Skip to content

Instantly share code, notes, and snippets.

@ContrastingSounds
Created January 1, 2018 17:24
Show Gist options
  • Save ContrastingSounds/c1db3bd7dcea94693c52ed1805552b38 to your computer and use it in GitHub Desktop.
Save ContrastingSounds/c1db3bd7dcea94693c52ed1805552b38 to your computer and use it in GitHub Desktop.
Shows how to dynamically create a database schema using SQLAlchemy and a table schema stored in a Python dictionary. For completeness, includes creating the original database (in this case using PostgreSQL).
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PostgreSQL DB Creation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"from psycopg2 import connect\n",
"from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"{'dbname': 'postgres',\n",
" 'host': 'localhost',\n",
" 'password': '********',\n",
" 'port': '5432',\n",
" 'user': '********'}"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"with open('psql_local_creds.json', 'r') as file:\n",
" creds = json.loads(file.read())"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"conn = connect(**creds)\n",
"\n",
"new_dbname = 'newdb'\n",
"\n",
"conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)\n",
"with conn.cursor() as cursor:\n",
" cursor.execute(f'CREATE DATABASE {new_dbname}')\n",
" cursor.execute(f'GRANT ALL PRIVILEGES ON DATABASE {new_dbname} TO {creds[\"user\"]}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SQLAlchemy"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from sqlalchemy import create_engine, Table, Column, Integer, String, Float, MetaData\n",
"\n",
"# Connection string will look like this:\n",
"# postgresql+psycopg2://username:password@localhost/newdb\n",
"conn_string = f\"postgresql+psycopg2://{creds['user']}:{creds['password']}@{creds['host']}/{new_dbname}\"\n",
"\n",
"engine = create_engine(conn_string, echo=False)\n",
"metadata = MetaData()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"schema = {\n",
" 'dimensions': ['field_one', 'field_two'],\n",
" 'integers': ['int_one', 'int_two'],\n",
" 'floats': ['only_float'],\n",
"}\n",
"\n",
"\n",
"columns = [Column(column, String) for column in schema['dimensions']]\n",
"columns += [Column(column, Integer) for column in schema['integers']]\n",
"columns += [Column(column, Float) for column in schema['floats']]\n",
"\n",
"table = Table('my_table', metadata, *columns)\n",
"\n",
"metadata.drop_all(engine)\n",
"metadata.create_all(engine)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Validate table"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"%load_ext sql\n",
"%config SqlMagic.autopandas=True"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Connected: vgadmin@newdb'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%sql $conn_string"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * postgresql+psycopg2://vgadmin:ttsms123@localhost/newdb\n",
" * vgadmin@newdb\n",
"1 rows affected.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: []\n",
"Index: []"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%sql INSERT INTO my_table VALUES ('a', 'b', 1, 2, 3.3)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * postgresql+psycopg2://vgadmin:ttsms123@localhost/newdb\n",
" * vgadmin@newdb\n",
"1 rows affected.\n"
]
}
],
"source": [
"df = %sql SELECT * FROM my_table"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>field_one</th>\n",
" <th>field_two</th>\n",
" <th>int_one</th>\n",
" <th>int_two</th>\n",
" <th>only_float</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>a</td>\n",
" <td>b</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" field_one field_two int_one int_two only_float\n",
"0 a b 1 2 3.3"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment