Created
August 4, 2023 13:37
-
-
Save CoffeeVampir3/14673d7f3296e180fd9690b4bdf9bf7f to your computer and use it in GitHub Desktop.
Thing for book thinging of stuff with the thing.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "0727e4f1-6539-45b0-8d05-5e1abb26ea28", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"with open('datasets/Book.txt', 'r') as file:\n", | |
" text = file.read()\n", | |
"text = text.replace('\\n', ' ')\n", | |
"sentences = text.split('.')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "59b268e1-f155-47ea-8a13-42d4d87903f4", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"new_sentences = []\n", | |
"for sentence in sentences:\n", | |
" sentence = sentence.strip()\n", | |
" if len(sentence) > 80:\n", | |
" # Split on comma\n", | |
" parts = [part.strip() for part in sentence.split(',')]\n", | |
" if len(parts) > 1: # If sentence could be split\n", | |
" new_sentences.extend(parts)\n", | |
" else:\n", | |
" new_sentences.append(sentence)\n", | |
"\n", | |
"sentences = new_sentences" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "fb84a662-4cd2-40f4-985b-31fba70ec7f4", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"[print(x) for x in sentences[:10]]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "86f9ef96-b7eb-43e8-adf7-82620db375af", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import nltk\n", | |
"nltk.download('punkt')\n", | |
"nltk.download('averaged_perceptron_tagger')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"id": "47bacb44-3279-4417-a94c-7e2435b72918", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def count_descriptive_words(sentence):\n", | |
" words = nltk.word_tokenize(sentence)\n", | |
" tagged = nltk.pos_tag(words)\n", | |
" descriptive_count = sum(1 for word, tag in tagged if tag in ('JJ', 'JJR', 'JJS', 'RB', 'RBR', 'RBS'))\n", | |
" return descriptive_count\n", | |
"descriptive_counts = [(sentence, count_descriptive_words(sentence)) for sentence in sentences]\n", | |
"descriptive_counts = sorted(descriptive_counts, key=lambda x: x[1], reverse=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"id": "1b81d8c9-a640-4d39-98b7-fdea3b622e12", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"top_100 = descriptive_counts[:100]\n", | |
"items = [x.encode('ascii', 'ignore').decode() for x, y in top_100]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"id": "18d88cd9-b289-49d5-9b42-0dedb16ab57e", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import json\n", | |
"with open('descriptive_sentences.jsonl', 'w') as file:\n", | |
" for item in items:\n", | |
" line = json.dumps({\"text\": item})\n", | |
" file.write(line + '\\n')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment