This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
failed to translate executables | |
failed to translate executables | |
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:979:12: error: 'func.func' op exceeded stack allocation limit of 32768 bytes for function. Got 401408 bytes | |
%106 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%105 : tensor<1x56x56x512xf32>) outs(%98 : tensor<1x56x56x512xi8>) { | |
^ | |
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:24:3: note: called from | |
func.func @torch_jit(%arg0: tensor<1x3x224x224xf32>) -> tensor<1x1000xf32> { | |
^ | |
ConvNeXt_vaiq_int8.default.onnx.linalg.mlir:979:12: note: see current operation: | |
"func.func"() <{function_type = () -> (), sym_name = "torch_jit_dispatch_13_quantized_batch_matmul_56x56x512x128_i8xi8xi32xi32xi32"}> ({ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @main_graph(%arg0: !torch.vtensor<[1,7],si64>) -> (!torch.vtensor<[1,7,50257],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f32>, !torch.vtensor<[1,25,7,64],f |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1) -> (0, d1)> | |
#map1 = affine_map<(d0, d1) -> (d0, d1)> | |
#map2 = affine_map<(d0, d1) -> (d0)> | |
#map3 = affine_map<(d0, d1, d2) -> (0, d1, d2)> | |
#map4 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
#map5 = affine_map<(d0, d1, d2) -> (d0, d1, 0)> | |
#map6 = affine_map<(d0, d1, d2) -> (0, d1, 0)> | |
#map7 = affine_map<(d0, d1, d2) -> (d2)> | |
#map8 = affine_map<(d0, d1) -> (d1)> | |
#map9 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,3,224,224],f32>) -> !torch.vtensor<[1,1000],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.13.1"} { | |
%0 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64x3x7x7xf32>) : !torch.vtensor<[64,3,7,7],f32> | |
%1 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64xf32>) : !torch.vtensor<[64],f32> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64x64x1x1xf32>) : !torch.vtensor<[64,64,1,1],f32> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64xf32>) : !torch.vtensor<[64],f32> | |
%4 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64x64x3x3xf32>) : !torch.vtensor<[64,64,3,3],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64xf32>) : !torch.vtensor<[64],f32> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<256x64x1x |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2, d3) -> (0, d1, d2, d3)> | |
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | |
#map2 = affine_map<(d0) -> (d0)> | |
#map3 = affine_map<(d0, d1, d2, d3) -> (d1)> | |
#map4 = affine_map<(d0, d1, d2, d3) -> (d0, d1, 0, 0)> | |
#map5 = affine_map<(d0, d1, d2, d3) -> (0, d1, 0, 0)> | |
#map6 = affine_map<(d0, d1, d2, d3) -> ()> | |
#map7 = affine_map<(d0, d1) -> (d0, d1)> | |
#map8 = affine_map<(d0, d1) -> (d1, d0)> | |
#map9 = affine_map<(d0, d1) -> (0, d1)> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "avgpool2d"} { | |
func.func @forward(%arg0: !torch.vtensor<[32,384,25,25],f32>) -> !torch.vtensor<[32,384,25,25],f32> { | |
%int1_0 = torch.constant.int 1 | |
%int1_1 = torch.constant.int 1 | |
%int1_2 = torch.constant.int 1 | |
%int1_3 = torch.constant.int 1 | |
%int1_4 = torch.constant.int 1 | |
%int1_5 = torch.constant.int 1 | |
%int3_0 = torch.constant.int 3 | |
%int3_1 = torch.constant.int 3 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,3,640,640],f32>) -> (!torch.vtensor<[1,84,8400],f32>, !torch.vtensor<[1,144,80,80],f32>, !torch.vtensor<[1,144,40,40],f32>, !torch.vtensor<[1,144,20,20],f32>) attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.13.1"} { | |
%0 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16x3x3x3xf32>) : !torch.vtensor<[16,3,3,3],f32> | |
%1 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x16x3x3xf32>) : !torch.vtensor<[32,16,3,3],f32> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32xf32>) : !torch.vtensor<[32],f32> | |
%4 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x32x1x1xf32>) : !torch.vtensor<[32,32,1,1],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,3,224,224],f32>) -> !torch.vtensor<[1,3,896,896],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.13.1"} { | |
%0 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64x3x3x3xf32>) : !torch.vtensor<[64,3,3,3],f32> | |
%1 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64xf32>) : !torch.vtensor<[64],f32> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x64x3x3xf32>) : !torch.vtensor<[32,64,3,3],f32> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32xf32>) : !torch.vtensor<[32],f32> | |
%4 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x96x3x3xf32>) : !torch.vtensor<[32,96,3,3],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32xf32>) : !torch.vtensor<[32],f32> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,3,224,224],f32>) -> !torch.vtensor<[1,21,224,224],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.13.1"} { | |
%0 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16x3x3x3xf32>) : !torch.vtensor<[16,3,3,3],f32> | |
%1 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16x1x3x3xf32>) : !torch.vtensor<[16,1,3,3],f32> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%4 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16x16x1x1xf32>) : !torch.vtensor<[16,16,1,1],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<64x16 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,1,64,128,128],f32>) -> !torch.vtensor<[1,1,64,128,128],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.13.1"} { | |
%0 = torch.vtensor.literal(dense<8.906250e-01> : tensor<1xf32>) : !torch.vtensor<[1],f32> | |
%1 = torch.vtensor.literal(dense<-0.0849609375> : tensor<1xf32>) : !torch.vtensor<[1],f32> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16x1x3x3x3xf32>) : !torch.vtensor<[16,1,3,3,3],f32> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%4 = torch.vtensor.literal(dense_resource<__elided__> : tensor<16xf32>) : !torch.vtensor<[16],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32x16x3x3x3xf32>) : !torch.vtensor<[32,16,3,3,3],f32> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<32xf32>) : !torch.vte |