I hereby claim:
- I am coderpuppy on github.
- I am coderpuppy (https://keybase.io/coderpuppy) on keybase.
- I have a public key ASBpYyLjaXIPLMFePGVJVj9_5IehALYXrFDAO0sDXe-UQAo
To claim this, I am signing this object:
| local fill_i | |
| local fill_left = 0 | |
| local function place_fill(f) | |
| if fill_left <= 0 then | |
| local is = {} | |
| for i = 1, 16 do | |
| local d = turtle.getItemDetail(i) | |
| if d then | |
| is[d.name] = is[d.name] or i | |
| end |
| (use-modules | |
| (guix profiles) | |
| (gnu packages idris) | |
| (guix packages) | |
| (guix git-download) | |
| (guix download) | |
| (guix build-system gnu) | |
| ((guix licenses) #:prefix license:) | |
| (gnu packages multiprecision) | |
| (gnu packages llvm) |
| local function refuel(n) | |
| local sel = turtle.getSelectedSlot() | |
| local slot = 1 | |
| while turtle.getFuelLevel() < n do | |
| if slot > 16 then | |
| error 'no fuel' | |
| end | |
| turtle.select(slot) | |
| if not turtle.refuel(1) then | |
| slot = slot + 1 |
| {-# OPTIONS_GHC -Wno-tabs #-} | |
| module LamCo2 where | |
| import Numeric.Natural | |
| data Term | |
| = Var Int | |
| | Lam Term | |
| | App Term Term |
| {-# OPTIONS_GHC -Wno-tabs #-} | |
| module LamCo where | |
| import Debug.Trace | |
| data Term | |
| = TVar Int | |
| | TLam Term | |
| | TAp Term Term |
| import Control.Lens | |
| mutual | |
| record Frame sfd dfd r (sd : sfd) (ps : List (sfd, Type, Type)) rt jt where | |
| constructor MkFrame | |
| dd : dfd | |
| ret : rt -> Frames sfd dfd r ps -> r | |
| jmp : jt -> Frames sfd dfd r ps -> r | |
| data Frames : (sfd : Type) -> (dfd : Type) -> (r : Type) -> (ps : List (sfd, Type, Type)) -> Type where | |
| Nil : Frames sfd dfd r [] |
| makeRecord : | |
| (ks : Set) (o : Relation.Binary ks) → | |
| {¬refl : ¬ Relation.Reflexive o} {asym : Relation.Asymmetric o} {trans : Relation.Transitive o} → | |
| {τs : Record ks o $ makeRecord ks o $ λ k τs → Record o τs → Type} → | |
| ((k : ks) → Record (filter (o k) ks) o (fst $ _≅_.l⇒r joinSplitRecord τs) → get τs k) → | |
| Record ks o τs | |
| Record : | |
| (ks : Set) → (o : Relation.Binary ks) → | |
| {¬refl : ¬ Relation.Reflexive o} {asym : Relation.Asymmetric o} {trans : Relation.Transitive o} → | |
| Record ks o (makeRecord ks o $ λ k τs → Record o τs → Type) → Type |
I hereby claim:
To claim this, I am signing this object:
| reverseT : List a -> List a -> List a | |
| reverseT r [] = r | |
| reverseT r (a::as) = reverseT (a::r) as | |
| reverse : List a -> List a | |
| reverse = reverseT [] | |
| total | |
| reverseT_ends_ts : Proofs.reverseT ts as = Proofs.reverse as ++ ts | |
| reverseT_ends_ts {ts} {as=[]} = Refl |