-
-
Save Atry/15b7d9a4c63d95ad3d67e94bf20b4f69 to your computer and use it in GitHub Desktop.
CNN.sc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## CNN\n", | |
"\n", | |
"This plugin provides a standalone implementation of a Convolutional Neural Network." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Dependencies" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import $ivy.`com.thoughtworks.each::each:3.3.1`\n", | |
"import $ivy.`com.thoughtworks.deeplearning::plugins-builtins:2.0.0`\n", | |
"\n", | |
"import scala.concurrent.ExecutionContext.Implicits.global\n", | |
"import org.nd4j.linalg.api.ndarray.INDArray\n", | |
"import org.nd4j.linalg.convolution.Convolution\n", | |
"import org.nd4j.linalg.util.ArrayUtil\n", | |
"import org.nd4j.linalg.factory.Nd4j\n", | |
"import org.nd4j.linalg.api.ops.impl.transforms.IsMax\n", | |
"import scalaz.syntax.all._\n", | |
"import com.thoughtworks.raii.shared._\n", | |
"import com.thoughtworks.raii.asynchronous._\n", | |
"import com.thoughtworks.feature.ImplicitApply\n", | |
"import com.thoughtworks.each.Monadic._\n", | |
"import com.thoughtworks.feature.Factory\n", | |
"import com.thoughtworks.deeplearning.DeepLearning\n", | |
"import com.thoughtworks.deeplearning.plugins.ImplicitsSingleton\n", | |
"import com.thoughtworks.deeplearning.plugins.INDArrayLayers\n", | |
"import com.thoughtworks.deeplearning.plugins.Operators\n", | |
"import com.thoughtworks.deeplearning.plugins.Training\n", | |
"import com.thoughtworks.deeplearning.plugins.Builtins" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"interp.load(scala.io.Source.fromURL(new java.net.URL(\"https://gist.githubusercontent.com/TerrorJack/cdd9cc5adc82fc86abf8b4c72cd26e76/raw/1f15523ee4b5a7fcc7e7317ae34ba09be207a62a/CNN.sc\")).mkString)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"interp.load(\"\"\"\n", | |
" val hyperparameters = Factory[Builtins with CNNs].newInstance()\n", | |
"\"\"\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### For sbt projects" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"// build.sbt\n", | |
"libraryDependencies += \"com.thoughtworks.deeplearning\" %% \"plugins-builtins\" % \"latest.release\"\n", | |
"\n", | |
"addCompilerPlugin(\"com.thoughtworks.import\" %% \"import\" % \"latest.release\")\n", | |
"\n", | |
"// XXX.scala\n", | |
"import $exec.`https://gist.githubusercontent.com/TerrorJack/cdd9cc5adc82fc86abf8b4c72cd26e76/raw/1f15523ee4b5a7fcc7e7317ae34ba09be207a62a/CNN.sc`\n", | |
"\n", | |
"import scala.concurrent.ExecutionContext.Implicits.global\n", | |
"import org.nd4j.linalg.api.ndarray.INDArray\n", | |
"import org.nd4j.linalg.convolution.Convolution\n", | |
"import org.nd4j.linalg.util.ArrayUtil\n", | |
"import org.nd4j.linalg.factory.Nd4j\n", | |
"import org.nd4j.linalg.api.ops.impl.transforms.IsMax\n", | |
"import scalaz.syntax.all._\n", | |
"import com.thoughtworks.raii.shared._\n", | |
"import com.thoughtworks.raii.asynchronous._\n", | |
"import com.thoughtworks.feature.ImplicitApply\n", | |
"import com.thoughtworks.each.Monadic._\n", | |
"import com.thoughtworks.feature.Factory\n", | |
"import com.thoughtworks.deeplearning.DeepLearning\n", | |
"import com.thoughtworks.deeplearning.plugins.ImplicitsSingleton\n", | |
"import com.thoughtworks.deeplearning.plugins.INDArrayLayers\n", | |
"import com.thoughtworks.deeplearning.plugins.Operators\n", | |
"import com.thoughtworks.deeplearning.plugins.Training\n", | |
"import com.thoughtworks.deeplearning.plugins.Builtins\n", | |
" \n", | |
"val hyperparameters = Factory[Builtins with CNNs].newInstance()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Scala", | |
"language": "scala", | |
"name": "scala" | |
}, | |
"language_info": { | |
"codemirror_mode": "text/x-scala", | |
"file_extension": ".scala", | |
"mimetype": "text/x-scala", | |
"name": "scala211", | |
"nbconvert_exporter": "script", | |
"pygments_lexer": "scala", | |
"version": "2.11.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
trait CNNs | |
extends com.thoughtworks.deeplearning.plugins.INDArrayLayers | |
with com.thoughtworks.deeplearning.plugins.ImplicitsSingleton | |
with com.thoughtworks.deeplearning.plugins.Training | |
with com.thoughtworks.deeplearning.plugins.Operators { | |
import org.nd4j.linalg.api.ndarray.INDArray | |
import org.nd4j.linalg.convolution.Convolution | |
import org.nd4j.linalg.util.ArrayUtil | |
import org.nd4j.linalg.factory.Nd4j | |
import org.nd4j.linalg.api.ops.impl.transforms.IsMax | |
import scalaz.syntax.all._ | |
import com.thoughtworks.raii.shared._ | |
import com.thoughtworks.raii.asynchronous._ | |
import com.thoughtworks.feature.ImplicitApply | |
import com.thoughtworks.each.Monadic._ | |
import com.thoughtworks.feature.Factory | |
import com.thoughtworks.deeplearning.DeepLearning | |
trait ImplicitsApi | |
extends super[INDArrayLayers].ImplicitsApi | |
with super[Training].ImplicitsApi | |
with super[Operators].ImplicitsApi | |
type Implicits <: ImplicitsApi | |
private def toArray(tuple2: (Int, Int)): Array[Int] = { | |
val (one, two) = tuple2 | |
Array(one, two) | |
} | |
def im2col[Operand0, Out <: INDArrayLayer](operand0: Operand0, | |
kernel: (Int, Int), | |
stride: (Int, Int), | |
padding: (Int, Int))( | |
implicit deepLearning: DeepLearning.Aux[Operand0, INDArray, INDArray], | |
layerImplicits: ImplicitApply.Aux[indArrayPartialApplyRawForward.Rest, Out]): Out = { | |
INDArrayLayer.unary(operand0) { data0: INDArray => | |
val shape0 = data0.shape | |
val strideArray = toArray(stride) | |
val paddingArray = toArray(padding) | |
val outputData = Convolution.im2col(data0, toArray(kernel), strideArray, paddingArray) | |
val delta0 = { outputDelta: INDArray => | |
Convolution.col2im(outputDelta, strideArray, paddingArray, shape0(2), shape0(3)) | |
} | |
(outputData, delta0) | |
} | |
} | |
@inline | |
def conv2d[Input, Weight, Bias, Out <: INDArrayLayer](input: Input, | |
weight: Weight, | |
bias: Bias, | |
kernel: (Int, Int), | |
stride: (Int, Int), | |
padding: (Int, Int))( | |
implicit inputDeepLearning: DeepLearning.Aux[Input, INDArray, INDArray], | |
weightDeepLearning: DeepLearning.Aux[Weight, INDArray, INDArray], | |
biasDeepLearning: DeepLearning.Aux[Bias, INDArray, INDArray], | |
layerImplicits: ImplicitApply.Aux[indArrayPartialApplyRawForward.Rest, Out]): Out = { | |
import implicits._ | |
INDArrayLayer(monadic[Do] { | |
val inputShape = input.forward.each.data.shape | |
val numberOfImages = inputShape(0) | |
val depth = inputShape(1) | |
val height = inputShape(2) | |
val width = inputShape(3) | |
val numberOfKernels = weight.forward.each.data.shape.head | |
val col = im2col(input, kernel, stride, padding) | |
val permutedCol = col.permute(0, 4, 5, 1, 2, 3) | |
val depthKernelKernel = depth * kernel._1 * kernel._2 | |
val operandCol2d = permutedCol.reshape(numberOfImages * height * width, depthKernelKernel) | |
val reshapedWeight = weight.reshape(numberOfKernels, depthKernelKernel) | |
val permutedWeight = reshapedWeight.permute(1, 0) | |
val dotResult = operandCol2d dot permutedWeight | |
val plusResult = dotResult + bias | |
val reshapeResult = plusResult.reshape(numberOfImages, height, width, numberOfKernels) | |
reshapeResult.permute(0, 3, 1, 2).forward.each | |
}) | |
} | |
@inline | |
def maxPool[Operand0, Out <: INDArrayLayer](operand0: Operand0, poolSize: (Int, Int))( | |
implicit deepLearning: DeepLearning.Aux[Operand0, INDArray, INDArray], | |
layerImplicits: ImplicitApply.Aux[indArrayPartialApplyRawForward.Rest, Out]): Out = { | |
INDArrayLayer.unary(operand0) { data0: INDArray => | |
val shape0 = data0.shape | |
val kernelAndStrideSize: Array[Int] = toArray(poolSize) | |
val preMaxPool: INDArray = | |
Convolution | |
.im2col(data0, kernelAndStrideSize, kernelAndStrideSize, Array(0, 0)) | |
.permute(0, 1, 4, 5, 2, 3) | |
val preShape: Seq[Int] = preMaxPool.shape().toSeq | |
val lastDimensionSize: Int = preShape.takeRight(2).product | |
val reshapedPreMaxPool: INDArray = preMaxPool | |
.reshape(preShape.take(preShape.length - 2) :+ lastDimensionSize: _*) | |
val outputData = reshapedPreMaxPool.max(4) | |
val delta0 = { outputDelta: INDArray => | |
val a = reshapedPreMaxPool | |
val upStreamDup = a.dup() | |
val rows = ArrayUtil.prod(a.length()) | |
val isMax: INDArray = Nd4j.getExecutioner | |
.execAndReturn(new IsMax(upStreamDup, 4)) | |
.reshape(preShape.take(preShape.length - 2) :+ poolSize._2 :+ poolSize._1: _*) | |
.permute(0, 1, 2, 4, 3, 5) | |
.reshape('c', rows, 1) | |
val outputDelta1d = { | |
outputDelta | |
.repeat(-1, poolSize._1) | |
.permute(1, 0, 3, 2) | |
.repeat(-1, poolSize._2) | |
.permute(1, 0, 3, 2) | |
.reshape('c', shape0.product, 1) | |
} | |
isMax | |
.muliColumnVector(outputDelta1d) | |
.reshape(shape0: _*) | |
} | |
(outputData, delta0) | |
} | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MIT License | |
Copyright (c) 2017 ThoughtWorks Inc. | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment