that prints the data
print(self.name,self.age,self.exp,self.salary) ## Printing all the variables
class Parent: ## Creating a class name Parent
def __init__(self): ## Constructor of parent class
# protected member
self._mobilenumber = 5555551234 ## Protected member of the class Parent
class Child(Parent): ## Child class inhering properties from the Parent class
def __init__(self): ## Constructor of the class name
Parent.__init__(self) ## accessing members of the Parent class, another way is to used supre()
print("Calling Protected Member")
class Rectangle:
def __init__(self, l, b):
self.l = l
self.b = b
def area(self):
return self.l * self.b
class Square:
def __init__(self, side):
from abs import ABC, abstractmethod
class Parent(ABC):
@abstracmethod
def show(self):
pass
class child(Parent):
def show(self):
print("Child Class")
import streamlit as st
from textblob import TextBlob
st.write(" Real Time Sentiment Analyzer ")
input = st.text_input("Enter Your Review...")
score = TextBlob(input).sentiment.polarity
if score==0:st.write("Neutral 😐")
elif score<0:st.write("Negative 😫")
elif score>0:st.write("Positive πŸ˜€")
import streamlit as st
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
st.write(" Real Time Sentiment Analyzer ")
input = st.text_input("Enter Your Review...")
score = SentimentIntensityAnalyzer().polarity_scores(input)
if score==0: st.write("Neutral")
elif score['neg']!=0: st.write("Negative")
elif score['pos']!=0: st.write("Positive")
import scrapy
class QuotesSpider(scrapy.Spider):
name = "quotes"
start_urls = [ # List of websites to scrape
'http://quotes.toscrape.com/'
]
def parse(self, response): ## source code
title = response.css('title::text').extract()
Elements Selector Expression
All Tags (h1) response.css('h1').extract()
All Tags with Id(Header) responses.css('#header::text').extract()
All Links(a) response.css('a').extract()
Extracting text from all the classes named text response.css('.text::text').extract()
All Links(a) inside a Paragraph(p) tag response.css('p a::text').extract()
class GenerateSalary:
## Variable
base_salary = 15000
## Method
def __init__(self,experience):
self.experience = experience
self.salary = self.base_salary*self.experience
print(self.salary)
'''
Our task is to create a script that can scrape results from google based on some query.
'''
from bs4 import BeautifulSoup
import requests
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
def google(query):
query = query.replace(" ","+")
try:
url = f'https://www.google.com/search?q={query}&oq={query}&aqs=chrome..69i57j46j69i59j35i39j0j46j0l2.4948j0j7&sourceid=chrome&ie=UTF-8'