Skip to content

Instantly share code, notes, and snippets.

View Abhayparashar31's full-sized avatar
:octocat:
Learning New Things

Abhay Parashar Abhayparashar31

:octocat:
Learning New Things
View GitHub Profile
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import pandas as pd
driver = webdriver.Chrome('chromedriver.exe')
driver.get('https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW')
## Scraping Movie Names
movies_names = driver.find_elements_by_xpath('//td[@class="a-text-left mojo-field-type-title"]/a[@class="a-link-normal"]') ## targets all the elements on the web that has same Xpath
movie_name_list = [] ## an empty list for storing movie names
import scrapy
from ..items import BookscraperItem ## Importing The Class Inside Items.py for storing data
class Bookscraper(scrapy.Spider):
name='books' ## Name of Spider
counter = 1 ## Counter Variable To Check The Status of Scraped Pages
def start_requests(self):
import scrapy
from ..items import QuotescraperItem
class Quotescraper(scrapy.Spider):
name = 'quotes'
counter = 1 ## Counter Variable To Check The Status of Scraped Pages
start_urls = [
'https://quotes.toscrape.com/page/1/'
]
from os import link
from matplotlib.pyplot import title
import scrapy
from ..items import AmazonItem
## https://pypi.org/project/scrapy-user-agents/
class Amazonbookscraper(scrapy.Spider):
name = "amazonbooks"
import streamlit as st
import qrcode
from PIL import Image, ImageOps
st.write(''' # QR Code Generator ''')
st.write(' A Web App That Generates QR Code')
text = st.text_input("Enter Some Text...")
if text!="":
qr = qrcode.make(text)
qr.save(f"{text}.png")
st.image(f"{text}.png", use_column_width=True)
left = pd.DataFrame({'Courses': ["CSS","JS","JAVA"],
'Fee':[2499,4599,5799],
'Ratings':[3.5,4.2,3.9],
'ID':[1,2,3]
})
right = pd.DataFrame({'Trn_ID':[1,1,1,2,2,3],
'Company':['Amazon','Dell','HP','Lenovo','Dell','HP']})
left.merge(right,left_on='ID',right_on='Trn_ID')
base_learners = [
('l1', KNeighborsClassifier(n_neighbors=3)),
('l2', SVC(gamma=2, C=1)),
('l3',DecisionTreeClassifier()),
]
model = StackingClassifier(estimators=base_learners, final_estimator=LogisticRegression())
layer_1 = [
('l1', KNeighborsClassifier(n_neighbors=3)),
('l2', SVC()),
('l3',DecisionTreeClassifier())
]
layer_2 = [
('l4',RandomForestClassifier()),
('l5',DecisionTreeClassifier())
]
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2,random_state=42)
dt = DecisionTreeClassifier()
dt.fit(X_train,y_train)
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import StackingClassifier
from sklearn.model_selection import train_test_split
X, y = load_iris(return_X_y=True)