Skip to content

Instantly share code, notes, and snippets.

View Abhayparashar31's full-sized avatar
:octocat:
Learning New Things

Abhay Parashar Abhayparashar31

:octocat:
Learning New Things
View GitHub Profile
from flask import Flask,render_template,request
import pickle
###Loading model and cv
cv = pickle.load(open('cv.pkl','rb')) ##loading cv
model = pickle.load(open('spam.pkl','rb')) ##loading model
app = Flask(__name__) ## defining flask name
@app.route('/') ## home route
for index, item in df.iterrows():
#print(index,item['birthday'])
bday = item['Birthday'].strftime("%d-%m") ##wishing time from excel file
#print(type(bday))
if(bday == today) and yearnow not in str(item["Year"]): ## birthday data == today date and birthday year is not equal to current year
sendEmail(item['Email'] ,"Happy BIrthday "+item["Name"], item['message']) ## pass arguments to the send email funciton and call it
update.append(index) ## update the index by one ## we need to check the whole records
for i in update:
yr = df.loc[i, 'Year'] ## update the year by one
#print(yr)
from bs4 import BeautifulSoup
import re
import requests
import heapq
from nltk.tokenize import sent_tokenize,word_tokenize
from nltk.corpus import stopwords
url = str(input("Paste the url"\n"))
num = int(input("Enter the Number of Sentence you want in the summary"))
num = int(num)
# A single node of a singly linked list
class Node:
# constructor
def __init__(self, data = None, next=None):
self.data = data
self.next = next
# A Linked List class with a single head node
class LinkedList:
def __init__(self):
import face_recognition
import cv2
import os
from google.colab.patches import cv2_imshow
def read_img(path):
img = cv2.imread(path)
(h,w) = img.shape[:2]
width = 500
ratio = width / float(w)
height = int(h * ratio)
from flask import Flask,render_template,request
import pickle
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import pickle
###Loading model and cv
import cv2
img = cv2.imread("images/test.jpg")
imgCropped = img[50:283,25:190]
shape = imgCropped.shape
print(shape[0])
imgCropped = cv2.resize(imgCropped,(shape[0]*12//10,shape[1]*2))
cv2.imshow("Image cropped",imgCropped)
cv2.imshow("Image",img)
cv2.waitKey(0)
FONT_HERSHEY_SIMPLEX normal size sans-serif font
FONT_HERSHEY_PLAIN small size sans-serif font
FONT_HERSHEY_DUPLEX normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
FONT_HERSHEY_COMPLEX normal size serif font
FONT_HERSHEY_TRIPLEX normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
FONT_HERSHEY_COMPLEX_SMALL smaller version of FONT_HERSHEY_COMPLEX
FONT_HERSHEY_SCRIPT_SIMPLEX hand-writing style font
FONT_HERSHEY_SCRIPT_COMPLEX more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
FONT_ITALIC flag for italic font
import cv2
import numpy as np
img = cv2.imread("images/img0.jpg")
cv2.line(img,(110,260),(300,260),(0,255,0),3)
cv2.rectangle(img,(300,280),(100,20),(0,0,255),2)
cv2.circle(img,(200,130),90,(255,255,0),2)
cv2.putText(img,"MONALISA",(120,250),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
cv2.imshow("Image",img)
cv2.waitKey(0)
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
rescale=1./255,
shear_range=0.2,
zoom_range=0.4,
horizontal_flip=True,