Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
BrianMartell / PUH_inflation_sim_v12.py
Created July 19, 2025 21:01
PUH-BrianMartell. Photon washing and excess
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v13.py
Created July 19, 2025 21:30
PUH-BrianMartell. Photon counts
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v18.py
Created July 20, 2025 02:12
PUH-BrianMartell. Inflation sim v18
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v19.py
Created July 20, 2025 02:46
PUH-BriaMartell inflation sim v19
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v20.py
Created July 20, 2025 03:24
PUH BrianMartell Imflstion sim v20
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v21.py
Created July 20, 2025 03:43
PUH. BrianMartell sim v21
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)
@BrianMartell
BrianMartell / PUH_inflation_sim_v22.py
Created July 20, 2025 03:59
PUH BrianMartell. Inflation sim v22
import numpy as np
# Constants
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c = 2.99792458e8 # Speed of light (m/s)
M_sun = 1.989e30 # Solar mass (kg)
l_P = 1.616e-35 # Planck length (m)
hbar = 1.0545718e-34 # Reduced Planck constant (J s)
E_gamma = 1e6 * 1.60218e-19 # Gamma-ray energy ~1 MeV (J)
E_nu = 1e6 * 1.60218e-19 # Neutrino energy ~1 MeV (J)