Skip to content

Instantly share code, notes, and snippets.

View Adityanagraj's full-sized avatar
:octocat:
I may be slow to respond but i will respond for sure

Aditya N Adityanagraj

:octocat:
I may be slow to respond but i will respond for sure
View GitHub Profile
class FishModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, output_size) # fill this (hint: use input_size & output_size defined above)
def forward(self, xb):
out = self.linear(xb) # fill this
return out
def training_step(self, batch):
dataset = TensorDataset(inputs, targets)
dataset
inputs = torch.from_numpy(inputs_array).type(torch.float32)
targets = torch.from_numpy(targets_array).type(torch.float32)
inputs,targets
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
data1 = data.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
data1[col] = data1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
inputs_array = data1[input_cols].to_numpy()
targets_array = data1[output_cols].to_numpy()
return inputs_array, targets_array
data.shape
import torch
import torchvision
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torchvision.datasets.utils import download_url
from torch.utils.data import DataLoader, TensorDataset, random_split
#importing all necessary requirements
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
 
#creation of a dataframe
data={'phone': ['Xiaomi', 'Samsung', 'Apple','Nokia','Realme'],
 'stock': [44,12,8,5,3]
 }
df=pd.DataFrame(data)
data={‘phone’: [‘Xiaomi’, ‘Samsung’, ‘Apple’,’Nokia’,’Realme’],
‘stock’: [44,12,8,5,3]
}
x = torch.arange(1., 10)
x
x.unfold(0,2,1)
x = torch.arange(1., 10)
x
x.unfold(-1,1,3)