This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @torch.aten.gather(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?,?],si64>) -> !torch.vtensor<[?,?,?],f32> { | |
%int-1 = torch.constant.int -1 | |
%false = torch.constant.bool false | |
%0 = torch.aten.gather %arg0, %int-1, %arg1, %false : !torch.vtensor<[?,?,?],f32>, !torch.int, !torch.vtensor<[?,?,?,?],si64>, !torch.bool -> !torch.vtensor<[?,?,?],f32> | |
return %0 : !torch.vtensor<[?,?,?],f32> | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func @forward(%arg0: tensor<1x128xi64>) -> tensor<1x2xf32> { | |
%0 = "tosa.const"() {value = dense<[[65536, 512, 1]]> : tensor<1x3xi32>} : () -> tensor<1x3xi32> | |
%1 = "tosa.const"() {value = dense_resource<__elided__> : tensor<2x768xf32>} : () -> tensor<2x768xf32> | |
%2 = "tosa.const"() {value = dense_resource<__elided__> : tensor<768x768xf32>} : () -> tensor<768x768xf32> | |
%3 = "tosa.const"() {value = dense_resource<__elided__> : tensor<768xf32>} : () -> tensor<768xf32> | |
%4 = "tosa.const"() {value = dense_resource<__elided__> : tensor<768x3072xf32>} : () -> tensor<768x3072xf32> | |
%5 = "tosa.const"() {value = dense_resource<__elided__> : tensor<3072xf32>} : () -> tensor<3072xf32> | |
%6 = "tosa.const"() {value = dense_resource<__elided__> : tensor<3072x768xf32>} : () -> tensor<3072x768xf32> | |
%7 = "tosa.const"() {value = dense<-3.40282347E+38> : tensor<f32>} : () -> tensor<f32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import tempfile | |
import torch_mlir | |
def prepare_sentence_tokens(hf_model: str, sentence: str): | |
tokenizer = AutoTokenizer.from_pretrained(hf_model) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loc = loc(unknown) | |
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func private @__torch__.torch.fx.graph_module._lambda.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> loc(unknown)) -> !torch.str { | |
%96 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.str loc(#loc) | |
return %96 : !torch.str loc(#loc) | |
} loc(#loc) | |
func.func private @__torch__.torch.fx.graph_module._lambda.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> loc(unknown), %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,128],si64>} loc(unknown)) -> !torch.tensor { | |
%true_0 = torch.constant.bool true loc(#loc1) | |
%int11 = torch.constant.int 11 loc(#loc2) | |
%int-2 = torch.constant.int -2 loc(#loc3) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loc = loc(unknown) | |
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func private @__torch__.torch.fx.graph_module._lambda.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> loc(unknown)) -> !torch.str { | |
%96 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.str loc(#loc) | |
return %96 : !torch.str loc(#loc) | |
} loc(#loc) | |
func.func private @__torch__.torch.fx.graph_module._lambda.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> loc(unknown), %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,128],si64>} loc(unknown)) -> !torch.tensor { | |
%true_0 = torch.constant.bool true loc(#loc1) | |
%int11 = torch.constant.int 11 loc(#loc2) | |
%int-2 = torch.constant.int -2 loc(#loc3) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loc = loc(unknown) | |
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func @forward(%arg0: !torch.vtensor<[1,128],si64> loc(unknown)) -> !torch.vtensor<[1,2],f32> { | |
%int1 = torch.constant.int 1 loc(#loc1) | |
%int0 = torch.constant.int 0 loc(#loc2) | |
%int-1 = torch.constant.int -1 loc(#loc3) | |
%true = torch.constant.bool true loc(#loc4) | |
%none = torch.constant.none loc(#loc) | |
%false = torch.constant.bool false loc(#loc5) | |
%int128 = torch.constant.int 128 loc(#loc6) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @forward(%arg0: !torch.vtensor<[1,128],si64>) -> !torch.vtensor<[1,2],f32> { | |
%0 = builtin.unrealized_conversion_cast %arg0 : !torch.vtensor<[1,128],si64> to tensor<1x128xi64> | |
%int1 = torch.constant.int 1 | |
%1 = builtin.unrealized_conversion_cast %int1 : !torch.int to i64 | |
%int0 = torch.constant.int 0 | |
%2 = builtin.unrealized_conversion_cast %int0 : !torch.int to i64 | |
%int-1 = torch.constant.int -1 | |
%3 = builtin.unrealized_conversion_cast %int-1 : !torch.int to i64 | |
%true = torch.constant.bool true | |
%4 = builtin.unrealized_conversion_cast %true : !torch.bool to i1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @torch.aten.as_strided(%arg0: !torch.vtensor<[1,128,2304],f32>) -> !torch.vtensor<[1,128,768],f32> { | |
%int0 = torch.constant.int 0 | |
%int1 = torch.constant.int 1 | |
%int128 = torch.constant.int 128 | |
%int768 = torch.constant.int 768 | |
%int2304 = torch.constant.int 2304 | |
%240 = torch.prim.ListConstruct %int1, %int128, %int768 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> | |
%241 = torch.prim.ListConstruct %int294912, %int2304, %int1 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> | |
%242 = torch.aten.as_strided %arg0, %240, %241, %int0 : !torch.vtensor<[1,128,2304],f32>, !torch.list<int>, !torch.list<int>, !torch.int -> !torch.vtensor<[1,128,768],f32> | |
return %242 : !torch.vtensor<[1,128,768],f32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func @forward(%arg0: tensor<1x5xi64>) -> tensor<1x5x50257xf32> { | |
%0 = "tosa.const"() {value = dense<-3.40282347E+38> : tensor<f32>} : () -> tensor<f32> | |
%1 = "tosa.const"() {value = dense_resource<__elided__> : tensor<1x1x1024x1024xui8>} : () -> tensor<1x1x1024x1024xi8> | |
%2 = "tosa.const"() {value = dense<8.000000e+00> : tensor<f32>} : () -> tensor<f32> | |
%3 = "tosa.const"() {value = dense_resource<__elided__> : tensor<50257x768xf32>} : () -> tensor<50257x768xf32> | |
%4 = "tosa.const"() {value = dense<7.680000e+02> : tensor<1xf32>} : () -> tensor<1xf32> | |
%5 = "tosa.const"() {value = dense<[0, 2, 1, 3]> : tensor<4xi64>} : () -> tensor<4xi64> | |
%6 = "tosa.const"() {value = dense<[0, 1, 3, 2]> : tensor<4xi32>} : () -> tensor<4xi32> | |
%7 = "tosa.const"() {value = dense<0> : tensor<1x1x5x5xi8>} : () -> tensor<1x1x5x5xi8> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func private @__torch__.torch.fx.graph_module._lambda.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">) -> !torch.str { | |
%186 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.str | |
return %186 : !torch.str | |
} | |
func.func private @__torch__.torch.fx.graph_module._lambda.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,5],si64>}) -> !torch.tensor { | |
%int11 = torch.constant.int 11 | |
%int-2 = torch.constant.int -2 | |
%none_0 = torch.constant.none | |
%false = torch.constant.bool false |