Created
September 6, 2018 01:58
-
-
Save ClebsonDantasUchoa/f28beebcbcb91f2a79c191ba39f83470 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import pandas as pd\n", | |
"from sklearn import linear_model\n", | |
"from sklearn import linear_model\n", | |
"from sklearn import metrics" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"data = pd.read_csv(\"train.csv\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(13730, 167)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dados = pd.DataFrame()\n", | |
"dados['Q047'] = data['Q047'] #Tipo de escola que concluiu o EM, ALFANUMÉRICA, TRATAR\n", | |
"dados['Q046'] = data['Q046'] #Já concluiu o EM?, ALFANUMÉRICA, TRATAR\n", | |
"dados['Q006'] = data['Q006'] #RENDA MENSAL DA FAMILIA, ALFANUMÉRICA, TRATAR\n", | |
"dados['Q005'] = data['Q005'] #quantidade de pessoas na residencia\n", | |
"dados['IN_TREINEIRO'] = data['IN_TREINEIRO']\n", | |
"#dados['TP_ENSINO'] = data['TP_ENSINO']\n", | |
"dados['TP_ESCOLA'] = data['TP_ESCOLA']\n", | |
"dados['TP_ST_CONCLUSAO'] = data['TP_ST_CONCLUSAO']\n", | |
"dados['TP_COR_RACA'] = data['TP_COR_RACA']\n", | |
"dados['NU_IDADE'] = data['NU_IDADE']\n", | |
"dados['CO_UF_RESIDENCIA'] = data['CO_UF_RESIDENCIA']\n", | |
"dados['NU_NOTA_CN'] = data['NU_NOTA_CN']\n", | |
"dados['NU_NOTA_CH'] = data['NU_NOTA_CH']\n", | |
"dados['NU_NOTA_LC'] = data['NU_NOTA_LC']\n", | |
"dados['NU_NOTA_REDACAO'] = data['NU_NOTA_REDACAO']\n", | |
"dados['NU_NOTA_MT'] = data['NU_NOTA_MT']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(13730, 15)" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dados.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Q047 0\n", | |
"Q046 0\n", | |
"Q006 0\n", | |
"Q005 0\n", | |
"IN_TREINEIRO 0\n", | |
"TP_ESCOLA 0\n", | |
"TP_ST_CONCLUSAO 0\n", | |
"TP_COR_RACA 0\n", | |
"NU_IDADE 0\n", | |
"CO_UF_RESIDENCIA 0\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dados.isnull().sum().head(10)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Q047 0\n", | |
"Q046 0\n", | |
"Q006 0\n", | |
"Q005 0\n", | |
"IN_TREINEIRO 0\n", | |
"TP_ESCOLA 0\n", | |
"TP_ST_CONCLUSAO 0\n", | |
"TP_COR_RACA 0\n", | |
"NU_IDADE 0\n", | |
"CO_UF_RESIDENCIA 0\n", | |
"NU_NOTA_CN 0\n", | |
"NU_NOTA_CH 0\n", | |
"NU_NOTA_LC 0\n", | |
"NU_NOTA_REDACAO 0\n", | |
"NU_NOTA_MT 0\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dados = dados.dropna()\n", | |
"dados.isnull().sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(10097, 15)" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dados.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"matematica = pd.DataFrame()\n", | |
"matematica['NU_NOTA_MT'] = dados['NU_NOTA_MT']\n", | |
"dados = dados.drop('NU_NOTA_MT', axis=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dados = pd.get_dummies(dados, drop_first = True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(10097, 34)" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dados.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"NU_NOTA_MT 0\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"matematica.isnull().sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dadosValues = dados.values\n", | |
"matematicaValues = matematica.values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dados_treino = dadosValues[:822, :]\n", | |
"dados_teste = dadosValues[822: , :]\n", | |
"matematica_treino = matematicaValues[ :822]\n", | |
"matematica_teste = matematicaValues[ 822: ]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"modelo = linear_model.LinearRegression()\n", | |
"modelo.fit(dados_treino, matematica_treino)\n", | |
"predicao = modelo.predict(dados_teste)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment