Skip to content

Instantly share code, notes, and snippets.

onnx/models/eca_nfnet_l0.ra2_in1k_vaiq
onnx/models/eca_nfnet_l0.ra2_in1k_train_vaiq
onnx/models/eca_nfnet_l1.ra2_in1k_vaiq
onnx/models/eca_nfnet_l1.ra2_in1k_train_vaiq
onnx/models/eca_nfnet_l2.ra3_in1k_vaiq
onnx/models/eca_nfnet_l2.ra3_in1k_train_vaiq
onnx/models/ecaresnet101d_vaiq
onnx/models/ecaresnet101d_pruned_vaiq
onnx/models/ecaresnet101d_pruned_test_vaiq
onnx/models/ecaresnet101d_test_vaiq
modified: onnx/models/dla169/model.py
modified: onnx/models/dla169_vaiq/model.py
modified: onnx/models/efficientnet_b0.ra_in1k/model.py
modified: onnx/models/efficientnet_b0.ra_in1k_vaiq/model.py
modified: onnx/models/efficientnet_b1.ft_in1k/model.py
modified: onnx/models/efficientnet_b1.ft_in1k_vaiq/model.py
modified: onnx/models/efficientnet_b2.ra_in1k/model.py
modified: onnx/models/efficientnet_b2.ra_in1k_vaiq/model.py
modified: onnx/models/efficientnet_b3.ra2_in1k/model.py
modified: onnx/models/efficientnet_b3.ra2_in1k_vaiq/model.py

Status report for run: test-run using mode:onnx todtype:default backend:llvm-cpu

tests model-run onnx-import torch-mlir iree-compile inference
onnx/models/DarkNet53_vaiq passed passed notrun passed mismatch
onnx/models/dla169_vaiq passed passed notrun passed mismatch
onnx/models/efficientnet_b0.ra_in1k_vaiq passed passed notrun passed mismatch
onnx/models/EfficientNet_b0_vaiq passed passed notrun passed mismatch
onnx/models/efficientnet_b1.ft_in1k_vaiq passed passed notrun passed mismatch
onnx/models/EfficientNet_b1_vaiq
This file has been truncated, but you can view the full file.
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<() -> ()>
#map2 = affine_map<(d0, d1) -> ()>
#map3 = affine_map<()[s0, s1] -> (s0 * s1)>
#map4 = affine_map<(d0, d1) -> (d0)>
#map5 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map6 = affine_map<(d0) -> (d0)>
#map7 = affine_map<(d0, d1, d2) -> (d0, d1, 0)>
#map8 = affine_map<(d0) -> ()>
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map = affine_map<(d0, d1) -> (0, d1)>
#map1 = affine_map<(d0, d1) -> (d0, d1)>
#map2 = affine_map<(d0, d1) -> (d0)>
#map3 = affine_map<(d0, d1) -> (d1, d0)>
#map4 = affine_map<()[s0, s1] -> (s0 + s1 + 128)>
#map5 = affine_map<(d0, d1, d2) -> (0, d1, d2)>
#map6 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map7 = affine_map<(d0, d1, d2) -> (d1, d2)>
#map8 = affine_map<(d0, d1, d2) -> (d2)>
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map = affine_map<(d0, d1, d2, d3) -> (d1)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map3 = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
#map4 = affine_map<(d0, d1, d2) -> (d0, d1, 0)>
#map5 = affine_map<(d0, d1, d2) -> (0, d1, 0)>
#map6 = affine_map<(d0, d1, d2) -> (0, d1, d2)>
#map7 = affine_map<(d0, d1, d2) -> (d2)>
#map8 = affine_map<(d0, d1, d2) -> (d1, d2)>
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>
This file has been truncated, but you can view the full file.
#map = affine_map<(d0, d1, d2, d3) -> (0, d1, d2, d3)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map2 = affine_map<(d0) -> (d0)>
#map3 = affine_map<(d0, d1, d2, d3) -> (d1)>
#map4 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>
#map5 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3, d2)>
#map6 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
#map7 = affine_map<(d0, d1, d2, d3) -> (0, d1, d2, 0)>
#map8 = affine_map<(d0, d1, d2, d3) -> (d3)>
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2, d1)>
failed to translate executables
failed to translate executables
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:979:12: error: 'func.func' op exceeded stack allocation limit of 32768 bytes for function. Got 401408 bytes
%106 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%105 : tensor<1x56x56x512xf32>) outs(%98 : tensor<1x56x56x512xi8>) {
^
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:24:3: note: called from
func.func @torch_jit(%arg0: tensor<1x3x224x224xf32>) -> tensor<1x1000xf32> {
^
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:979:12: note: see current operation:
"func.func"() <{function_type = () -> (), sym_name = "torch_jit_dispatch_13_quantized_batch_matmul_56x56x512x128_i8xi8xi32xi32xi32"}> ({
module {
func.func @main_graph(%arg0: !torch.vtensor<[1,7],si64>) -> (!torch.vtensor<[1,7,50257],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f
This file has been truncated, but you can view the full file.
#map = affine_map<(d0, d1) -> (0, d1)>
#map1 = affine_map<(d0, d1) -> (d0, d1)>
#map2 = affine_map<(d0, d1) -> (d0)>
#map3 = affine_map<(d0, d1, d2) -> (0, d1, d2)>
#map4 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map5 = affine_map<(d0, d1, d2) -> (d0, d1, 0)>
#map6 = affine_map<(d0, d1, d2) -> (0, d1, 0)>
#map7 = affine_map<(d0, d1, d2) -> (d2)>
#map8 = affine_map<(d0, d1) -> (d1)>
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>