Skip to content

Instantly share code, notes, and snippets.

View Birch-san's full-sized avatar

Birch-san

View GitHub Profile
@Birch-san
Birch-san / magma-readme.md
Created April 27, 2023 21:58
Build magma from source
@Birch-san
Birch-san / CUDA-12-1-1-pytorch.md
Last active February 2, 2025 20:31
Installing CUDA 12.1.1 + PyTorch nightly + Python 3.10 on Ubuntu 22.10

Installing CUDA 12.1.1 + PyTorch nightly + Python 3.10 on Ubuntu 22.10

Should you keep your NVIDIA driver?

CUDA 12.1.1 toolkit is gonna offer to install Nvidia driver 530 for us. It's from New Feature branch. It's likely to be newer than the default Nvidia driver you would've installed via apt-get (apt would prefer to give you 525, i.e. Production Branch).

If you're confident that you already have a new enough Nvidia driver for CUDA 12.1.1, and you'd like to keep your driver: feel free to skip this "uninstall driver" step.

But if you're not sure, or you know your driver is too old: let's uninstall it. CUDA will install a new driver for us later.

@Birch-san
Birch-san / attn_scores_buffer.py
Created April 9, 2023 10:50
Compute size of buffer required to fit q_proj @ k_proj.T attention scores
float_width=2 # float16
cond_count=2 # uncond and cond for 1 sample
attn_heads=8 # SD1.5 isn't optimized for flash attn, so all layers have 8 heads, lol
vae_scale_factor=8
px_height=px_width=768
latent_height=px_height/vae_scale_factor
latent_width=px_width/vae_scale_factor
q_proj_tokens=k_proj_tokens=latent_height*latent_width
qk_bytes = cond_count*attn_heads*float_width*q_proj_tokens*k_proj_tokens
qk_mb = qk_bytes/1024**2
from torch import FloatTensor, load, baddbmm, zeros
from dataclasses import dataclass
import torch
from os.path import join
@dataclass
class Fixtures:
q_proj: FloatTensor
k_proj: FloatTensor
@Birch-san
Birch-san / topk_softmax_denominator.py
Created April 3, 2023 22:45
Reducing the softmax denominator to sum only as many attention scores as the in-distibution checkpoint would've, so that its outputs have in-distribution magnitudes
from torch import FloatTensor
vae_scale_factor = 8
typical_self_attn_key_length = (512/vae_scale_factor) * (512/vae_scale_factor)
desired_self_attn_key_length = (768/vae_scale_factor) * (768/vae_scale_factor)
key_length_factor=desired_self_attn_key_length/typical_self_attn_key_length if is_self_attn else 1.
def softmax(x: FloatTensor, dim=-1) -> FloatTensor:
maxes = x.max(dim, keepdim=True).values
@Birch-san
Birch-san / scaled_softmax.py
Created April 3, 2023 00:16
Questionable softmax
from torch import FloatTensor
vae_scale_factor = 8
typical_self_attn_key_length = (512/vae_scale_factor) * (512/vae_scale_factor)
desired_self_attn_key_length = (200/vae_scale_factor) * (200/vae_scale_factor)
key_length_factor=desired_self_attn_key_length/typical_self_attn_key_length if is_self_attn else 1.
def softmax(x: FloatTensor, dim=-1) -> FloatTensor:
key_tokens = x.size(-1)
@Birch-san
Birch-san / softmax.py
Created April 3, 2023 00:12
Typical softmax
from torch import FloatTensor
def softmax(x: FloatTensor, dim=-1) -> FloatTensor:
maxes = x.max(dim, keepdim=True).values
diffs = x-maxes
x_exp = diffs.exp()
x_exp_sum = x_exp.sum(dim, keepdim=True)
quotient = x_exp/x_exp_sum
return quotient
@Birch-san
Birch-san / gist:0c36d228e1d4b881a06d1c6e5289d569
Created March 9, 2023 22:49
xformers attention bias limitations
No operator found for `memory_efficient_attention_forward` with inputs:
query : shape=(32, 4096, 1, 40) (torch.float16)
key : shape=(32, 77, 1, 40) (torch.float16)
value : shape=(32, 77, 1, 40) (torch.float16)
attn_bias : <class 'torch.Tensor'>
p : 0.0
`cutlassF` is not supported because:
attn_bias.shape[-1] % 8 != 0
`flshattF` is not supported because:
attn_bias type is <class 'torch.Tensor'>
@Birch-san
Birch-san / cfg_video.sh
Created March 5, 2023 01:08
ffmpeg: side-by-side comparison video
#!/usr/bin/env bash
# makes a video like:
# https://twitter.com/Birchlabs/status/1632185133435437057
# expects folders with filenames such as:
# /home/birch/git/diffusers-play/out_dynthreshoff/00000.679566949.cfg07.50.png
i=0
CFG_COUNTER=''
FONT='fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf'

Mahouko prompts used for latent walk (WD 1.5 beta 1)

kimono + bridge + river

anime

positive prompt:

beautiful, 1girl, a smiling and winking girl, wearing a dark kimono, taking a selfie on a bridge over a river. detailed hair, portrait, floating hair, anime, carnelian, best aesthetic, best quality, ribbon, outdoors, good posture, watercolor (medium), traditional media, ponytail'