Skip to content

Instantly share code, notes, and snippets.

@ByungSunBae
ByungSunBae / EditGraph.py
Created December 5, 2017 09:18
simple tensorflow graph edit example
# from : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/graph_editor/examples/edit_graph_example.py
import numpy as np
import tensorflow as tf
from tensorflow.contrib import graph_editor as ge
# create a graph
g = tf.Graph()
with g.as_default():
@ByungSunBae
ByungSunBae / CVXR_tutorial.R
Last active November 29, 2017 00:18
Following CVXR package tutorial : Convex Optimization in R
## Convex Optimization in R using CVXR
## from : https://rviews.rstudio.com/2017/11/27/introduction-to-cvxr/
## load CVXR
if (!require(CVXR)){
install.packages("CVXR")
} else{
require(CVXR)
}
@ByungSunBae
ByungSunBae / predict_counts.R
Created September 19, 2017 09:40
RNN using Tensorflow in R
# 2) RNN model 생성----------------
## Refer : https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-12-5-rnn_stock_prediction.py
library(tensorflow)
library(reticulate)
contrib <- tf$contrib
tf$reset_default_graph()
# train Parameters
@ByungSunBae
ByungSunBae / PolicyGradient.markdown
Last active January 30, 2020 13:10
Policy Gradient

DRL : Policy Gradient

Overview

  • Deep Q network(이하 DQN)와 그 Variants(DoubleDQN, DuelingDQN)를 구현해보았다.

  • 그런데 DQN과 같은 계열의 방법은 RL에서 Value-Based Method라서 Policy에 대한 직접적인 학습이 아니다.

  • 게다가 Value가 약간만 바뀌어도 Policy가 금방 변한다.

  • 학습과정이 불안정하게되어 수렴자체가 불안정해진다. (Bias가 높다.)

@ByungSunBae
ByungSunBae / DRLpytorch_Atari.py
Last active August 9, 2017 05:43
Deep Reinforcement Learning : Deep Q Network(DQN) and Variants (Double DQN, Dueling DQN)
# Thanks for 주찬웅
# References:
## 1) https://github.com/jcwleo/Reinforcement_Learning/blob/master/Breakout/
## 2) http://pytorch.org/tutorials/
## 3) https://github.com/transedward/pytorch-dqn
## My codes is very very dirty...
## I want to your idea and advice that improves this codes.
import argparse