Last active
April 1, 2020 20:19
-
-
Save DBremen/1f9bc8dbf6f1e983797a56a41f68556f to your computer and use it in GitHub Desktop.
Algebra 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\nimport matplotlib.pyplot as plt\nimport sympy as sym\nfrom IPython.display import display, Math", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "nums = [1,3,4,1,6]\nnp.sum(nums)", | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 2, | |
"data": { | |
"text/plain": "15" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "plt.plot(nums,'-rs',label='numbers')\nplt.plot(np.cumsum(nums),'-bs',label='cumulative sum')\nplt.legend()\nplt.show()", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5zM9f7A8dcHKxXJdSmxqCR3ligHKXRBuhEdQumeqHQ6OZWU0kFKnY6jIlLSTxeVyuUgUtHKuhMi9gjrLtfdnffvj/e67cXO7s7Md2bn/Xw89rG7M9+Z73u+u/Oez/f9/VyciGCMMSbyFPI6AGOMMXljCdwYYyKUJXBjjIlQlsCNMSZCWQI3xpgIVSSUOytbtqzExcWFcpfGGBPxFi9evFNEymW8PaQJPC4ujoSEhFDu0hhjIp5z7vesbrcSijHGRChL4MYYE6EsgRtjTIQKaQ08KykpKSQlJXHkyBGvQzH5VKxYMSpVqkRMTIzXoRgTFTxP4ElJSZQoUYK4uDicc16HY/JIRNi1axdJSUlUrVrV63CMiQqel1COHDlCmTJlLHlHOOccZcqUsTMpY05RoQI4l/mrQoXAPL/nCRyw5F1A2N/RmNNt356723MrLBK4McaY3LMEHkStWrWygUvGmKCJrAQe7IJSGElNTfU6BGNMPoRirZzISuBBKiht2rSJmjVr0qdPH2rVqkXbtm05fPjwaS3onTt3cnwel/fee49OnTrRoUMHqlatyptvvsmrr75KgwYNaNq0Kbt37z7x3BMnTuTKK6+kdu3aLFq0CICDBw/Su3dvGjduTIMGDZg6deqJ57399tvp0KEDbdu25Y8//qBFixbUr1+f2rVrM3/+/Hy9TmNM6AwaFPx9eN6N8DT9+kFiYt4e26pV1rfXrw+vvZbjw9etW8ekSZN4++236dy5M5988skZt1+xYgVLlizhyJEjXHzxxbzyyissWbKE/v37M2HCBPr16wdosv7hhx+YN28evXv3ZsWKFQwZMoTWrVszduxY9u7dS5MmTbj22msB+PHHH1m2bBmlS5dmxIgRtGvXjoEDB5KWlsahQ4dydUiMMd4YPRoGD4azz4bDhzPfHxsbmP2EVwL3UNWqValfvz4AjRo1YtOmTWfc/uqrr6ZEiRKUKFGCkiVL0qFDBwDq1KnDsmXLTmzXtWtXAFq0aMH+/fvZu3cvM2bM4IsvvmD48OGAdqXcvHkzAG3atKF06dIANG7cmN69e5OSkkKnTp1OxGeMCV+ffQYPPQTt2+vPRYKYZcMrgefUUj5TN7W5c/O167POOuvEz4ULF+bw4cMUKVIEn88HkKl/86nbFypU6MTvhQoVOq1+nbFrnXMOEeGTTz6hRo0ap923cOFCzj333BO/t2jRgnnz5jFt2jS6d+/OgAED6NGjR75epzEmeL7/Hrp2hSZNYPLk4CZviLQaeIjFxcWxePFiAKZMmZKn55g8eTIA33//PSVLlqRkyZK0a9eON954A0m/yrFkyZIsH/v7779Tvnx5+vTpw913380vv/ySpxiMMcG3ciV06ABxcfDll3DOOcHfZ3i1wHMSG5v1BctAFZQyeOKJJ+jcuTPvv/8+rVu3ztNzlCpViiuvvJL9+/czduxYAJ555hn69etH3bp1ERHi4uL46quvMj127ty5DBs2jJiYGIoXL86ECRPy9XqMMcGxZQtcd53WvL/9FsqWDc1+nYSir0u6+Ph4ydgvevXq1dSsWTNkMZjgsr+niTZ79kDz5pCUBPPmQb16gd+Hc26xiMRnvD2yWuDGGBNGDh+Gjh1h/XpteQcjeZ+JJXBjjMmDtDTo1g0WLICPPoKrrw59DDlexHTOjXXO7XDOrcjiviecc+KcC1HFxxhjvCcCDz8Mn38Or78OnTt7E4c/vVDeA67LeKNz7iKgDbA5wDEZY0xYGzJEB+v87W/wyCPexZFjAheRecDuLO4aCTwJhO4qqDHGeOydd+CZZ6BHD3j5ZW9jyVM/cOdcR+B/IrLUj23vdc4lOOcSkpOT87I7Y4wJC19+CffdB+3aaSL3egr8XCdw59w5wEDgWX+2F5ExIhIvIvHlypXL7e4KnE2bNlG7du0ct/nwww9P/J6QkEDfvn2DHZox5gx+/BG6dIGGDWHKFAiHpV/z0gKvDlQFljrnNgGVgF+cc0Gf0zVaZpPNmMDj4+MZNWqUhxEZE93WrNG5TS68EKZNg+LFvY5I5TqBi8hyESkvInEiEgckAQ1FZFvAo8sgWMsTTZgwgbp161KvXj26d+8OQM+ePU8bPl88/S82d+5cWrZsSefOnbn00kt56qmn+OCDD2jSpAl16tRhw4YNZ3z8qTZt2sRf/vIXGjZsSMOGDfnhhx8AeOqpp5g/fz7169dn5MiRzJ07l/bt2+Pz+YiLi2Pv3r0nnuPiiy9m+/btJCcnc+utt9K4cWMaN27MggULMu1v5cqVNGnShPr161O3bl3WrVuX6Yxg+PDhDEqfB7NVq1b079+fFi1aULNmTX7++WduueUWLrnkEv7xj3/k9XAbE1G2btWSSZEiMH06lC/vdUQn5dgP3Dk3CWgFlHXOJQHPici7wQjGi9lkV65cyZAhQ1iwYAFly5Y9bS7v7CxdupTVq1dTunRpqlWrxj333MOiRYt4/fXXeeONN3jNj+lrAcqXL8/MmTMpVqwY69ato2vXriQkJDB06FCGDx9+Ynj93PSJugoVKsRNN93EZ599Rq9evVi4cCFxcXHExsbSrVs3+vfvT/Pmzdm8eTPt2rVj9erVp+1v9OjRPProo9x5550cO3aMtLQ0tufw6Ve0aFHmzZvH66+/zk033cTixYspXbo01atXp3///pQpU8av12pMJNq7V4fI794N330H1ap5HdHpckzgItI1h/vjAhaNB2bPns1tt91G2fTJC45P5XomjRs3pmLFigBUr16dtm3bAjqV7Jw5c/zed0pKCg8//DCJiYkULlyYX3/9NcfHdOnShcGDB9OrVy8++ugjunTpAsCsWbNYtWrVie3279/PgQMHKFGixInbmjVrxpAhQ0hKSjrRks5Jx44dT7y2WrVqnXjd1apVY8uWLZbATYF15Ah06qTlk2nTtPYdbsJqJKYXs8mKSJarqZ86layIcOzYsRP3+TOV7Jkef9zIkSOJjY1l6dKl+Hw+ihUrlmO8zZo1Y/369SQnJ/P555+fKGX4fD5+/PFHzj777Gwf261bN6644gqmTZtGu3bteOedd7j00ktPxAnZT5t76uvM+FqNKWjS0qB7d211f/ABtGnjdURZi/rpZK+55ho+/vhjdu3aBXCihHLqVLJTp04lJSUlV8/rz+P37dtHxYoVKVSoEO+//z5paWkAlChRggMHDmT5vM45br75Zh577DFq1qx5ogXctm1b3nzzzRPbJWZRi/rtt9+oVq0affv2pWPHjixbtozY2Fh27NjBrl27OHr0aJazIhoTTUS0nDtlCowYocPlw1VEJfDsZo3Nz2yytWrVYuDAgbRs2ZJ69erx2GOPAdCnTx++++47mjRpkmmhBX/48/gHH3yQ8ePH07RpU3799dcT29StW5ciRYpQr149Ro4cmelxXbp0YeLEiSfKJwCjRo0iISGBunXrcvnllzN69OhMj5s8eTK1a9emfv36rFmzhh49ehATE8Ozzz7LFVdcQfv27bnsssty9TqNKWheeQXefBMefxzS00HYsulkTUDZ39NEsvfeg169tNX9/vtQKEyauNlNJxsm4RljjLe++QbuuQeuvRbGjQuf5H0mERCiMcYE16JFcNttOp/3p59C0aJeR+SfsEjgoSzjmOCxv6OJROvWwY036ojur7+GU3rehj3PE3ixYsXYtWuXvfkjnIiwa9cuv7pCGhMutm3TUZagK+oEaXndoPG8H3ilSpVISkrCZiqMfMWKFaNSpUpeh2GMX/bvhxtu0Kk45s4FP8a1hR3PE3hMTAxVq1b1OgxjTBQ5dgxuuQWWL9cpYhs39jqivPE8gRtjTCj5fNCzJ/z3vzB+vM51Eqk8r4EbY0woDRgAkybB0KG6qk4kswRujIkaI0bAq69C377w5JNeR5N/lsCNMVHhgw/giSd0BfmRI71fDi0QLIEbYwq8GTO07t2qFUyYEBmjLP1RQF6GMcZkbfFiuPVWuPxy+PxzOGVW5IhnCdwYU2Bt2KB9vcuU0blOSpb0OqLAsgRujCmQduzQUZZpabqW5QUXeB1R4Fk/cGNMgfPnn9ry3roVZs+GGjW8jig4cmyBO+fGOud2OOdWnHLbMOfcGufcMufcZ86584MbpjHG+OfYMa15JybCxx9D06ZeRxQ8/pRQ3gMyjlWaCdQWkbrAr8DfAxyXMcbkmojO6T1jBowZA+3bex1RcOWYwEVkHrA7w20zROT4irY/ATaDkTHGc3//u66k88IL0Lu319EEXyAuYvYGvgnA8xhjTJ69/rquZ/nAAzBwoNfRhEa+ErhzbiCQCnxwhm3udc4lOOcSbMpYY0wwTJ4M/fvrDINvvFEwRln6I88J3Dl3F9AeuFPOsBqDiIwRkXgRiS9Xrlxed2eMMVmaPVsnpWreXIfLFy7sdUShk6duhM6564C/AS1F5FBgQzLGGP8kJkKnTroYw9SpEG0LQvnTjXAS8CNQwzmX5Jy7G3gTKAHMdM4lOudGBzlOY4w5zaZNcP31Orry22+hVCmvIwq9HFvgItI1i5vfDUIsxhjjl507dZTl0aO6MEO0ruRnIzGNMRHl4EHt3715M8yapZNURStL4MaYiJGSovN5//wzfPIJXHWV1xF5yxK4MSYiiMB998HXX8Po0XrxMtrZbITGmIjwzDMwbhw895wmcmMJ3BgTAf71LxgyBPr00QRulCVwY0xYmzIFHnkEOnaEt96KnlGW/rAEbowJW/PmwV//Cs2awaRJUMSu2p3GErgxJiwtX66t7mrV4Msv4ZxzvI4o/FgCN8aEnc2bdZTluefqKMvSpb2OKDzZCYkxJqzs3g3XXafLos2fD5Urex1R+LIEbowJG4cPQ4cOupr8jBlQp47XEYU3S+DGmLCQmgp33AE//qhrWbZs6XVE4c8SuDHGcyLw0EPwxRe6IMNtt3kdUWSwi5jGGM8NHqyLED/9NDz8sNfRRA5L4MYYT40ZA4MGQc+e8OKLXkcTWSyBG2M8M3WqLkJ8ww2ayG2UZe5YAjfGeGLBAr1oGR+vFy1jYryOKPJYAjfGhNyqVdpdsHJlmDZNB+yY3LMEbowJqaQkHahz1lk6yrJsWa8jilzWjdAYEzJ79ugQ+b17daKqqlW9jiiy+bMq/Vjn3A7n3IpTbivtnJvpnFuX/j0K14M2xuTGkSNw002wdi18/jnUr+91RJHPnxLKe8B1GW57CviviFwC/Df9d2OMyVJaGtx5p85t8v770Lq11xEVDDkmcBGZB+zOcPNNwPj0n8cDtjqdMSZLIvDoo/DppzByJHTp4nVEBUdeL2LGisgfAOnfy2e3oXPuXudcgnMuITk5OY+7M8ZEqpdf1iXRBgyAfv28jqZgCXovFBEZIyLxIhJfrly5YO/OGBNGxo2DgQN1VZ2hQ72OpuDJawLf7pyrCJD+fUfgQjLGFATTpukixG3bwrvvQiHrtBxweT2kXwB3pf98FzA1MOEYYwqChQvh9tu1p8mUKVC0qNcRFUz+dCOcBPwI1HDOJTnn7gaGAm2cc+uANum/G2MMa9fCjTfCBRdoK7xECa8jKrhyHMgjIl2zueuaAMdijIlwW7dCu3ZQuDBMnw6xsV5HVLDZSExjTEDs26ezCu7cCd99B9Wrex1RwWcJ3BiTb0ePws03w8qVWjZp1MjriKKDJXBjTL74fNCjB8yZo6Ms27b1OqLoYR17jDF5JgL9++t83sOGaX9vEzqWwI0xeTZsGIwapUn88ce9jib6WAnFGOOXChVg+/bMtxcrBsOH23JoXrAWuDHGL1klb9BpYm2UpTfssBtjcrRrl9cRmKxYCcUYc4LPBxs2QGIiLF168ntSkteRmaxYAjcmSh08CMuXn56oly3T20FHU9asCS1b6pwmAwZ4G6/JzBK4MQWciA5xPzVRJybCunV6H0DJklCvHtx9t36vXx8uv1wvUB5nCTz8WAI3pgBJSYE1azKXQHbuPLlN1aqaoLt10+/16kGVKjn3IomNzfpCps134h1L4MZEqD17NDmfmqhXroRjx/T+s86COnV0IeHjibpuXW1t58W2bYGL3QSGJXBjwpzPBxs3Zi6BbN58cpvy5TVJ9+t3sgRy6aVQxN7hBZr9eY0JI4cPw4oVpyfqZcvgwAG9v1AhqFEDrroKHnzwZMu6QgVv4zbesARujEe2bctcq167VlvcoAsh1KunE0UdT9S1a8PZZ3sbtwkflsCNCbLUVE3MGUsgO05ZSbZKFU3Qt99+sgQSF2cjHM2ZWQI3JoD27dOSx6mJeuVKHW4OujZkrVq65NjxRF23LpQq5W3cJjJZAjcmD0Tg998zt6o3bjy5TdmymqAfeuhkCeSyyyAmxru4TcGSrwTunOsP3AMIsBzoJSJHAhGYMcGW3ex6sbGnd5k7cgRWrcpcr963T+93Tnt8NG4MffqcbFlXrGgz9JngynMCd85dCPQFLheRw865j4E7gPcCFJsxQZXd7Hrbt+v0qMcT9erVkJam9517rpY8unU7mahr19bbjQm1/JZQigBnO+dSgHOArfkPyRjvDRgAlSppgj51IEz16nZh0YSPPCdwEfmfc244sBk4DMwQkRkZt3PO3QvcC1C5cuW87s6YkNq5E8qU8ToKY84sz20J51wp4CagKnABcK5zLtOKeCIyRkTiRSS+XLlyeY/UmADKaVi4JW8TCfJzMngtsFFEkkUkBfgUuDIwYRkTPDNnajnEmEiXnwS+GWjqnDvHOeeAa4DVgQnLmMBLTYWBA6FdO+3il10r22bXM5EiPzXwhc65KcAvQCqwBBgTqMCMCaQtW7TnyPff65zXo0bBOed4HZUx+ZOvXigi8hzwXIBiMSYopk3T+USOHYOJE+HOO72OyJjAsA5RpsA6dgyeeALat4fKlWHxYkvepmCxofSmQNq4Ee64AxYt0qHsw4efvjyYMQWBJXBT4Hzyida5AaZMgVtv9TYeY4LFSiimwDhyBB5+GG67TRc9WLLEkrcp2CyBmwLh11+hWTP417/g8cdh/nxdvNeYgsxKKCbiffgh3HefzrX95Zd60dKYaGAtcBOxDh2Ce+7RniX16+vsgZa8TTSxBG4i0sqVOv/22LE6unLOHLjoIq+jMia0rIRiIooIjBunFytLlIDp06FNG6+jMsYb1gI3EePAAejeXbsINmumiy1Y8jbRzBK4iQiJidCoEUyaBC+8ADNm6JJoxkQzS+AmrInAW29B06Zw8KDWuv/xDyhc2OvIjPGeJXATtvbuhdtv16HwrVtrK7xFC6+jMiZ8WAI3YWnRImjQAKZOhX/+E776CmxBJ2NOZwnchBURePVVuOoq8Plg3jxdYNgWEjYmM+tGaMLGrl3Qs6e2tjt10j7epUp5HZUx4cvaNSYsfP+9jqacMUNXy/n0U0vexuTEErjxlM8HL70ErVrBWWfBDz/AI4+Ac15HZkz4sxKK8cz27TowZ+ZMXXzhP/+B887zOipjIke+WuDOufOdc1Occ2ucc6udc80CFZgp2P77Xy2ZzJ8Pb7+tMwpa8jYFToUKejqZ8StAo9DyW0J5HfhWRC4D6gGr8x+SKchSU+HZZ3UIfKlS2l3wnnusZGIKqO3bc3d7LuW5hOKcOw9oAfQEEJFjwLGARGUKpP/9D7p1066BvXrBG2/Aued6HZUxkSs/LfBqQDIwzjm3xDn3jnMu09vROXevcy7BOZeQnJycj92ZSPb111oyWbwYJkzQLoKWvI3Jn/wk8CJAQ+DfItIAOAg8lXEjERkjIvEiEl/OhtJFnZQUePJJuPFGuOACSEjQC5fGFHi7dwd9F/lJ4ElAkogsTP99CprQjQFg0yadu2TYMLj/fvjpJ7jsMq+jMiYEtm4NycQ9eU7gIrIN2OKcq5F+0zXAqoBEZSLeZ5/pXCarVsHkyfDvf8PZZ3sdlTEhsH69zgXx++/Zj0aLjQ3IrvLbC+UR4APn3DKgPvBS/kMykezoUejbF265BapXh19+gc6dvY7KmBBZtgyaN9fVR2bP1jKKSOavbdsCsrt8DeQRkUQgPiCRmIi3fj106aJJu18/GDpUR1caExUWLNCLPcWL68T1NWsGfZc2lN4ExEcfQcOGsHGjTgE7cqQlbxNFvv1WBzeUL6+JPATJGyyBm3w6fBjuuw+6doU6dXTRhY4dvY7KmBD66CPo0AFq1NBZ2apUCdmuLYGbPFu9Gpo0gTFj4KmnYO5cqFzZ66iMCaHRo3V0WrNm+gYoXz6ku7cEbvJk/HiIj9cRwd9+Cy+/DDExXkdlTIiI6DSaDzygde/p06FkyZCHYQnc5Mqff0KPHrrwQpMmWjJp187rqIwJIRFdJmrgQLjzTp283qM+spbAjd+WLtVW98SJMGgQzJqloyuNiRqpqTr72ogR8PDDOi+Eh6eeNh+4yZGIztXdrx+ULq1TwV59tddRGRNiR45ovfuzz3RKzUGDPJ9G0xK4OaN9+6BPH/i//9NSyYQJIb9OY4z3DhzQhVpnz4bXXoNHH/U6IsASuDmDhAQdmPP77zoox1aHN1Fp1y64/nodoTZ+vF4EChOWwE0mIrqw8IABunDIvHlw5ZVeR2WMB5KSoG1b+O03vVgZZoMcLIGb0+zerYstfPGF/q+OG6d1b2Oizrp1Orpy927tK9uqldcRZWIJ3Jzwww+6uPC2bVrm69vX82s0xnjjeP9Yn0/nNWnUyOuIsmQVTYPPB6+8otMXx8RoIn/0UUveJkrNnw8tW+pkPvPnh23yBkvgUW/HDrjhBh0Kf8step0m3uaXNNFq2jSteVesqPOahPkKJJbAo9jcubpO5dy5OqXD5MmejAY2Jjx8+KF2Fbz8cm15R8DEPpbAo1BaGjz/PFxzDZx3HixcqDMKWsnERK233oK//lVX0pkzByJk/V5L4FFm61a49lodRHbnndrXu149r6MyxiMi8OKL8NBDOiXsN99oqyZCWC+UKDJ9uq4If/AgvPce3HWX1xEZ4yGfDx5/XLtc9egB774LRSIrJVoLPAqkpMDf/w7XXadrqSYkWPI2US41FXr3Pjksfty4iEveEIAE7pwr7Jxb4pz7KhABmcDavFnHHwwdCvfeC4sWhWy1J2PC05EjcNttOix+8GBd/y9C54gIxEfOo8BqIHIKRwVUhQq6wEJWJk3SQTrmFNkdsNjYgK0absLM/v3a02TOHHjjDZ0SNoLl62PHOVcJuBF4JzDhmPzILnmDJe8sZXfAznQgTeRKTobWrXVyn4kTIz55Q/5b4K8BTwIlAhCLMcElojWlxERdncJEjy1bdIDOpk3w+efQvr3XEQVEnhO4c649sENEFjvnWp1hu3uBewEqR0DH+Ei1cKHXEYSZo0dh5UpN1McT9tKlsHev3p9Tp/c9e6BUqeDHaYJv7VqdlGrfPu2K1aKF1xEFjBORvD3QuZeB7kAqUAytgX8qIn/N7jHx8fGSkJCQp/2ZrG3cqD1MJk8+83Z5/DNHhuTk0xN1YiKsWaM9DQDOOQfq1tVhp/Xq6fc6daB48eyfs3RpXXXlgQegaNHQvA4TeL/8ot2vQJN3gwbexpNHzrnFIpJpkos8J/AMT94KeEJEznheYgk8cPbuhSFDdN7uwoW1O+uLL2a/fYFI4GlpsH796Yl66VIdnXTchReenqjr1YPq1fUgZXSmVnibNjBzpj72lVd0ohgbqhpZvvtOB+eUKqV/y0sv9TqiPMsugUdex8cod+yYzlvy/PN6ln/XXfDCC1CpErz9dvadKiLOn3/CsmWnJ+rly+HQIb2/SBGds+Kaa04m6nr1oGxZ//cRG5v9AZs+Xb+eeEK7nF11lS5ke8UVgXl9Jri+/BI6d4a4OE3elSp5HVFQBKQF7i9rgeediF57+dvfdJ751q1h+PCIPSM8SURXPclYAtmw4eRpQ6lSp7eo69fXzuxnnRX8+FJTdZDHM89osr/jDnjpJahaNfj7NnkzcSL07Klvjm++yd2HepgKagnFX5bA8+bnn7VEMn++5q1hw3QK2Ig7oz92DFavzlwC2b375DbVq2cugVx0kfcv9sABPfDDh2sp59FH4emn4fzzvY3LnO6NN3QlktattcVTomB0kLMEHoF+/11zxIcf6uRogwfDPfdEyIjfXbtO9vw4nqhXrdJx/QBnn60XEk9N1HXrhv8bLilJW+Pjx+uFzueeg/vv15UwjHdE9A0yaJAO1Jk0CYoV8zqqgLEEHkH27YOXX9ZpGpyDxx7T0klYTpLm82m5I2MJJCnp5DYVK2YugVxySdYXFiPFkiVaH589W1/LP/8JN93k/ZlCNPL5oH9/vaLfs6deDIqIVo7/7CJmBEhJgTFjtBGxc6fOHDhkiFYQwsKhQ3oh8XiSTkzU3//8U+8vXFhXMGnZ8vSEXb68t3EHQ4MGMGsWfP01DBgAN9+s/YtHjLAljUIpJUUnpZo4UVs6w4ZF7LwmeWEt8DAgohfNn3xSxxy0aqV5oGFDDwP644/Mrep167S1A3o6kLFWXatWgTpt9VtqKrzzjvYbT07WidaHDIEqVbyOrGA7fBi6dNE3z5AhOiCigJ4BWQklTC1erGfic+dCjRp6Jt6hQwj/D1NS9FMj44XF5OST21StmrkEUqVKgX2z5Nn+/dpn/NVX9UOwf39dbNTWqQu8ffugY0e9sv+vf+mAqwLMEniY2bJFL1BOnKi9nAYN0ule83UtLKfZ9fbuzXxhccUK7R0C2i2vdu3TE3XdupaAcmvLFhg4EN5/X/+4zz8PffrYhc5A2bFDR1cuXw4TJkDXrl5HFHSWwMPE/v06N/fIkdpI69dPz/wCkiPP1CKuUkW7tRxXvnzmEkiNGgXu4o+nfvlF+38eP70aNkwnUbIzl7zbvFlHyW7ZAlOmaH/aKGAXMT2WmqoXx597zqMyabNmepp5PGFXqBCiHUexhg21l8pXX+mFzo4d4eqrtS+5Zxc4ItiaNZq8D6GqFM0AAA1lSURBVByAGTOgeXOvI/KeiITsq1GjRhJtfD6RL78UuewyERD5y19EFi0K4A7+/FNkwgSRa67RHWT3Zbx17JjIm2+KlC2rf4/u3UU2b/Y6qsjx88967GJjRRITvY4m5IAEySKnRk9/Gw8sWaIrwHfooIP3PvtM59dp3DifT+zz6Wl5r17aku7RA377LRAhm2CJidGVz9ev1079H3+skysNHKgtSpO9OXP0zKV4cfj+ez2LNIAtahwUSUk6nqBRI71OOGqUTk3dqVM+y5/r12tXterV9R/6k090wp7vvtP7TPgrWVIvgqxdC7feqvOqXHyxzlB2fPpbc9LUqXD99VC5sibviy/2OqLwklWzPFhfBb2Esn+/yD/+IXL22SJFi4oMGCCyZ08+n3TvXpExY0SuukpPvZ0TadNGZOJEkYMHT982Njbr8klsbD6DMEGzaJHW1UCkZk2Rr77SupsRGT9epHBhkSZNRHbu9DoaT5FNCcUSeACkpIj85z8n8+cdd4j89ls+njA1VeTbb0W6dhUpVkyf9LLLRF5+WWTLloDFbcKEzyfy2Wcil1yif+trrhFZssTrqLz12msnj8WBA15H4zlL4EHg84l8/bVIrVp6JK+6SuSnn/LxhCtWaLO9YkV9wlKlRB58UGThQmuVRYNjx0RGjRIpU0bPtHr2FElK8jqq0PL5RJ55Rv//b7lF5MgRryMKC5bAAywxUeTaa/UIVq8uMmVKHnNscrK+aRs10icrXFikQwd9QvvnjU579ugHedGiWo975pnoaIWmpYk89JC+D+6+W09tjYhYAg+Y//1PpFcvbSCVKiUycqTI0aO5fJKjR/WUuVMnkZgY/TPUr69Ptn17UOI2Eei337Qed/w6xpgxWl4riI4dE+nWTV/rgAF2xpmBJfB8OnBA5NlnRc45R3PuY4+J7N6diyfw+UQSEkQeeeRkX+DYWH2ipUuDFrcpAH766eRF7Nq1Rb75xuuIAuvgQZEbb9TXN3So19GEJUvgeZSaKvLOOyfL0p07i2zYkIsn2LpVZNiwk4XyokVFbr9dexvYKaLxl8+nZbXq1fX/qG3bgvHBv2ePSPPmekr7n/94HU3YsgSeB9Oni9Spo0epWTORH37w84GHD4t89JHI9deLFCqkT9C0qci//53LZrsxGRw9qqW2UqU06fXurXW9SLRtm5YOY2JEJk/2OpqwFvAEDlwEzAFWAyuBR3N6TKQk8OXLRdq106NTtarIxx/7UZLz+UQWLBC5916RkiX1wRddJPL00yJr1oQkbhNFdu/W8ltMjNb1Bg3SaRUixcaNIhdfrLF/+63X0YS9YCTwikDD9J9LAL8Cl5/pMeGewLduFbnnHm00n3++yIgRfnQE2bRJZPBg/WcE/Yfs3l1k1iy9qm5MMG3YoCU50Drfu++G/4XOlStFLrxQ32QLFngdTUQIegkFmAq0OdM24ZrA//xT5PnnRc49Vxs0/frlMPDrwAGRceNEWrWSE6MdW7XS2/bvD1HUxpxiwQIt04FI3boiM2Z4HVHWFi4UKV1apEKFglHDD5GgJnAgDtgMnJfFffcCCUBC5cqVQ/V6/ZKaKjJ2rMgFF+iRuPVWkXXrstk4LU1b1d27ayv7eAfwwYP1dNAYr/l8Wu+rWlX/P6+7TuuB4WLWLG0lVa0qsn6919FElKAlcKA4sBi4Jadtw6kFPnOmSL16egSaNBGZPz+bDdeuFRk4UOvZIHLeeSJ9+oh8/731VTXh6cgRrf+df77WA/v0EfnjD29j+vRT7YFVu3bkXnT1UFASOBADTAce82f7cEjgK1Zo5xAQqVJFZNKkLPLwnj0io0dr1xPQN8F11+nGhw55EbYxubdzp9YDY2K05Tt4cOYJ0EJh7Fh9DzVtKrJrV+j3XwAE4yKmAyYAr/n7GC8T+LZtIvfdp/9HJUuK/POf2tvvhJQUkWnTtKP3WWfpoalVSze0FoOJZOvWaX0QtF44blzoLnSOGCEn+q1HUi+ZMBOMBN4cEGAZkJj+dcOZHuNFAj94UOTFF0WKFxcpUkQHQiYnn7LB0qUijz+uF1VAJxJ65BEdNWklElOQzJ+v9cLjUzfMmhW8ffl8WnoE7SVj8/rkS9QN5ElL0+mEK1XSV9mpk5azRUTnGxk5Uv+JQTN7p046P0muJzYxJoL4fFoKrFJF//dvvFFk1arA7iM1VeT++/X5+/QJ/26NESCqEvjs2SINGuiri48XmTtXtAUwZYrO9FekiN7ZqJHOBHhak9yYKHD4sJYHS5bUGTDvv1/rjPl19KhIly76/nrqKTuLDZCoSOCrVom0b6+vqnJlkQ8m+iTtp0U6RWXp0nJisMOAAeHVvcoYryQna8mwSBGREiVEhgzJ+4X6gwf1Yj/oh4MJmAKdwLdvF3ngAW1InHeeyNC/75VDLwzXJapAV7W54w6dxc0mkDIms7VrtYwIWnecMCF3I4l37xa58krtJfD228GLM0oVyAR+6JDISy9pw6FwYZ881Gat7Gh1+8kJpK66SudQzvfClMZEiblzte4IIg0bisyZk/Nj/vhDR38WLaplShNw2SXwiFyV3ueDDz6Ayy4Tnn4ari61hBVnxfPmzBqU27gIBg6Edet0Fes+feD8870O2ZjI0LIlLFyob7CdO+Hqq6FjR1izJuvtN26E5s1hwwb46iu49dbQxhvlingdwJlUKLyD7b7ymW4vQgqpxNCw6Areoy9X7/oZOt8Od42AFi2gUER+LhkTHgoVgm7d4OabYdQoeOklqF0bihaFw4czb+8c/PADNG0a+lijnNPWeWjEx8dLQkKC39s7l/19E+jBna3/oFDPHnDLLXDuuQGI0BiTSXIyDBoEb72V/TYhzCPRyDm3WETiM90eqQlcft8MlSsHICpjjF/O+Ia0BB5M2SXwyK01WPI2xkS5yE3gxhgT5SyBG2NMhArrBB5baEeubjfGBFFsbO5uN0EX1t0It6Vl7kKosrvdGBM027Z5HYHJIKxb4MYYY7JnCdwYYyKUJXBjjIlQlsCNMSZCWQI3xpgIFdKh9M65ZOD3PD68LLAzgOEEisWVOxZX7lhcuROucUH+YqsiIuUy3hjSBJ4fzrmErOYC8JrFlTsWV+5YXLkTrnFBcGKzEooxxkQoS+DGGBOhIimBj/E6gGxYXLljceWOxZU74RoXBCG2iKmBG2OMOV0ktcCNMcacwhK4McZEqLBL4M6565xza51z651zT2Vx/1nOucnp9y90zsWFSVw9nXPJzrnE9K97QhDTWOfcDufcimzud865UekxL3PONQx2TH7G1co5t++UY/VsiOK6yDk3xzm32jm30jn3aBbbhPyY+RlXyI+Zc66Yc26Rc25pelzPZ7FNyN+PfsYV8vfjKfsu7Jxb4pz7Kov7Anu8RCRsvoDCwAagGlAUWApcnmGbB4HR6T/fAUwOk7h6Am+G+Hi1ABoCK7K5/wbgG8ABTYGFYRJXK+ArD/6/KgIN038uAfyaxd8x5MfMz7hCfszSj0Hx9J9jgIVA0wzbePF+9CeukL8fT9n3Y8CHWf29An28wq0F3gRYLyK/icgx4CPgpgzb3ASMT/95CnCNc2dabTVkcYWciMwDdp9hk5uACaJ+As53zlUMg7g8ISJ/iMgv6T8fAFYDF2bYLOTHzM+4Qi79GPyZ/mtM+lfGXg8hfz/6GZcnnHOVgBuBd7LZJKDHK9wS+IXAllN+TyLzP/KJbUQkFdgHlAmDuABuTT/tnuKcuyjIMfnD37i90Cz9FPgb51ytUO88/dS1Adp6O5Wnx+wMcYEHxyy9HJAI7ABmiki2xyuE70d/4gJv3o+vAU8CvmzuD+jxCrcEntUnUcZPVn+2CTR/9vklECcidYFZnPyU9ZIXx8ofv6BzO9QD3gA+D+XOnXPFgU+AfiKyP+PdWTwkJMcsh7g8OWYikiYi9YFKQBPnXO0Mm3hyvPyIK+TvR+dce2CHiCw+02ZZ3Jbn4xVuCTwJOPWTshKwNbttnHNFgJIE/3Q9x7hEZJeIHE3/9W2gUZBj8oc/xzPkRGT/8VNgEfkaiHHOlQ3Fvp1zMWiS/EBEPs1iE0+OWU5xeXnM0ve5F5gLXJfhLi/ejznG5dH78Sqgo3NuE1pmbe2cm5hhm4Aer3BL4D8DlzjnqjrniqJF/i8ybPMFcFf6z7cBsyX9ioCXcWWok3ZE65he+wLokd6zoimwT0T+8Doo51yF43U/51wT9P9wVwj264B3gdUi8mo2m4X8mPkTlxfHzDlXzjl3fvrPZwPXAmsybBby96M/cXnxfhSRv4tIJRGJQ3PEbBH5a4bNAnq8wmpRYxFJdc49DExHe36MFZGVzrnBQIKIfIH+o7/vnFuPfnLdESZx9XXOdQRS0+PqGey4nHOT0N4JZZ1zScBz6AUdRGQ08DXaq2I9cAjoFeyY/IzrNuAB51wqcBi4IwQfwqAtpO7A8vT6KcDTQOVTYvPimPkTlxfHrCIw3jlXGP3A+FhEvvL6/ehnXCF/P2YnmMfLhtIbY0yECrcSijHGGD9ZAjfGmAhlCdwYYyKUJXBjjIlQlsCNMSZCWQI3xpgIZQncGGMi1P8DRz88c2KwhHMAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Calculating discrete derivative\ndifference between the next element - the current element" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "nums = [1,3,4]\nnp.diff(nums)\n", | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 4, | |
"data": { | |
"text/plain": "array([2, 1])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "nums = np.arange(0,11)\nprint(np.diff(nums))\n#take the 2nd order difference = the difference of the result of the first difference (the 1s)\nprint(np.diff(nums,2))\n#same as\nprint(np.diff(np.diff(nums)))", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "[1 1 1 1 1 1 1 1 1 1]\n[0 0 0 0 0 0 0 0 0]\n[0 0 0 0 0 0 0 0 0]\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = np.linspace(-2,2,101)\ny = np.array(x)**2\nplt.plot(x,y,label='$%s$' %sym.latex('x^2'))\nplt.plot(x[0:-1],np.diff(y),label='diff $%s$' %sym.latex('x^2'))\nplt.axis([-2,2,-1,2])\nplt.legend()\nplt.grid()\nplt.show()", | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3gVZdrH8e+dnpAGBEggQIAQutKkKhIQRVhBLCv2jtjYdd1Vd+2+7lreVV+xLqgLdrGgVBWkShGJ9NBCaIFAaAkJ6cnz/pEDhpB+JmfOSe7PdZ0rp8yZ+fEkzD3lmWfEGINSSinlZXcApZRS7kELglJKKUALglJKKQctCEoppQAtCEoppRy0ICillAIsKAgi0lpEFovIVhHZIiJ/KmcaEZHJIpIkIhtFpLezy1VKKWUtHwvmUQg8bIz5TURCgAQRWWCMSSw1zeVAR8ejP/CO46dSSik34fQegjEm1Rjzm+N5JrAVaFVmsrHAh6bEaiBcRKKcXbZSSinrWLGHcIaIxAC9gF/KfNQK2F/qdYrjvdQy358ATAAICAjo06ZNGyvj1Yni4mK8vM6tq7mFcCi7mIhAIdhXbEh2topyuhvNaS3NWX1Hsg05RYbWIV6U9z/WHTJWx44dO44aY5rV6svGGEseQDCQAFxVzmdzgQtLvf4J6FPZ/OLi4ownWLx4cbnvFxUVm6H/u9hc884K1waqQEU53Y3mtJbmrJ60k7mmw9/nmv+ZvaXCaezOWF3AWlPL9bgl5U5EfIGvgU+MMd+UM0kK0LrU62jgoBXLdldeXsIN/drw654TbD+UaXccpVQlZqzdT2Gx4fr+7n9Uoi5Z0ctIgPeBrcaYVyuYbBZwi6O30QAgwxiTWsG09cbVfaLx8/Hi49V77Y6ilKpAUbHh01/2MbB9Uzo0C7Y7jq2s2EMYDNwMDBOR9Y7HKBGZKCITHdPMA5KBJGAqcJ8Fy3V7TRr58YfzovjmtxQycwvsjqOUKseibWkcSM/hloFt7Y5iO6dPKhtjfoZyz8GUnsYA9zu7LE90y8AYvvntAN/8doBbB8XYHUcpVcaHq/YQGRrAiK4t7I5iO/c/Ze7herYO57zoMD5avff0CXWllJtIPpLF8p1HuaF/G3y8dXWoLeACtwyMISkti1W7jtkdRSlVyker9+LrLYzv17rqiRsALQgu8Ifzomgc5MuHq/TkslLuIju/kK8SUri8exTNQwLsjuMWtCC4QICvN3+8oDULth4mNSPH7jhKKeDbdQfJzC3Uk8mlaEFwkZv6t6XYlHRvU0rZyxjDh6v20CUqlD5tG9sdx21oQXCR1k2CGN65OZ+t2UdeYZHdcZRq0H7dc4JthzK5ZWBbSi6lUqAFwaVuG9SOo1n5zNlQ76/JU8qt/XfFbsKDfLmyZ9lxOBs2LQguNDi2KbHNg5m2co92QVXKJgfSc/hhyyHGX9CGQD9vu+O4FS0ILiQi3DYohk0HMkjYe8LuOEo1SB+t2ouIcLOeTD6HFgQXu6p3K0IDfPjvyj12R1GqwcnJL+LzX/dxWbcWtAoPtDuO29GC4GJBfj6M79eG7zcf0i6oSrnYt+sPkJ5dwG2D2tkdxS1pQbDBzQPaYozhI71QTSmXMcYwbcUeukaFckGMdjUtjxYEG7RuEsSIri34bM0+cgu0C6pSrrAq+RjbD2dy++AY7WpaAS0INrltUDtOZBcwc90Bu6Mo1SB88PNumjby44rzW9odxW1pQbDJgPZN6NYylPd/3q1dUJWqY8lHsli4NY2bBrQlwFe7mlZEC4JNRIS7LmpHUloWS3ccsTuOUvXaByt24+fjxU0DtKtpZbQg2Gh0j5a0CPXn/Z932x1FqXrrxKl8vkpIYVzPVjQL8bc7jlvTgmAjPx8vbhkYw/KdR9l26KTdcZSqlz5ds4/cgmLuuFC7mlZFC4LNbuzfhkBfbz7QvQSlLJdfWMz0lXu4qGMEnSJD7I7j9rQg2Cw8yI9r+kTz7bqDHMnMszuOUvXKnI0HScvM466L2tsdxSNoQXADtw+OoaC4mI9W7bE7ilL1hjGG95bvpmPzYIZ0jLA7jkfQguAG2jcL5pIuLfhw9V6y8wvtjqNUvfBz0lESU09y90Xt9UK0atKC4CbuGdKe9OwCvlybYncUpeqFKcuSaR7iz9heeiFadWlBcBN9Y5rQp21jpi5PprCo2O44Snm0zQcyWL7zKLcPboe/j16IVl1aENzIhCHtSTmRw/zNh+yOopRHm7o8mUZ+3tzQv43dUTyKFgQ3MqJLC9pHNGLKsmQdzkKpWko5kc2cjalc368NYYG+dsfxKFoQ3IiXl3D3kPZsOpDBql3H7I6jlEd6/+fdCOiFaLVgSUEQkQ9EJE1ENlfw+VARyRCR9Y7HU1Ystz4a16sVEcH+vLss2e4oSnmc9Ox8vvh1P2POb0lLvSNajVm1hzANGFnFNMuNMT0dj+csWm69E+Drze2DY1i24wibD2TYHUcpjzJ95V6y84uYcLFeiFYblhQEY8wy4LgV81Jw04C2hPj78M7SXXZHUcpjZOcXMm3lbi7p0pzOkaF2x/FIrjyHMFBENojIfBHp5sLlepywQF9uGtiW+ZtS2X30lN1xlPIIn63Zz4nsAu4dGmt3FI8lVvVmEZEYYI4xpns5n4UCxcaYLBEZBbxujOlYznQTgAkAzZo16zNjxgxLstWlrKwsgoODLZ9vRp7hr0uzGdjShzu6Oz9kb13ltJrmtFZDyVlYbPjb0hyaBwl/71835w48pS3j4+MTjDF9a/VlY4wlDyAG2FzNafcAEZVNExcXZzzB4sWL62zeT8zcZGL/MdccTM92el51mdNKmtNaDSXn52v2mraPzjFLtqdZE6gcntKWwFpTy/W4Sw4ZiUikOAYTEZF+lByq0n6VVZgwpD3FBt5brkNjK1WRomLDu0uT6dYyVAexc5JV3U4/A1YBnUQkRUTuFJGJIjLRMck1wGYR2QBMBsY7KpmqROsmQYw5vyWf/rKPE6fy7Y6jlFv6fvMhdh89xX1DY3UQOyf5WDETY8z1VXz+JvCmFctqaO4b2oGZ6w7wwYrdPHxpJ7vjKOVWiosNbyzaSfuIRozsHml3HI+nVyq7uY4tQhjVI5JpK/aQkVNgdxyl3MrCrYfZdiiTB4bF4u2lewfO0oLgAR6I70hmXiHTVuyxO4pSbsMYwxuLkmjbtOTQqnKeFgQP0LVlKJd0acEHK3aTmat7CUoBLNlxhE0HMrhvaAd8vHVVZgVtRQ8xaXgsGTkFfLhqr91RlLKdMYbJP+2kVXgg43pF2x2n3tCC4CHOiw5naKdmvP/zbr3NpmrwViQdY92+dO4d2gE/H12NWUVb0oM8OKwjx0/l8/Fq3UtQDdfpvYPI0ACu7at7B1bSguBB+rRtzEUdI/jP0mRO5elegmqYVu46xpo9x5l4cXu9PabFtCB4mD9fEsexU/l6LkE1SMYYXl2wg8jQAMb309tjWk0Lgofp07YxF8c1Y8qyXWTpXoJqYJbvPErC3hPcPyyWAF/dO7CaFgQP9NCIOE5kFzB95R67oyjlMqf3DlqFB/JHPXdQJ7QgeKCercMZ1rk5U5Ylc1KvS1ANxJLtR1i/P53742P13EEd0YLgoR66JI6MnAK9elk1CMYYXlu4g+jGgVzTR/cO6ooWBA/VIzqMEV1bMHV5MunZOhKqqt8WJB5mY0oGDw6L1esO6pC2rAf7y4g4svIKeXdpst1RlKozRcWGV37cQbuIRlzdW/cO6pIWBA/WJSqUMee3ZNrK3aSdzLU7jlJ1YvaGg2w/nMlfRsTpmEV1TFvXwz10SRyFRYY3FyfZHUUpy+UXFvPqgh10jQpldI8ou+PUe1oQPFxMRCP+eEFrPluzj/3Hs+2Oo5SlZqzdz77j2fztsk546f0O6pwWhHpg0rCOeInw2sIddkdRyjK5BUVM/mknF8Q0ZminZnbHaRC0INQDkWEB3DoohpnrDrD9UKbdcZSyxLSVe0jLzONvl3XWeyW7iBaEeuLeizsQ7O/DS99vszuKUk5Lz87n7cVJxHdqRr92TeyO02BoQagnGjfy476hsSzalsbq5GN2x1HKKW8tTiIrr5DHLu9id5QGRQtCPXL74BiiwgJ4Yf42jDF2x1GqVvYfz2b6yr1c3TuaTpEhdsdpULQg1CMBvt48NCKODfvTmbfpkN1xlKqVVxfsQAT+cmmc3VEaHC0I9czVvaPp1CKEl3/YRn5hsd1xlKqRzQcymLnuAHdc2I6osEC74zQ4WhDqGW8v4bHLO7P3WDaf/qI30VGewxjDi/O3ER7ky8SLO9gdp0HSglAPDe3UjEEdmvJ/P+0kI1uHx1aeYfH2NH5OOsqkYR0JC/S1O06DpAWhHhIRnhjdlYycAiYv2ml3HKWqVFhseH7uVtpHNOLmgW3tjtNgaUGop7q2DOW6vq35cNUedh89ZXccpSq1ZH8hyUdO8Y9RXfDVAexsY0nLi8gHIpImIpsr+FxEZLKIJInIRhHpbcVyVeX+cmkcft5e/GveVrujKFWhjOwCZiblM6hDU4Z3aW53nAbNqlI8DRhZyeeXAx0djwnAOxYtV1WieUgA98XHsiDxMFuPFdkdR6lyTV60k+wCeGJ0Vx2iwmaWFARjzDLgeCWTjAU+NCVWA+EiomPZusCdF7ajVXggn27Lp6hYL1ZT7iX5SBYfrtrDRdE+dG0ZanecBk+suqJVRGKAOcaY7uV8Ngd40Rjzs+P1T8Cjxpi1ZaabQMkeBM2aNeszY8YMS7LVpaysLIKDg+2OUak1qYW8vSGPW7r6MayNe/fe8IT2BM1pBWMMryXksTO9iCd7G1o2cc+cp7lzW5YWHx+fYIzpW5vv+lgdpgLl7QeeU4mMMVOAKQCdOnUyQ4cOreNYzluyZAnunvNiY1i8/3tm7TE8dPUgGjfysztShTyhPUFzWmFh4mE2Hl3LE6O70LJon9vmPM2d29IqrjqdnwK0LvU6GjjoomU3eCLCjV38ycwt5JUF2+2OoxS5BUU8NyeRjs2DuXVQjN1xlIOrCsIs4BZHb6MBQIYxJtVFy1ZAdIgXNw9oy6e/7GPLwQy746gG7r3lyew7ns3TV3TTbqZuxKpup58Bq4BOIpIiIneKyEQRmeiYZB6QDCQBU4H7rFiuqpmHLokjPMiPZ2Zt0dFQlW0Opufw1uJdjOwWyYUdI+yOo0qx5ByCMeb6Kj43wP1WLEvVXliQL49c1onHvtnEzHUHuKp3tN2RVAP0/NxEio3h8dF6rwN3o/tqDcwf+7amV5tw/jl3q45zpFxuyfY05m06xIPDYmndJMjuOKoMLQgNjJeX8PyV3TmRnc/LP+jtNpXr5BYU8dR3W2jfrBF3D2lvdxxVDi0IDVC3lmHcPrgdn67Zx7p9J+yOoxqItxYnse94Ns9f2R1/H2+746hyaEFooB4aEUeLkAAen7mZwiK9kY6qW7uOZPHu0l2M69WKQR30RLK70oLQQAX7+/DUFV1JTD3J9FV6Ix1Vd4wxPPntZgJ9vfnHKD2R7M60IDRgl3ePJL5TM175cTspJ7LtjqPqqS8TUli56xiPjOxMsxB/u+OoSmhBaMBEhOfH9QDgHzM367UJynJpmbn8c+5W+sU04YZ+beyOo6qgBaGBaxUeyCOXdWLZjiN8t15HE1HWenZ2Ijn5RbxwdQ+8vHRoa3enBUFx88AYerUJ59nZWziWlWd3HFVPLEg8zNyNqUwaHkuHZu4/SqjSgqAAby/hpavPIyuvkP+Zk2h3HFUPZOYW8OS3m+kcGcKEIR3sjqOqSQuCAiCuRQj3DY3l2/UHWZB42O44ysP9c+5W0jJzefHq8/Dz0dWMp9DflDrj/vhYukSF8o+ZmzhxKt/uOMpDLdmexue/7ueeizvQs3W43XFUDWhBUGf4+XjxyrXnc+JUPs/M3mJ3HOWBMnIKeOzrTcS1CObPl3S0O46qIS0I6ixdW4YyaXhHvlt/kO836y0rVM38z5xEjmTl8e9rz9fhKTyQFgR1jnuHdqB7q1Aen7lZex2pavtp62G+Skjh3os7cF60HiryRFoQ1Dl8vb145dqeZOYW8vdvNukFa6pKR7PyePTrjXSODOHB4bF2x1G1pAVBlatTZAiPjOzEj4mH+eLX/XbHUW7MGMNjX2/iZG4h/ze+px4q8mBaEFSF7hjcjkEdmvLs7ER2Hz1ldxzlpj5bs5+FWw/z6MjOdI4MtTuOcoIWBFUhLy/hlT+ej5+PF3/+Yj0FOky2KiP5SBb/MyeRC2MjuH1QjN1xlJO0IKhKRYUF8q9xPdiwP53JP+20O45yI/mFxTz0xXr8fb3497Xn61hF9YAWBFWl0edFcXXvaN5cnMTKpKN2x1Fu4n9/2MaGlAxevKoHkWEBdsdRFtCCoKrlubHdaBfRiD99sZ6j2hW1wVu07TBTl+/m5gFtGdk9yu44yiJaEFS1NPL34a0bepORU8BDX6ynuFi7ojZUqRk5PDxjA12iQnl8tN4BrT7RgqCqrUtUKE/9oSvLdx7lP8uS7Y6jbFBYVMyfPltPXmExb93QiwBf7WJan2hBUDVyY/82jO4Rxb9/3M4vycfsjqNc7JUFO1iz5zjPX9md9nqPg3pHC4KqERHhhat70LZJEPd/uo7DJ3PtjqRc5PvNh3hnyS6u79eGq3pH2x1H1QEtCKrGQgN8effmPpzKK+T+T37T6xMagOQjWfz1yw2cHx3GM2O62h1H1RFLCoKIjBSR7SKSJCKPlfP5bSJyRETWOx53WbFcZZ+4FiG8dM15rN17gn/N22p3HFWHsvMLmfhxAr7ewts39dGhKeoxH2dnICLewFvACCAF+FVEZhljyt6L8QtjzAPOLk+5jzHnt2T9vnQ+WLGb86LDGNdLDyPUN8YYHvlqI0lpWXx4R39ahQfaHUnVISv2EPoBScaYZGNMPvA5MNaC+SoP8PdRnenfrgmPfr2JdftO2B1HWezNRUnM2ZjK3y7rzIUdI+yOo+qYODu0sYhcA4w0xtzleH0z0L/03oCI3Aa8ABwBdgAPGWPOGUJTRCYAEwCaNWvWZ8aMGU5lc4WsrCyCg92/t0Vd5szMNzy3KoeCYnh6YACNA2q/naHtaS1nciYcLuSNdXkMbOnNhB7+iNTd0BSe0J6ekBEgPj4+wRjTt1ZfNsY49QCuBd4r9fpm4I0y0zQF/B3PJwKLqppvXFyc8QSLFy+2O0K11HXO7YdOmq5PzjdXvLHc5OQX1no+2p7Wqm3OxIMZpsuT883YN3926vdZXZ7Qnp6Q0RhjgLWmlutzKw4ZpQCtS72OBg6WKTrHjDGnxzuYCvSxYLnKjcS1COH18b3YdCCDh7/coFcye7C0zFzumr6W0ABfptzcRy8+a0CsKAi/Ah1FpJ2I+AHjgVmlJxCR0oOdjAG0W0o9dEnXFvz98s7M3ZjKSz9sszuOqoVTeYXcMe1Xjp/KZ+otfWkeqoPWNSRO9zIyxhSKyAPAD4A38IExZouIPEfJrsssYJKIjAEKgePAbc4uV7mnuy9qz/7jOfxnaTLR4YHcPDDG7kiqmgqLinnws3UkHjzJe7f2pUd0mN2RlIs5XRAAjDHzgHll3nuq1PO/A3+3YlnKvYkIT1/RldSMHJ6etYXIsEBGdG1hdyxVBWMMT83awqJtaTx/ZXeGddbfWUOkVyory/l4ezH5+l50bxXGg5/9xto9x+2OpKrwxqIkPv1lHxMv7sBNA9raHUfZRAuCqhNBfj58cNsFRIUFcvu0X0k8eNLuSKoC01fu4dUFO7iqVyseuayT3XGUjbQgqDoTEezPR3f2I9jfh1s+WMPuo6fsjqTK+HbdAZ6etYVLurTg5WvO09tgNnBaEFSdim4cxEd39qfYGG567xdSM3LsjqQcFiYe5uEvNzCwfVPevKEXPt66Omjo9C9A1bnY5sFMv70fJ3MKuH7Kag5l6JDZdlu8LY37PvmN7i1DmXprX73WQAFaEJSL9IgOY/qd/Tialc/4Kau0KNho8bY07vkogU6RIXx4R3+C/S3pbKjqAS0IymV6t2nM9DtKisL1U3VPwQ6Lt/9eDD6+sz9hQb52R1JuRAuCcqk+bRsz/Y4LSDuZy3VTVrH/eLbdkRqM7zcf4p4PE4iLDNZioMqlBUG5XJ+2Tfjorv6cOJXPte+uIikt0+5I9d5XCSnc90kC3VqF8smdA7QYqHJpQVC26N2mMTMmDqTIGK59dxUbU9LtjlRv/XfFbv765QYGdYjQPQNVKS0IyjadI0P58p6BNPL34Yapv7BsxxG7I9UrxcWGr3bk8+zsREZ2i+T92/rSSE8gq0poQVC2ioloxFcTBxHduOSK5qX7C+yOVC/kFRbx5y/WMye5gOv7tebNG3rpvZBVlbQgKNtFhgXw5cSBDI6N4L9b8nn5+216PwUnnDiVz83vrWHWhoNcG+fLv8b10IvOVLXoX4lyCyEBvrx/a1+GRvvw9pJd3PtJAll5hXbH8jjbD2Vy5dsrWJ+SzhvX92J0e786vfWlql+0ICi34evtxa3d/HhidBcWbk3jyrdWkHwky+5YHmPuxlTGvb2C7PwiPru7P1ec39LuSMrDaEFQbkVEuOui9nx0Zz+On8pn7JsrWJB42O5Ybq2wqJgX5m/l/k9/o0tUKHMfvJA+bZvYHUt5IC0Iyi0N6hDB7AcvJCaiEXd/uJZnZm0hr7DI7lhuZ//xbP74n1X8Z2kyN/Zvw2d3D9DbXqpa0z5oym21Cg/kq3sH8uL8bfx3xR7W7D7O5Ot7Eds82O5obmHuxlQe+2YjGJh8fS/G6CEi5SQtCMqt+ft48/QV3bgwNoK/frmBP7yxnEcu68xtg2Ia7Nj96dn5PDc7kW/WHaBn63Amj+9Fm6ZBdsdSVjAG8jIh5wTkppf8POtR6r3cjN+fdxwBV7zu9OK1ICiPMLxLC77/8xAe+3ojz81JZN6mVF665jw6NGtYewvfbz7EE99uJj07n0nDYnlweEd8tUup+ykqKLPyTj93hV76UfpzU8mhUZ8ACGwMAeElP8PbQlRPaNXXkthaEJTHaBEawAe3XcDMdQd4dnYio15fzv3xsUwY0r7ej+d/ID2Hf85NZN6mQ3RrGcr0Oy6gW8swu2PVb8ZA/qkzK+zwExshMaOCrfXSK/x0yK9ifK6AsJIV+umVe3gbx+vws98//fz0Z76BdfpP1oKgPIqIcFXvaC6MjeCZ2Vt4dcEOvkzYz5OjuzKia4t61+c+t6CIKcuSeXtJEgB/u6wTE4a0172CmiguOvvwSnlb6hUdnin+/cr5ngAbSs3X2+/slXZoK2jR4/eVd0A4BDVxTFN6RR8GXu65AaMFQXmk5qEBvH1jH1YkHeWZWVuY8FECF8ZG8LfLOnF+63C74zmtqNjw3foDvLZwB/uP5zCqRyT/GNWF6MYN9FyBMVCQU/PDLznpkJdR+bz9Qhwr6zAIbALNu5a7pb5++156Dox3fNakZGu9nm2AaEFQHm1wbATz/nQRH63ayxuLdjL2rRVc2rUFf7k0js6RoXbHq7HiYsMPWw7x6oId7EzLomtUKJ/cdR6DYyPsjmaN4uKSFXSZLfGWB9bA0l8rX+EX5VU8X/E++9BKcCQ061zOoRfHyvzMVnwYeFdv9Nf0tCUQ2d2adnBTWhCUx/P19uKOC9vxxwta88HPu5m6LJmR/7ec4Z2bc/eQ9vRv18TtDyXlFhTx3foDvLd8NzvTsujQrBFv3dCby7tHumdvqsK8Gh6CSf+9ZwznjlMVB7AT8G109sq7aYeSwy7lrthLbcH7h9S7rXU7aEFQ9Uawvw+ThnfkloFt+e+KPXy0ei/jp6ymR6swbh7YltE9otxu+OeUE9l8lZDCx6v3cTQrjy5Robx23fmMOb8V3nVdCIyBvJPVOPySzjknUAsqudOdeJ193DyoKTTpUOp4+rlb6ivWbWXwsFHg41e3/2ZVKff636GUBcKD/HhoRBz3Du3A17+l8P7Pu3nkq408M2sLo3tEcVXvaC6IaWzbCKCZuQX8tDWNrxJSWLHrKMbAxXHNmDCkPYM6NK353kxhfpkt8t+fx+xeD9lzy2ylV7eLY+DZW+RN2kFAr7O3zs+s2MNLba2HglfN2rbAL1WLgRuwpCCIyEjgdcAbeM8Y82KZz/2BD4E+wDHgOmPMHiuWrVRFAny9ubF/W27o14aEvSf4cm0KczYe5MuEFBoH+TK8SwtGdG3BgHZN6/QuYsYYUk7ksGznEX7ccpiVu45SUGSIbhzIn4Z35Ore0bRuHAj5WZCRUsmhl3Ke56aXfK8CbRE4HHr2Sju8TZneL03O7hVzesXuq0NgNDROFwQR8QbeAkYAKcCvIjLLGJNYarI7gRPGmFgRGQ+8BFzn7LKVqg4RoW9ME/rGNOHpMV1Zuv0IPyYe5scth/gqIQWRkru39W/XhB6twugUGUJs8+DaXdtQVEj68TT2HDjAgYOp7D94kNRDByEnnXCyuCIwj79GFtI6MJ8wspBt6bDOsZIvrmS4b2+/31fUQU0gvDVE9ijnmHqpLfXAxiz9ZR1D44fXvvFUg2LFHkI/IMkYkwwgIp8DY4HSBWEs8Izj+VfAmyIixhi9C4pyqSA/Hy7vEcXlPaIoKComYe8J1uw+zprdx/ni1/1MW7kHMDSSPDqHFRHTqIA2gXlE+eUSShYhJpNGxZkEHEth5+Y38M3PwK+g5BFYlEkjk004JX3We5ZesGMHxHiHIkWNocix4g5rVfEJ09Jb8LXt4iju2d9duSdxdp0sItcAI40xdzle3wz0N8Y8UGqazY5pUhyvdzmmOVpmXhOACQDNmjXrM2PGDKeyuUJWVhbBwe4/fEKDzGmK8CnMxrcgC5/CTHwKsxzPs868V/anV8EpfAsz8TEVb60XGG8yaES6CSaDYDKlEbleweT5BFPkG4y3fwgBQSGEBIfgHxRCoW8ohT7BFPo0wrj4gqQG+XuvI56QESA+Pj7BGFOrsSys2EMob7OlbJWpzjQYY6YAUwA6depkhg4d6nS4urZkyRI0p3XKzVmQW73j6mXfr6CL4xl+wY5DMI0hJAICO1YydEA4JrAxBb5h5HoFsnbFCi6Jv9jtb03p0b93N+MJGZ1lRUFIAVqXeh0NHAK4ng4AAA3rSURBVKxgmhQR8QHCgOMWLFt5iuLiUl0cK7j4KDedbvt3wu6Xz/6sMKfi+Yr37ydEA8MhKAKalrdiL3tBUniNe7UI4Od4BPiI2xcDpWrKioLwK9BRRNoBB4DxwA1lppkF3AqsAq4BFun5Aw9VmOfY+q6o90sFK/zcdDDFFc/X0cUxsNgXGkVDk/ZnH0s/p1eMY8XuH6oXJCllEacLgjGmUEQeAH6gpNvpB8aYLSLyHLDWGDMLeB/4SESSKNkzGO/scpUTjCnpqljpWOtlt+AdPwtOVTJjKbW17tg6bxxz9pb6ORcnnd3FcW0D2C1Xyl1Zch2CMWYeMK/Me0+Vep4LXGvFslQpp8dcr8ZgX70O74VNxb+v7Cvt4uh/9kVH4W0h6vyzD7eUHZY3sDH4h9X4giSllPvQK5XtZkzJMAA1GhfGMThYVWOu+4edWVkXeQdAZPtqDPYVDn4NdERNpRo4LQhWOWfM9Up6v5Tdgi815vo5vHzPvpo0pCW06F5hT5gz7wWEgffvv96NeihGKVUFLQhlnR5zvdITpb9/3v9EKqzOdXRxrIRfSKnhARpD884Vj95Y+ni7b5CeNFVKuUT9LAhnxlyvaKWeXvFnhbkVz/ecMdebc7IojMCYzuceeinb5bGaY64rpZRd3LsgnO7iWOVdkcq8n5tReRdH36Czt8abdqh89MbTA375BZ+ztb51yRJa6KEYpVQ94LYFISQrGZ5vXvEE4lVynLz0CrtJu3NPkJ5zc41w8PF33T9EKaU8hNsWhHzfMBj2WMWHYLSLo1JKWcptC0Kef1MY8le7YyilVIOhm9hKKaUALQhKKaUctCAopZQCtCAopZRy0IKglFIK0IKglFLKQQuCUkopQAuCUkopBy0ISimlAC0ISimlHLQgKKWUArQgKKWUctCCoJRSCnDj0U7LU1BQQEpKCrm5ldzVzMXCwsLYunWry5cbEBBAdHQ0vr56JzallDU8qiCkpKQQEhJCTEwM4ib3Gc7MzCQkJMSlyzTGcOzYMVJSUmjXrp1Ll62Uqr886pBRbm4uTZs2dZtiYBcRoWnTpm61p6SU8nweVRCABl8MTtN2UEpZzeMKglJKqbqhBUEppRTgZEEQkSYiskBEdjp+Nq5guiIRWe94zHJmmUoppeqGs3sIjwE/GWM6Aj85XpcnxxjT0/EY4+Qy3dK3337L3XffzdixY/nxxx/tjqOUUjXmbEEYC0x3PJ8OXOnk/DzWlVdeydSpU5k2bRpffPGF3XGUUqrGnC0ILYwxqQCOn80rmC5ARNaKyGoRqddF4/nnn+f++++3O4ZSStWYGGMqn0BkIRBZzkePA9ONMeGlpj1hjDnnPIKItDTGHBSR9sAiYLgxZlc5000AJgA0a9asz4wZM876PCwsjNjY2Kr/VXVs9OjRPPzwwwwbNoxnn32WrKwsXn75ZZ5++mni4+OJj493SY6kpCQyMjKqNW1WVhbBwcF1nMh5mtNamtM6npARID4+PsEY07dWXzbG1PoBbAeiHM+jgO3V+M404JqqpouLizNlJSYmnvOeHZYuXWouvvhi8/HHH5tLL73UFBYWmtdff9307t3b3HPPPeadd95xSY6atMfixYvrLoiFNKe1NKd1PCGjMcYAa00t1+nODl0xC7gVeNHx87uyEzh6HmUbY/JEJAIYDLzs5HJ5dvYWEg+edHY2Z+naMpSnr+hW5XRDhgzBGMOrr77K7Nmz8fb2ZtKkSUyaNMnSPEop5UrOnkN4ERghIjuBEY7XiEhfEXnPMU0XYK2IbAAWAy8aYxKdXK6tNm3aRGpqKv7+/i4fx0gppeqKU3sIxphjwPBy3l8L3OV4vhLo4cxyylOdLfm6kJqayo033sh3333HpEmTWLhwIePGjbMli1JKWUmvVK6B7OxsrrrqKl555RW6dOnCk08+yQsvvGB3LKWUsoRHDX9tt6CgIFatWnXm9ZAhQ/jpp59sTKSUUtbRPQSllFKAFgSllFIOWhCUUkoBWhCUUko5aEFQSikFaEFQSinloAVBKaUUoAVBKaWUgxYEpZRSgBYEt6S341RK2UELgpP+9a9/8e9//xuAQYMGnXl/8uTJdOnShRtvvPGs59Wht+NUStlBxzKy0MqVK888f/vtt5k/fz7t2rWjc+fOZ57XhN6OUynlSrqHUAv//Oc/6dSpE5dccgk7d+488/7p2+tNnDiR5ORkxowZg7+//5nnr7322jnzio+PZ8GCBQA88cQTTJo0CWMMjz76KJdffjm9e/d2zT9KKdXgee4ewvzH4NAma+cZ2QMuf7HSSRISEvj8889Zt24dhYWF9OzZkwEDBpw1zbvvvsv333/P4sWLiYiIICYm5szzsp599lmeeuop0tLSWLduHbNmzeKNN95g4cKFZGRkkJSUxMSJEy39ZyqlVHk8tyDYZPny5YwbN46goCAARo0a5dT8St+Oc8mSJXo7TqWUbTy3IFSxJV+XRMSyeZ2+HWdERITejlMpZSs9h1BDQ4YMYebMmeTk5JCZmcn8+fNrPa/St+Ns1KgRP/zwg4VJlVKqZrQg1FDv3r257rrr6NmzJ1dfffVZXU1rorzbcT7zzDPWhlVKqRrw3ENGNnr88cd5/PHHAcjMzDxzqCcrK+vMNHv27Cn3+Wnl3Y6z9GullHI13UNQSikFaEFQSinloAVBKaUU4IEFwRhjdwS3oO2glLKaRxWEgIAAjh071uBXhsYYjh07RkBAgN1RlFL1iEf1MoqOjiYlJYUjR47YHeWM3NxcW1bMAQEBREdHu3y5Sqn6y6MKgq+vb41HDK1rS5YsoVevXnbHUEoppzl1yEhErhWRLSJSLCJ9K5lupIhsF5EkEXnMmWUqpZSqG86eQ9gMXAUsq2gCEfEG3gIuB7oC14tIVyeXq5RSymJOHTIyxmyFKgd76wckGWOSHdN+DowFEp1ZtlJKKWu54hxCK2B/qdcpQP/yJhSRCcAEx8s8Edlcx9msEAEctTtENWhOa2lOa3lCTk/ICNCptl+ssiCIyEIgspyPHjfGfFeNZZS3+1Buv1FjzBRgimO5a40xFZ6XcBea01qa01qa0zqekBFKctb2u1UWBGPMJbWduUMK0LrU62jgoJPzVEopZTFXXJj2K9BRRNqJiB8wHpjlguUqpZSqAWe7nY4TkRRgIDBXRH5wvN9SROYBGGMKgQeAH4CtwAxjzJZqzH6KM9lcSHNaS3NaS3NaxxMyghM5paEPA6GUUqqER41lpJRSqu5oQVBKKQW4UUEQkf8VkW0islFEZopIeAXT2ToMRg2G69gjIptEZL0z3cBqy1OGFRGRJiKyQER2On42rmC6IkdbrhcRl3VKqKp9RMRfRL5wfP6LiMS4KlsNMt4mIkdKtd9drs7oyPGBiKRVdH2RlJjs+HdsFJHers7oyFFVzqEiklGqPZ+yIWNrEVksIlsd/8//VM40NW9PY4xbPIBLAR/H85eAl8qZxhvYBbQH/IANQFcX5+xCyYUfS4C+lUy3B4iwsT2rzOkm7fky8Jjj+WPl/d4dn2XZ0IZVtg9wH/Cu4/l44As3zHgb8Kar26+crEOA3sDmCj4fBcyn5NqlAcAvbppzKDDH5raMAno7nocAO8r5vde4Pd1mD8EY86Mp6ZEEsJqS6xXKOjMMhjEmHzg9DIbLGGO2GmO2u3KZtVHNnLa3p2N50x3PpwNXunj5lalO+5TO/xUwXKoYy8WGjG7BGLMMOF7JJGOBD02J1UC4iES5Jt3vqpHTdsaYVGPMb47nmZT04GxVZrIat6fbFIQy7qCkspVV3jAYZRvBXRjgRxFJcAzJ4Y7coT1bGGNSoeSPHGhewXQBIrJWRFaLiKuKRnXa58w0jg2aDKCpS9KVWb5DRb/Dqx2HDb4SkdblfO4O3OHvsboGisgGEZkvIt3sDOI4TNkL+KXMRzVuT5feD6E6w2CIyONAIfBJebMo5z3L+81aMFwHwGBjzEERaQ4sEJFtji0Py7hyWBFnVJazBrNp42jP9sAiEdlkjNllTcIKVad9XNKGlajO8mcDnxlj8kRkIiV7NMPqPFnN2d2W1fUb0NYYkyUio4BvgY52BBGRYOBr4M/GmJNlPy7nK5W2p0sLgqliGAwRuRX4AzDcOA6CleGSYTCqylnNeRx0/EwTkZmU7NpbWhAsyGl7e4rIYRGJMsakOnZn0yqYx+n2TBaRJZRsEdV1QahO+5yeJkVEfIAwXHu4ocqMxphjpV5OpeQcnTvyiGFuSq94jTHzRORtEYkwxrh04DsR8aWkGHxijPmmnElq3J5uc8hIREYCjwJjjDHZFUzmEcNgiEgjEQk5/ZySE+buOHKrO7TnLOBWx/NbgXP2bESksYj4O55HAINxzfDp1Wmf0vmvARZVsDFjW8Yyx43HUHK82R3NAm5x9I4ZAGScPpzoTkQk8vR5IhHpR8l69Fjl37I8gwDvA1uNMa9WMFnN29POM+VlzognUXK8a73jcbrnRktgXpkz5zso2Tp83Iac4yipvHnAYeCHsjkp6fGxwfHY4q453aQ9mwI/ATsdP5s43u8LvOd4PgjY5GjPTcCdLsx3TvsAz1Gy4QIQAHzp+PtdA7S3oQ2ryviC4+9wA7AY6OzqjI4cnwGpQIHjb/NOYCIw0fG5UHIzrV2O33OFvfhszvlAqfZcDQyyIeOFlBz+2VhqnTnK2fbUoSuUUkoBbnTISCmllL20ICillAK0ICillHLQgqCUUgrQgqCUUspBC4JSSilAC4JSSimH/wc2pUiKbq5sdQAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Computing roots of polynomials" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = sym.symbols('x')\npoly = 3*x**2 + 2*x - 1\n# in descending order of degree of variable 1. x^2 2. x 3. number\ncoeffs = [3,2,-1]\nroots = np.roots(coeffs)\nprint(roots)\ndisplay(Math('\\\\text{The root(s) of the polynomial }%s\\\\text{ are:}'%sym.latex(poly)))\ni = 1\nfor root in roots:\n display(Math('%s\\\\text{. root is }%.2f\\\\text{. Since }%s\\\\text{ with x = }%.2f = %.2f' %(i,root,sym.latex(poly),root,poly.subs({x:root}))))\n i = i + 1", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "[-1. 0.33333333]\n", | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The root(s) of the polynomial }3 x^{2} + 2 x - 1\\text{ are:}$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle 1\\text{. root is }-1.00\\text{. Since }3 x^{2} + 2 x - 1\\text{ with x = }-1.00 = 0.00$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle 2\\text{. root is }0.33\\text{. Since }3 x^{2} + 2 x - 1\\text{ with x = }0.33 = -0.00$" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import sympy as sym\nimport sympy.plotting.plot as splot\nimport cmath as cm\nimport numpy as np\nfrom IPython.display import display, Math\nimport matplotlib.pyplot as plt\nfrom matplotlib.patches import Circle, Wedge, Polygon\nimport matplotlib as mpl\n# ----------------------------------------------------------------------- #\n \nx, y = sym.symbols('x y')\n \nexpr_set= [x**3,\n x**4,\n 3*x**4 - 8* x**3 - 37* x**2 + 2*x + 40,\n 37* x**2 + 2*x + 40,\n x**2 + 3*x + 4 \n ]\n \ndef SolveForY(y):\n yPol = sym.Poly(y, x)\n coefs = yPol.all_coeffs()\n coefs.sort(reverse=True)\n display(Math(sym.latex('\\\\text{The Coefficients for } %s \\\\text{ are }%s' %(sym.latex(y),sym.sympify(coefs)))))\n roots = np.roots(coefs)\n display(Math(sym.latex('\\\\text{The number of roots are } %g ' %(sym.sympify(len(roots))))))\n display(Math(sym.latex('\\\\text{It solves to: } %s' %(sym.latex(sym.solve(y))))))\n \n p = splot(y, show=False )\n p.title = r'$ %s $' %sym.latex(y)\n p.show()\n \nfor expr in expr_set:\n SolveForY(expr)", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The Coefficients for } x^{3} \\text{ are }[1, 0, 0, 0]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The number of roots are } 3 $" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{It solves to: } \\left[ 0\\right]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD7CAYAAACRxdTpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1xVVf7/8deGI4iKKCgIHC/AQeQqKXipxtIkUwuzzMtYWlqU1di3bJpmpovNt9Kmml9NNirfmlJLKZsSp0hNrdFMRVAs8UZcFI4oKKAi13NYvz/IM5rglXPh8Hk+HjyEvffZ+3M28Ga59tpra0ophBBCOBcXexcghBCi5Um4CyGEE5JwF0IIJyThLoQQTkjCXQghnJCEuxBCOCEJdyGEcEI6excghL1omuYHfAHUA2ZgqlKq2L5VCdEyNLmJSbRVmqa5Akop1aBp2v2AXin1sp3LEqJFSMtdtFlKKfM5X3oC2faqRYiWJuEu2jRN02KBxUAX4FY7lyNEi5FuGSEATdMmAiOUUo/YuxYhWoKMlhFOT9O0v2qa9sU5X7+uadoGTdPcz9nsJFBl++qEsA5puQunp2maD5AL3AwMAR4DbgQigNdoHClTA8yQ0TLCWUi4izZB07S5wF2AF3CjUqrQvhUJYV3SLSPail1ANPBHCXbRFkjLXTg9TdOigbXAOhrHso+0c0lCWJ203IVT0zQtEPg38AjwKBCtadrNdi1KCBuQcBdOS9O0zkAa8Del1GqlVBXwOvCKfSsTwvqkW0ZckqZpvsANQABQDewBMpRSDXYtTAjRLAl30SxN04YDzwLeNF6QLAHaA32BEOAz4E2l1Cm7FSmEaJKEu2iWpmmvA+8opQ43sU4H3A64KqX+ZfPihBAXJeEuhBBOSC6oikvSNG2Zpmle53zdR9O0DfasSQhxcRLu4nJ8D2zXNG2MpmkP0The/C071ySEuAhrdstIf48T+f777xk+fDjdunVj165d9OjRw94lCeGstJbYibTcxSUtW7aMGTNmsHTpUu6//37GjBnD7t277V2WEOIipOUuLunOO+8kOTkZX19fANLT03n44YfZtWuXnSsTwim1SMtdwl1clbq6Otzc3OxdhhDOSLplhHW9/PLLlJWVNbnOzc2NjRs38uWXX9q4KiHE5ZBnqIpmRUdHc8cdd9C+fXsGDBhA9+7dqampIScnh6ysLEaOHMmf/vQne5cphGiCdMuIZt13330sW7aMv/71r/j6+lJcXIyHhwfh4eEMGzYMDw8Pe5cohDOSbhlhXZmZmRw6dIiPP/6YxMREHn74YaZNm0Z8fDzV1dXXvP8ZM2bg6+tLVFSUZVlZWRkJCQmEhoaSkJBAeXk5AEopZs+ejcFgICYmhp07d1pes2TJEkJDQwkNDWXJkiXXXJcQzkBa7qJZf//731m4cCF5eXkEBgZaliul0DSNvLy8a9r/pk2b6NSpE9OmTWPPnj0APPPMM3h7e/Pss88yf/58ysvLee2110hLS+Odd94hLS2N7du388QTT7B9+3bKysqIi4sjIyMDTdMYOHAgmZmZdO3a9ZpqE8KOWqTljlLKWh/CSTzyyCNW23d+fr6KjIy0fN23b1915MgRpZRSR44cUX379lVKKZWUlKSWL19+wXbLly9XSUlJluW/3k6I1qS23qxUC2WwdMuIS1q4cKHNjnXs2DH8/f0B8Pf3p6SkBACj0UjPnj0t2+n1eoxGY7PLm5KcnExcXBxxcXFERkZa8V0IceWUUtz73vYW25+Eu2gVVBPdh5qmNbu8KUlJSWRkZJCRkSEXg4XDWb37COkFTQ89vhoS7sKh+Pn5UVxcDEBxcbHlrli9Xk9hYaFlu6KiIgICAppdLkRrUlVnYv7X+4kM6Nxi+5RwFw4lMTHRMuJlyZIljBs3zrJ86dKlKKXYtm0bXl5e+Pv7M2rUKNatW0d5eTnl5eWsW7eOUaNG2fMtCHHFFv0nj+KTNcxNbLnuQrmJSdjNlClT+O677zh+/Dh6vZ6XXnqJZ599lokTJ/L+++/Tq1cvVq5cCcCYMWNIS0vDYDDQoUMHPvjgAwC8vb15/vnniY+PB+CFF17A29vbbu9JiCtVVF7F4v/kktg/gPg+LfezK0MhRZt0dvikEPb22Mc72bD/GBvn3ExAFw+Qm5iEEKJ125Z3gq9+KubRmw1ng73FSLgLIYQdmMwNLP2hgPAeniQNC27x/Uu4CyGEHXz4QwFpe44y+5ZQ2rdzbfH9S7gLIYSNHT1Zw//75iDDw7pzW5R1Hlkp4S6EEDb2v1/txdSgeCkxqtmb7q6VhLsQQtjQ5pxSvvqxmMeGG+jl08Fqx5FwF0IIG6k1mXkhNZugbh2tchH1XHITkxBC2MiHWwrIP36GpTMGWeUi6rmk5S6EEDaQW1rJm+sO8OCNQQzr293qx5NwF0IIK2toUPzxXz/Rvp0rSTdZtzvmLAl3IYSwshU7DpNeUMZzYyPw9Wxvk2NKuAshhBUdPVnD/LT9XB/iwz1xepsdV8JdCCGsRCnFc6v2UGduYN5d0VYb094UCXchhLCSr/ccZf2+YzyV0JfePh1temwJdyGEsILyM3Us3VpAVGBnZt4YZPPjS7gLh3PgwAFiY2MtH507d+att95i7ty5BAYGWpanpaVZXjNv3jwMBgNhYWGsXbvWjtUL0eiF1dlkFpTzxoT+6FxtH7XysA7h0MxmM4GBgWzfvp0PPviATp068fTTT5+3zd69e5kyZQrp6ekcOXKEkSNHcvDgQVxdm79JRB7WIazpqx+LeWz5TuYk9OV3t4Re6cvlYR3C+W3YsIGQkBB69+7d7DapqalMnjwZd3d3goKCMBgMpKen27BKIf6r9HQtz636iRi9F7NuDrFbHRLuwqGlpKQwZcoUy9cLFiwgJiaGGTNmUF5eDoDRaKRnz56WbfR6PUaj0ea1CqGU4s9f/MSZOjNv3mOf7pizJNyFw6qrq2P16tXcc889AMyaNYvc3FyysrLw9/dnzpw5QOMv1K81NeQsOTmZuLg44uLiKC0ttW7xok1alWVk3d5jPH1rX0L9PO1ai4S7cFhff/01AwYMwM/PDwA/Pz9cXV1xcXHhoYcesnS96PV6CgsLLa8rKioiICDggv0lJSWRkZFBRkYG3btbf24P0bYcqajms8wi4np3ZeaNtpli4GIk3IXDWrFixXldMsXFxZbPv/jiC6KiogBITEwkJSWF2tpa8vPzycnJYdCgQTavV7Rd5gbFk59kkXW4gjcn9sfVxXY3KzVHpvwVDqmqqopvvvmGxYsXW5Y988wzZGVloWkaffr0sayLjIxk4sSJREREoNPpePfddy86UkaIlrboP7lszy/jjXv62/xmpebIUEjRJslQSNFSsgormLDwB26L6sE7U65riSkGZCikEELYU2WtiSdSduHXuT2vjLft3DGXIt0yQghxlV5MzaawrIqUpKF4ebSzdznnkZa7EEJchbQfi/n2wDEeG25gUJC3vcu5gIS7EEJcodzSSn7/2W7667sw+8qnF7AJCXchhLgCVXUmZn2UiXs7V169K5p2drwL9WKkz10IIS7T2Ydv5JRUsnTGIPy9POxdUrMc80+OEEI4oE92FPL5TiOzR4Tym1DHvstZwl0IIS5D9pGTvLA6mxsN3Ry2n/1cEu5CCHEJFWfqePSjnXh3cOPtybEOMb3ApUifuxBCXIS5QfE/n2bh6+nOM7eF4dPJ3d4lXRZpuQshxEW8tmY/3x0o5c4BgcQH+di7nMsm4S6EEM34V2YRyZvymDa0N1MHN/80MEck4S6EEE3YebicP37+E0ODfXj+9gh7l3PFJNyFEOJXik9W8/CyTHp4tecfUwc47I1KFyMXVIUQ4hzVdWaSlmZSVWvi4wcH07Wjm71LuioS7kII8QulFHP/nc2eIyf5v/vi6Gvn56Bei9b3fw3RJvTp04fo6GhiY2OJi4sDoKysjISEBEJDQ0lISKC8vBxo/IWcPXs2BoOBmJgYdu7cac/SRSv217UHWJd9lBdvj2RkhJ+9y7kmEu7CYX377bdkZWVZnpg0f/58brnlFnJycrjllluYP38+0Pgg7ZycHHJyckhOTmbWrFn2LFu0Uku3FrDwu1xGR/sz/frWNTKmKRLuotVITU1l+vTpAEyfPp1Vq1ZZlk+bNg1N0xgyZAgVFRXnPUxbiEtZs+coL67OZmS4L39JjHSoJypdLQl34ZA0TePWW29l4MCBJCcnA3Ds2DH8/f0B8Pf3p6SkBACj0UjPnj0tr9Xr9RiNRtsXLVqljIIynkjZRX99F96ZMgBdKxwZ0xS5oCoc0pYtWwgICKCkpISEhAT69evX7LZNPeS9qZZXcnKy5Q9FaWlpyxUrWq2fS04zc0kGAV08+Of98Xi4udq7pBbjHH+ihNMJCAgAwNfXl/Hjx5Oeno6fn5+lu6W4uBhfX1+gsaVeWFhoeW1RUZHl9edKSkoiIyODjIwMund37OlahfUdqajm5S/30c5VY8kDg/BupUMemyPhLhzOmTNnOH36tOXzdevWERUVRWJiIkuWLAFgyZIljBs3DoDExESWLl2KUopt27bh5eVl6b4Roiklp2qY+t52dhWWs2TGIHr5dLB3SS1OumWEwzl27Bjjx48HwGQy8dvf/pbbbruN+Ph4Jk6cyPvvv0+vXr1YuXIlAGPGjCEtLQ2DwUCHDh344IMP7Fm+cHAnKmuZ+t52jp2qYdnMQUQGeNm7JKvQmuqvbCFW27EQ1youLs4yxFK0HSer6pnyf9vILa3kwwcGMTTEIWd5bJGhOtItI4RoE07X1DPtg3R+LqkkeVqcowZ7i5FwF0I4vTO19cz4cAfZxpO8O3UAN/V1/gvqEu5CCKd2uqaeh5ZlUl1n5q3JsSS08mkFLpeEuxDCaZWfqWPqe9tJzyvj4ZuCuT3mwiGyzkpGywghnFLJqRrufX87BSeqWHzfQG4Jbxst9rMk3IUQTqeovIp739tOyelaPrw/nusN3exdks1JuAshnEpeaSX3vredyloTHz04mAG9utq7JLuQcBdCOI1s40nu/3AHDQ2KlKShRAR0tndJdiPhLoRwCt8eKOHxj3dyvcGHZ0eHE9K9k71LsisJdyFEq/fRtkO8uDqbfj08efnOaPw6t7d3SXYn4S6EaLUaGhTz1+wneVMeI/r58s6U6+joLrEGEu5CiFaqus7EU5/u5us9R7lvSG9evCPCaR600RIk3IUQrY6xoprZK3ZSdqae58aGM/PGIKd4NF5LknAXQrQqP+Qe5/Hlu6g3NfDW5Ng2d3PS5ZJwF0K0Ckop3v8+n3lf7yeoW0cW3zewzY+IuRgJdyGEw6usNfH6mv0s2XqI2yJ78MbE/nSSC6cXJVcfhMMpLCxk+PDhhIeHExkZydtvvw3A3LlzCQwMJDY2ltjYWNLS0iyvmTdvHgaDgbCwMNauXWuv0oUV/FhUwdi/b+arH4v505h+LLx3gAT7ZZAzJByOTqfjzTffZMCAAZw+fZqBAweSkJAAwJNPPsnTTz993vZ79+4lJSWF7Oxsjhw5wsiRIzl48CCurs7zJPu2qKGhsRvmr2v3072TO/+4dyCDgrztXVarIeEuHI6/v7/lAdeenp6Eh4djNBqb3T41NZXJkyfj7u5OUFAQBoOB9PR0hg4daquSRQsrPV3LnJW72XSwlFGRfrx2dwxdOrjZu6xWRbplhEMrKChg165dDB48GIAFCxYQExPDjBkzKC8vB8BoNNKzZ0/La/R6fZN/DJKTk4mLiyMuLo7S0lLbvAFxxdbsOcr/pOxie94JXr4zikX3DpRgvwoS7sJhVVZWcvfdd/PWW2/RuXNnZs2aRW5uLllZWfj7+zNnzhygcRTFrzU15jkpKYmMjAwyMjLo3t35H7PW2hyvrOWxj3fyyEeZmJVi9eM3cu+Q3jJ+/SpJt4xwSPX19dx9991MnTqVu+66CwA/v/+OZ37ooYe4/fbbgcaWemFhoWVdUVERAQFt54k7rZ1SitW7jzB3dTZnas08fWtfHr4phHZyt+k1kbMnHI5SipkzZxIeHs5TTz1lWV5cXGz5/IsvviAqKgqAxMREUlJSqK2tJT8/n5ycHAYNGmTzusWVO3qyhoeWZvBESha9fTry1ewbeXxEqAR7C5CWu3A4W7ZsYdmyZURHRxMbGwvAq6++yooVK8jKykLTNPr06cPixYsBiIyMZOLEiURERKDT6Xj33XdlpIyDqzM1sHRrAd8eKCHzUDnPjQ3ngRuCcHWRLpiWojXVX9lCrLZjIa5VXFwcGRkZ9i6jTfruQAl/+XIveaVnSAj35c9jw+nTTe40PUeL/IWTlrsQwibyj5/hf7/cy8b9JQR168g/749jRD+ZF8ZaJNyFEFZVUVXHkh8KWPDtz7jrXPnTmH7cf30QbjrpV7cmCXchhFWcrqnn/e/zeX9zPt093Rl/XSBPjwrD11OekmQLEu5CiBZVVWdiyQ+HWLwpl4qqekZH9eDJhL709fO0d2ltioS7EKJFVFTV8dG2Q+woKOc/B0sZHtadpxLCiNZ72bu0NknCXQhxTYrKq3j/+3w+2VFIVZ2ZhHBf/vXIUAb2kUm+7EnCXQhxxZRS7DxcwRe7iliRXogGJMYGkDQsmH49Otu7PIGEuxDiCpyqqWfVLiPLtx9m/9HT3Gjoxowb+vDADUEEdPGwd3niHBLuQoiLOttK/3RHIat3H6G63kxUYGdeHR9NYmyAPDjDQcl3RQjRpJxjp0nNOsLq3UcoKq/C38uDxP4BTB3Sixh9F3uXJy5Bwl0IATS20H8uqWTLz8f5JKOIfcWncNHgBkM3Zt8SyqhIPzzbt7N3meIySbgL0YbVmRrYUVDG+n3H2LCvhMNlVRi6d8LTQ8fcOyIYGxNAd093e5cproKEuxBtiFKK3NJKtuae4OCx06zadYTTtSbcdC7cEOJD0rBgRvTzlYujTkDCXQgnZm5Q5JScJvNQOVtzT7Atr4zjlbUA9OvRiTHR/twS7suNod3o4CZx4EzkuymEk1BKcehEFbuLKvix6CQ/FlWwx3iK6nozYX6dqKiu50aDD0OCfRga4kMv7w7yCDsnJuEuRCvT0KA4eqqGnJJKco6dJudYJQdLTnO6pp6fS84A4K5zITKgM5Pie9K/pxcDenWVMG9jJNyFU1izZg1PPPEEZrOZBx98kGeffdbeJV21enMDxytrOXqyhpJTtRRVVFNYVsXhXz4Ky6qIDvQi41A5AD4d3Qj160RMSDcevDGYaL0Xff085VF1bZw8iUm0emazmb59+/LNN9+g1+uJj49nxYoVRERENPsaaz+JSSlFdb2ZyloTVbW//FtnprK2npNV9Zysrqe8qp6KqjrKq+opr6qjS4d2bM0t48SZWs7+WnZyc6Wyzkwndx29vDs0fvh0IKyHJ4FdPAj17YRPJxnN4mRa5L9XEu7CLmrrzZypM1NZY6Ky1kRlbT1n6szU1puprjdTXddAg2rgVI2Jdi4aFdX11JsbqDcrzA0KDXDRNNzauWAsMrLlh61MuPtulAY7tm8DYED8YHQuGier63F10XDRNMrO1AHwrxfuY+q8j6kzKXSuGm46Fzq0cwVNw2xuoH07F+rMDSil/XLcBtx0Lhw6UYVPJzeOVNQAja3m/ONn6O3TgT3GU9SazNTUmzE1KOrNTf8KeLi5Ul1nBqBzex1dO7rRpYMb0YGdMZkVvp3b06Nze/w6u+PXuT0BXu3p2tFNulTaDscO98jISOXh4fjDqUpLS+nevbu9y7ik1lCnuUFRcvwEnTp3wdTQGMQmcwOKxvHUpobGYDY3KNq3c6Hql4BrTjtXF+rNDbTXuVBragBA0zQ0DXS/hLXOVaO+vh5TvYmOHTsAUFdbi8lkokPHjmhAvVmhaVBfV0etqfGY9eXFeAUE0aAaf5NcXTTLw5mVAlcXLK3ns78hLlrj+2jn6oKpQTUe30XDrBTtXF0wNyhctMYaXbTGPz4uLhqu53zuommWY7m6aJf8LW4N33doHXW2hhoBMjMzs5VSUde6H6v1uXt4eLSKBxC3lgclO0KdDQ2KovJqfi49zeGyKg6dqKKovLE/2FhezelaE+0rS6jt5AuAC+DjriOuT1dOVtfTtUNjC7Vrh3YEdvVAAzq1b0cnd1c6ubfDw82VDm6utG/nikc7V9zbueDRzhU3VxdcXJqPwZUrV7J27Vree+89AJYtW0Z6ejrvvPNOs6/p2LEj5Yf2t+TpsQpH+L5fjtZQZ2uoEUDTtJqW2I9cUBVNOl5Zy0/GkxSeqCLjUDk/l1SSW1ppaUH38u7A8cpaenbtgL6rB0OCfdB39eDtV1bwwaK/4+vZnu6e7ni4uVq9Vr1eT2FhoeXroqIiAgICrH5cIRyZhLvgdE09PxZVkFFQwU/Gk+wxnuToqcbGQ4zeixOVdYT6deL6EB8Mvp0w+HYiqFtHvJvoB150fD9xNn5IQ3x8PDk5OeTn5xMYGEhKSgrLly+3aQ1COBqrhXtSUpK1dt2i2mKd5WfqSC8oIz2/8SP7yEk82rlSXW8mqFtHhgR7ExXoRXSgFxEBna9osih7nE+dTseCBQsYNWoUZrOZGTNmEBkZedHXdOvWzUbVXZu2+PNpLa2hxl8kt8ROZLRMG2AyN7CrsIKN+0v4+Vgl3+w7BjTe6HJdry4MCvJhcJA30YGd6ezhZudqbaO19L+KNqlFRstIt4yTOllVz8YDx9i4v5RNB0s5WV2PzkVjUJA3c27ty5BgH2L0XrjrrN8nLoSwPQl3J3Km1sT6fcdIzTrCttzjoGl0cHMlIcKP4WG+/KZvNzrLfNxCtAnXdH+ypmn3aJqWrWlag6ZpceeumzdvHgaDgbCwMNauXdvk6/Pz8xk8eDChoaFMmjSJurq6aynnskyaNInY2FhiY2Pp06cPsbGxTW7Xp08foqOjiY2NJS4ursltrGnu3LkEBgZaak1LS2tyu3+nfY3hprsImvq/9H/xa55IyWJf8SnuHdqH5Q8OJv1PI3njnv6MjfG3SrD//ve/p1+/fsTExDB+/HgqKiqa3M5e53PNmjWEhYVhMBiYP3/+Betra2uZNGkSBoOBwYMHU1BQYLPaAAoLCxk+fDjh4eFERkby9ttvX7DNd999h5eXl+Vn4S9/+YtNazzrUt9DpRSzZ8/GYDAQExPDzp07bV7jgQMHLOcpNjaWzp0789Zbb523jb3O54wZM/D19SUq6r9D2MvKykhISCA0NJSEhATKy8ubfK2madM1Tcv55WP6ZR1QKXXVH0A4EAZ8B8SdszwiJiZG1dTUqLy8PBUcHKxMJpP6tXvuuUetWLFCKaXUww8/rP7xj39csI01PfXUU+qll15qcl3v3r1VaWmpTes514svvqhef/31ZtfvKz6p5q7+SfV+YoXq/YcvVf+X1qrQKc+rlI0ZymxusFmda9euVfX19UoppZ555hn1zDPPNLmdPc6nyWRSwcHBKjc3V9XW1qqYmBiVnZ2tlFJq4MCBSiml3n33XfXwww8rpZRasWKFmjhxok1rPHLkiMrMzFRKKXXq1CkVGhpqqfGsb7/9Vo0dO9amdTXlUt/Dr776St12222qoaFBbd26VQ0aNMiG1V3IZDIpPz8/VVBQcN5ye53P//znPyozM1NFRkZalv3+979X8+bNU0opNW/evLO/P7/OWW8g75d/u/7yeddfb/frj2tquSul9imlDjSxatzkyZNxd3cnKCgIg8FAenr6BX9UNm7cyIQJEwCYPn06q1atupZyrohSik8//ZQpU6bY7JjXqtZkJjXLyISFP3DbW5v5aOshupzK5YMH4tnx55E8EO1B3rZ1F73hp6Xdeuut6HSNvXtDhgyhqKjIZse+lPT0dAwGA8HBwbi5uTF58mRSU1PP2yY1NZXp0xsbQhMmTGDDhg1nf6Fswt/fnwEDBgDg6elJeHg4RqPRZsdvSampqUybNg1N0xgyZAgVFRUUFxfbrZ4NGzYQEhJC79697VbDuYYNG4a39/nDhM/9+btIBo4CvlFKlSmlyoFvgNsudTxrTRsX2LNnT8sXer3+gh/YEydO0KVLF0swNLWNNW3evBk/Pz9CQ0ObXK9pGrfeeisDBw4kOblFRiZdsQULFhATE8NvH3yMV1bv5vp5G3kiJYvjlbX8eUw4z8VUE+eSz/AwX9q5utj8HP7aP//5T0aPHt3kOnucT6PRyKV+Ds/dRqfT4eXlxYkTJ2xS368VFBSwa9cuBg8efMG6rVu30r9/f0aPHk12drYdqrv09/ByzrctpaSkNNt4c4TzCXDs2DH8/f2Bxj/0JSUlTW0WCBSe83XRL8su6pIXVDVNWw/0aGLVn5VSqU0shyaG8vz6ZpemWkctNTHSyJEjOXr06AXLX3nlFcaNGwfAihUrLtpq37JlCwEBAZSUlJCQkEC/fv0YNmxYi9R3OXXOmjWL3z7yJMmb8/k8s5Ds73YxODaK+4b25oaQbri4aKxcmXnBa60xudTlnM9XXnkFnU7H1KlTm9yHLc7nr13Oz5g1fw6vRGVlJXfffTdvvfUWnTt3Pm/dgAEDOHToEJ06dSItLY0777yTnJwcm9d4qe+ho5xLgLq6OlavXs28efMuWOco5/MKNHUSL/nfy0uGu1Jq5FUUU3Sp28G7detGRUUFJpMJnU7XoreMr1+//qLrTSYTn3/+OZmZF4bjWWdr8fX1Zfz48aSnp7d4GDVX5+7CCl5cl8vavUdx17kwLqoba97+K8l/23zedra67f5S53PJkiV8+eWXbNiwodlfZlucz1+7nPNzdhu9Xo/JZOLkyZMX/NfZ2urr67n77ruZOnUqd9111wXrzw37MWPG8Oijj3L8+HGb34h1qe+hI00D8fXXXzNgwAD8/PwuWOco5xPAz8+P4uJi/P39KS4uxtfXt6nNioCbz/laT+N1zouyVrfM6pSUFGpra8nPzycnJ4dBgwadt4GmaQwfPpzPPvsMaAyIs61Aa1u/fj39+vVDr9c3uf7MmTOcPn3a8vm6devOu8JtLT8VneTx5Tu5e+EPbPm5lN8NN7DlDyPoVbqN/iEX/i/s3Nvu6+rqSElJITEx0ep1nmvNmjW89tprrF69mg4dOjS5jbh92wEAABFxSURBVL3O5+Wcn8TERJYsWQLAZ599xogRI2za2lRKMXPmTMLDw3nqqaea3Obo0aOWVnF6ejoNDQ34+PjYrEa4vO9hYmIiS5cuRSnFtm3b8PLysnQ52NrF/mfuCOfzrHN//i6SgWuBWzVN66ppWlfg1l+WXdylrrhe7AMYT+NflVrgGLD27LqXX35ZBQcHq759+6q0tDTL1eHRo0cro9GolFIqNzdXxcfHq5CQEDVhwgRVU1NzjdejL8/06dPVwoULz1tmNBrV6NGjLXXFxMSomJgYFRERoV5++WWr1pNXWqke/ThT9f7Dlyr2pbXqwy35avJ996uoqCgVHR2t7rjjDnXkyJEL6lSqcYRCaGioCg4OtnqdTQkJCVF6vV71799f9e/f3zLyxJ7n81xNnZ/nn39ehYSEKKWUqq6uVhMmTFAhISEqPj5e5ebm2qw2pZTavHmzAlR0dLTlHH711Vdq4cKFlp/Rd955R0VERKiYmBg1ePBgtWXLFpvWqFTz38Nz62xoaFCPPvqoCg4OVlFRUWrHjh02r1Mppc6cOaO8vb1VRUWFZZkjnM/JkyerHj16KJ1OpwIDA9V7772njh8/rkaMGKEMBoMaMWKEOnHihFKN2RoHvKf+m7UzgJ9/+XhAXUY+y/QDdnTsVA1vb8jhkx2FuOtcePDGIB4cFiw3GtmATD8gHJhMP9BaVdWZWL79MG+sO4C5QXHv4F48PiKU7p7yuDQhRMuQcLchpRRrs4/yl3/v5eipGibF92TWTQZ6+TTdVy2EEFdLwt1G8kormfvvvWw6WEq/Hp68Nfk6BgXZdlSGEKLtkHC3spp6M8u2HuL1tQdw17nwwu0RTBvaG52rtQYqCSGE9YZCCmDX4XJuf+d73tucx+39/dnw9E3MuDFIgv0impuIrKCgAA8PD8tkT4888ojlNZmZmURHR2MwGJg9e7ZNpw8QwlFJylhBTb2ZeV/v4+6FP3Cm1sRrE2L428RYfD3b27s0h5eQkMCePXv48ccf6du373l3GIaEhJCVlUVWVhaLFi2yLJ81axbJycnk5OSQk5PDmjVr7FG6EA5Fwr2F/WQ8ydi/b2bxf/KYFN+TtU8O4+awJu86E0240onIiouLOXXqFEOHDkXTNKZNm2bTCeiEcFQS7i3E3KBYsDGHOxd8T0AXD5bOGMS8u2JkzPo1+PVEZPn5+Vx33XXcdNNNbN7cOBWD0Wg8705je09WJcTV2rFjBzExMWia1l7TtI6/PCvjqm/llguqLaD4ZDVPfpLFtrwy7ugfwCvjoyTUL+JqJiLz9/fn8OHD+Pj4kJmZyZ133kl2dvYVTVaVnJxsmc2wtLS0pd6OEC0iPj6exMREfvrpp5cBD+AjpdSeq92f3KF6jTbuP8aTn+ym3tzAS4mRTBiot9tMeM5iyZIlLFq0iA0bNjQ7X83NN9/MG2+8QWBgIMOHD2f//v1A45wi3333HYsXL77oMeQOVeGI6urqcHd3/xGoAa5XSpmvdl/SLXOVTOYG5n29j9+v/JEI/858+bsbuSeupwT7NWpuIrLS0lLM5saf87y8PHJycggODsbf3x9PT0+2bduGUoqlS5fabAI6IVpaWVkZQCfAE7imERjSLXMVSk/XMnvFLrbmnWDq4F68cEcE7jpXe5flFB5//HFqa2tJSEgAGi+qLlq0iE2bNvHCCy+g0+lwdXVl0aJFlql5Fy5cyP333091dTWjR49u9oEhQji6pKQkgOeBIOA14PGr3Zd0y1yhnYfKefTjnZRX1fHq+GjuHtj0tMHCsUm3jHA0S5cuZdWqVXz++eeapmmuwA/AH5VSG69mfxLuV2BlRiEfbCmg1mTm71OuIzLAy94liask4S4cmMwKaSvmBsVf1+xn8aY8bjD48M6UwXh3dLN3WUII0SwJ90uorDXxPylZrN93jKmDezE3MZJ2Mn2AEMLBSbhfxLFTNbyato+N+4/xUmIk04b2ltEwQohWQcK9GT+XVDL9n+mcrKrjwwcGMaxvd3uXJIQQl03CvQmZh8qZuWQHOheNlIeHEhUoF06FEK2LhPuvbNh3jMeW76RH5/YsmTGI3j4d7V2SEEJcMQn3c3y+s4jl2w/T18+Tf94fT7dO8kxTIUTrJMM+frF8+2HmrNyNu86F5Q8OlmAXQrRq0nIH3tucx8tf7WN4WHcW3juQ9u1kKgEhROvW5sP9wy0FvPzVPkZH9eDtydfhppP/zAghWr82He7vfvszb647wIwbgvjTmH7ybFMhhNNos2mWvCmX19ce4I7+Afx5bLgEuxDCqbTJRHv/+3xeTdvP7TH+vHlPf1xd5K5TIYRzaXPh/smOQt5cd4Ax0T14a1KstNiFEE6pTSVbapaRZz//kbEx/rw9+ToJdiGE02oz6fbdgRLmfLqb+D7e/O+4KJnZ0UHNnTuXwMBAYmNjiY2NJS0tzbJu3rx5GAwGwsLCWLt2rWX5mjVrCAsLw2AwMH/+fHuULYTDaROjZTIPlfPIR5n09fPkvelxMo7dwT355JM8/fTT5y3bu3cvKSkpZGdnc+TIEUaOHMnBgwcBeOyxx/jmm2/Q6/WWJ8hHRETYo3QhHIbTh/uBo6eZ8eEOy1wxndu3s3dJ4iqkpqYyefJk3N3dCQoKwmAwkJ6eDoDBYCA4OBiAyZMnk5qaKuEu2jyn7ps4UlHF9H+m465zYdnMwXT3lCkFWoMFCxYQExPDjBkzKC8vB8BoNNKzZ0/LNnq9HqPR2OzypiQnJxMXF0dcXBylpaXWfRNC2JnThvvJ6nqm/3MHIb4dWTZzMD29O9i7JPGLkSNHEhUVdcFHamoqs2bNIjc3l6ysLPz9/ZkzZw4ATT3rV9O0Zpc3JSkpiYyMDDIyMujeXebnF87NKbtl6s0NPPbxTgpOnOEv46II6+Fp75LEOdavX39Z2z300EPcfvvtQGOLvLCw0LKuqKiIgIAAgGaXC9GWOV3LXSnFc1/s4fufjzPvrhiGhvjYuyRxBYqLiy2ff/HFF0RFRQGQmJhISkoKtbW15Ofnk5OTw6BBg4iPjycnJ4f8/Hzq6upISUkhMTHRXuUL4TCcruW+6D95fJJRyO9GGJgwUG/vcsQVeuaZZ8jKykLTNPr06cPixYsBiIyMZOLEiURERKDT6Xj33XdxdW0c9bRgwQJGjRqF2WxmxowZREZG2vMtCOEQtKb6LFuI1XbcnLSfinn0453c0T+Av0+OlYdZi2bFxcWRkZFh7zKEaEqLBJfTdMvsMZ5k4Xc/c1Pf7rw+IUaCXQjRpjlFt8yJyloeXpaJUooPHhgkNykJIdq8Vh/u9eYGHl++i+OVtXz2yPXyeDwhhMAJwv3VtH1szTvB3yb2J1rvZe9yhBDCIbTqPvfPMov4YEsBM28M4q4BMjJGCCHOarXhnm08yZ+++InrQ3z44+h+9i5HCCEcSqsM94qqOpKWZfKb0G4s+O0AmZddCCF+pdWlYkODYs6nuyk5XcPjww14d3Szd0lCCOFwWl24/9/mPDbsL+FPY8K5rldXe5cjhBAOqVWF+46CMv669gCjo3pw//V97F2OEEI4rFYT7mVnavnd8l3ou3rwmtyBKoQQF9Uqxrkrpfj9yt306daB58ZGyNOUhBDiElpFy/3j7YfZsL+UhIgeRAXKjUpCCHEpDh/uP5ec5uWv9jKsb3cekH52IYS4LA4d7rUmM7NXZNHBTccbE2JwcZF+diGEuBwO3ef+t3UH2Vt8iv+bFodv5/b2LkcIIVoNh225b/n5OIs35TF1cC8SIvzsXY6wkUmTJhEbG0tsbCx9+vQhNjYWgIKCAjw8PCzrHnnkEctrMjMziY6OxmAwMHv27CYfmi1EW+OQLffyM3U89WkWId078tzYCHuXI2zok08+sXw+Z84cvLz+ewE9JCSErKysC14za9YskpOTGTJkCGPGjGHNmjWMHj3aJvUK4agcsuX+/9YfxF3nytuTr8PDTR680RYppfj000+ZMmXKRbcrLi7m1KlTDB06FE3TmDZtGqtWrbJRlUI4LocL969+LGbp1kPcE6eXYY9t2ObNm/Hz8yM0NNSyLD8/n+uuu46bbrqJzZs3A2A0GtHr/zvds16vx2g0NrnP5ORk4uLiiIuLo7S01LpvQAg7c6humeOVtTyfuocYvRezbgqxdznCSkaOHMnRo0cvWP7KK68wbtw4AFasWHFeq93f35/Dhw/j4+NDZmYmd955J9nZ2U32rzd393JSUhJJSUlA4wOyhXBmDhXuL6TuobLGxBv39JdpfJ3Y+vXrL7reZDLx+eefk5mZaVnm7u6Ou3vjIxQHDhxISEgIBw8eRK/XU1RUZNmuqKiIgIAA6xQuRCviMAn65Y9HSPvpKE+MDKWvn6e9yxF2tH79evr163ded0tpaSlmsxmAvLw8cnJyCA4Oxt/fH09PT7Zt24ZSiqVLl1pa/0K0ZQ7Rcj9eWcsLqdn013vx8LBge5cj7CwlJeWCC6mbNm3ihRdeQKfT4erqyqJFi/D29gZg4cKF3H///VRXVzN69GgZKSMEoFlxTPBl7VgpxaMf72TDvhK+mn0jodJqFzYQFxdHRkaGvcsQoiktciu+3btl1mYfw1hexdOj+kqwCyFEC7FruJ+uqWfu6mzqG+CBG4LsWYoQQjgVu4b7m+sOcux0Da+Oj6KdjI4RQogWY7dE3V1YwZKtBdw3pLc8C1UIIVqYXcLdZG7gj5//RPdO7jw9KsweJQghhFOzy1DID38oYG/xKf4xdYA8Mk8IIazA5i33ovIq3lx3kBH9fBkd1cPWhxdCiDbBpuGulOLF1GwAXkqMbHYOECGEENfGpuG+NvsoG/aX8GRCKD29O9jy0EII0abYLNyr6kz849tcbovsIWPahRDCymwW7ou+y+VH40lm/iZIxrQLIYSV2SRlC8uqWLQpj8T+AcT38bbFIYUQok2zSbi/8tU+XDWNP47pZ4vDCSFEm2f1cN/y83HWZB/lseEh+Ht5WPtwQgghsHK4m8wNvPTvbHp6e/Dgb2SediGEsBWrhvtH2w5x8Fglz42NoH07V2seSrQiK1euJDIyEhcXlwvmVJ83bx4Gg4GwsDDWrl1rWb5mzRrCwsIwGAzMnz/fsjw/P5/BgwcTGhrKpEmTqKurs9n7EMKRWS3cT1TW8rdvDvKb0G7cGuFnrcOIVigqKorPP/+cYcOGnbd87969pKSkkJ2dzZo1a3j00Ucxm82YzWYee+wxvv76a/bu3cuKFSvYu3cvAH/4wx948sknycnJoWvXrrz//vv2eEtCOByrhfub3xzkTJ2ZF26PkDtRxXnCw8MJC7twwrjU1FQmT56Mu7s7QUFBGAwG0tPTSU9Px2AwEBwcjJubG5MnTyY1NRWlFBs3bmTChAkATJ8+nVWrVtn67QjhkKwW7t/uL2H60D7ydCVx2YxGIz179rR8rdfrMRqNzS4/ceIEXbp0QafTnbdcCGHFWSG/eeoma+1atAIjR47k6NGjFyx/5ZVXGDduXJOvaep5vpqm0dDQ0OTy5rZvTnJyMsnJyQBUV1c3u50QzsBq4d7J3S6zCQsHsX79+it+jV6vp7Cw0PJ1UVERAQEBAE0u79atGxUVFZhMJnQ63XnbNyUpKYmkpKQrrkuI1kjmARAOIzExkZSUFGpra8nPzycnJ4dBgwYRHx9PTk4O+fn51NXVkZKSQmJiIpqmMXz4cD777DMAlixZ0uz/CoRoayTchc198cUX6PV6tm7dytixYxk1ahQAkZGRTJw4kYiICG677TbeffddXF1d0el0LFiwgFGjRhEeHs7EiROJjIwE4LXXXuNvf/sbBoOBEydOMHPmTHu+NSEchtZUv2ULsdqOhRDCibXI8EJpuQshhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjgha95pJBPKCCGEnUjLXQghnJCEuxBCOCEJdyGEcEIS7kII4YQk3IUQwglJuAshhBP6//17Shk2joQ3AAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The Coefficients for } x^{4} \\text{ are }[1, 0, 0, 0, 0]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The number of roots are } 4 $" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{It solves to: } \\left[ 0\\right]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEQCAYAAABLMTQcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxU973/8ddhF2TfHAQUHFRAcUMxm40a1JgUsxg1t0lMY2qWX2/S9DZJt7S17a02vWmbpklv7TW5mKaxTdJKokaNmj0qQVziDgrKJusAssPM9/fHABcVFXVmzszweT4ePHAOZ875zGF4z/F7vt/v0ZRSCCGEcC8eehcghBDC9iTchRDCDUm4CyGEG5JwF0IINyThLoQQbkjCXQgh3JCEuxBCuCEJdzGoaZp2r6Zp1XrXIYStSbiLQUvTNA9gIVCidy1C2JqEuxjM/g14G7DoXYgQtibhLgYlTdM8gUXA3/WuRQh7kHAXg9V9wD+UUnLWLtyShLtwa5qmPa9p2r/6PP6NpmnbgTTgAU3TNgNJmqb9QbcihbADTWaFFO5M07Rw4ARwMzAd+H/AjUqphj7r5Cml0vWpUAj7kHAXbk/TtJ8BdwHBWINdescItyfNMmIw2AuMB34gwS4GCzlzF25N07TxwBZgKxCrlLpF55KEcAg5cxduS9O04cB7wKPA48B4TdNu1rUoIRxEwl24JU3TgoBNwG+VUu8qpVqA3wD/qW9lQjiGNMuIAdM0LQq4AYgBWoGDQJ70FRfC+Ui4i8vSNG0m8H0gDOvFySrADxgNjMI6hP8FpVSjbkUKIc4h4S4uS9O03wAvKaVO9/MzL+B2wFMp9Y7DixNC9EvCXQgh3JBcUBUDpmna65qmBfd5PLJ7KL8QwslIuIsr8RmwW9O0+ZqmfQtr3/Hf61yTEKIf9myWkfYeN/TZZ58xc+ZMIiIi2Lt3L8OGDdO7JCHcjWaLjciZuxiw119/nYceeoi1a9fy4IMPMn/+fPbv3693WUKIfsiZuxiwO+64g9WrVxMVFQVAbm4ujzzyCHv37tW5MiHcik3O3CXcxTXp6OjAx8dH7zKEcCfSLCMc45e//CV1dXX9/szHx4cdO3awYcMGB1clhLgUL70LEM5v/PjxfP3rX8fPz4/JkycTGRlJW1sbBQUF7Nu3j1tuuYUf/vCHepcphOhDmmXEZd1///28/vrrPP/880RFRVFRUcGQIUNITk5mxowZDBkyRO8ShXAn0iwjHGPPnj2cOnWKN954g6ysLB555BEeeOABpk6dSmtr62Wf/9BDDxEVFcW4ceN6l9XV1ZGZmUlSUhKZmZmYTCYAlFI88cQTGI1G0tLSyM/P731OdnY2SUlJJCUlkZ2dfU5948ePx2g08sQTTyCjroXA+sdkpy/hJl588UU1duxY5ePjoxISEnq/Ro4cqRISEi77/I8//ljt2bNHpaam9i57+umn1cqVK5VSSq1cuVI988wzSimlNm7cqObNm6csFovauXOnmjZtmlJKqdraWpWQkKBqa2tVXV2dSkhIUHV1dUoppaZOnaq++OILZbFY1Lx589SmTZtsfQiEcCSbZLBdw91isdjt1QvHe/TRR6/6uUVFReeE++jRo1V5eblSSqny8nI1evRopZRSy5cvV3/7298uWO9vf/ubWr58ee/ynvXKy8vVmDFjepefv54QrqQ7M22SwXZrlrlu5Xa2H6my1+aFDv70pz/ZbFuVlZUYDAYADAYDVVXW90pZWRlxcXG968XGxlJWVnbJ5bGxsRcs78/q1atJT08nPT2d1NRUm70WIWzlR+sP2mxbdgv36rPt5J822Wvzwk2pftrLNU274uX9Wb58OXl5eeTl5clFYOGU8or773J8NewW7ikxQRLu4qKio6OpqKgAoKKionfUa2xsLCUlJb3rlZaWEhMTc8nlpaWlFywXwtU0tHZSUNVks+3ZLdwnxYWwv6SBLrPcgU1cKCsrq7fHS3Z2NgsWLOhdvnbtWpRS7Nq1i+DgYAwGA3PnzmXr1q2YTCZMJhNbt25l7ty5GAwGAgMD2bVrF0op1q5d27stIVzJvpJ6bNnRy26DmCaPCCV75ymOnjnLuOHBl3+CcFv33nsvH330ETU1NcTGxrJixQq+//3vs2jRItasWUN8fDxvvfUWAPPnz2fTpk0YjUb8/f157bXXAAgLC+O5555j6tSpAPzkJz8hLCwMsF4LePDBB2ltbeXWW2/l1ltv1eeFCnEN8k+Z8LBJD3cruw1iKqlrUTc9/yG/WJDK/deNtMs+hLha6enp5OXl6V2GEL3uX7Ob6rPtbP7ODOcexBQbOoSIob7sPV1vr10IIYRbsFgU+07XM2VEqM22abdw1zSNyfEhclFVCCEuo6CqibPtXUyOd4FwB2u7e3FtC7VN7fbcjRBCuLSek+DJrnDmDvR+CknTjBBCXNyeUybCAnwYGe5vs23aNdzHDw/Gy0OTphkhhLiE/NMmJseHXHQA3tWwa7gP8fEk2SCDmYQQ4mJMzR2crG5mkg3b28EBU/5OjpfBTEIIcTF7S6wnv7bsKQOOCPcRobR2mjlWedbeuxJCCJeTf6oeTw+NtFjbDvZ0wJm79dMoXy6qCiHEBfJPm0g2BOLvY9sJA+we7r2DmU5Ju7sQQvTVZbawr6SeKTZubwcHhLsMZhJCiP4dqzxLS4fZpv3bezjkHqoymEkIIS7U01xty5GpPRwS7pPiQgAZzCSEEH3lnzIRGehLbKjtbx7jkHBPiw2RwUxCCHEeewxe6uGQcO8ZzCRn7kIIYVXT1M6p2ha7NMmAg8IdugczldbLYCYhhMDaJAO2nSysL8eF+4hQWjpkMJMQQoD1Yqq3p8Z4O92pzoFn7jKYSQgheuSfNpESE4yft6ddtu+wcI8NHcKssVEcP9PoqF0KIYRT6jRbOFBaz+T4ELvtw2HhrmkaQ7w92XakCnvdt1UIIVzBkYpG2jotNp8srC+HhTtARmIYFQ1tlJpaHblbIYRwKr0XU+3UUwYcHe4J4QDsOlnryN0KIYRTKaxqIj7Mn5gQ2w9e6uHQcE+KGkqovze7i+ocuVshhHAaSim2HaliYpx9esn0cGi4e3hoTEsIY3eRnLkLIQanU7UtnGlsIyMx3K77cWi4A0xLCKekrpXyeml3F0IMPj0ntz3N1Pbi8HDPSAgDIFeaZoQQg9Cuk3VEDPVlVGSAXffj8HBPNgQR6OclTTNCiEFHKcWuk7VMTwyzy2RhfTk83D09NKaNDGP3STlzF0IMLqfrWqhoaGO6ndvbQYdwB2t/95M1zVQ1tumxeyGE0EVPN/DpiWF235cu4T6t+0KCdIkUQgwmu0/WETHUh1GRQ+2+L13CfVxMEAE+nnJRdZD73e9+R2pqKuPGjePee++lra2NoqIiMjIySEpKYvHixXR0dADQ3t7O4sWLMRqNZGRkUFxc3LudlStXYjQaGTNmDFu2bNHp1QhxaT3t7RmJ4XZvbwedwt3L04MpI6W/+2BWVlbGH/7wB/Ly8jh48CBms5l169bx7LPP8tRTT1FQUEBoaChr1qwBYM2aNYSGhlJYWMhTTz3Fs88+C8Dhw4dZt24dhw4dYvPmzTz++OOYzWY9X5oQ/Sqpa6XcQe3toFO4g7VL5PHKJuqaO/QqQeisq6uL1tZWurq6aGlpwWAwsGPHDhYuXAjA0qVLWb9+PQA5OTksXboUgIULF7J9+3aUUuTk5LBkyRJ8fX1JSEjAaDSSm5ur22sS4mJ629sT7N/eDjqGe88FhVw5ex+Uhg8fzve+9z3i4+MxGAwEBwczZcoUQkJC8PLyAiA2NpaysjLAeqYfFxcHgJeXF8HBwdTW1p6z/PznCOFMdhXVEh7ggzHK/u3toGO4jx8egp+3B7ukS+SgZDKZyMnJoaioiPLycpqbm3n//fcvWK+nbbK/aaI1Tbvo8v6sXr2a9PR00tPTqa6uvsZXIMTAKaXYfbKO6Q5qbwcdw93Hy4PJ8aFyUXWQ2rZtGwkJCURGRuLt7c1dd93FF198QX19PV1dXQCUlpYSExMDWM/IS0pKAGtzTkNDA2FhYecsP/8551u+fDl5eXnk5eURGRlp51coxP8pNbVSVt/qkC6QPXQLd7DOrXDkTCMNLZ16liF0EB8fz65du2hpaUEpxfbt20lJSWHmzJm8/fbbAGRnZ7NgwQIAsrKyyM7OBuDtt99m1qxZaJpGVlYW69ato729naKiIgoKCpg2bZpur0uI/uzsbm+392RhfXk5bE/9yEgMQ22DL4vruCUlWs9ShINlZGSwcOFCJk+ejJeXF5MmTWL58uXcdtttLFmyhB//+MdMmjSJZcuWAbBs2TLuv/9+jEYjYWFhrFu3DoDU1FQWLVpESkoKXl5evPzyy3h62ueelEJcrV0nawkL8CHJQe3tAJodb3l32Q23dZpJ+9lWll4/gh/dlmKvOoS4QHp6Onl5eXqXIQaJG1btYEJcMK98Y8pAVrdJo7yuzTJ+3p7cYAynokGmIRBCuKeSupbu9nbHNcmAzuEOMCEuhI1fVVDfIv3dhRDup6d/u73nbz+f7uF+U1IESsEXJ6S/uxDC/ew6Wefw9nZwgnCfEBtCoK8XnxZIv2MhhHtRSlHe3STj4eGY/u09dA93L08PrhsVzifHa/odkCKEEK6qqKaZnSdruW6U4/q399A93AFuGh1JWX0rxbUtepcihBA288lxa4vEjCTHD5pzjnA3RgDwmTTNCCHcyCcFNYwM92dEuH3vl9ofpwj3EeH+xIUN4ZOCGr1LEUIIm2jvMrPzRC0zRusz1YVThLumadxojGTniVo6zRa9yxFCiGu2p9hEa6dZlyYZcJJwB5iRFEFTexf7S+r1LkUIIa7ZxwXVeHtqXDfKsf3bezhNuF8/KgIPDWmaEUK4hU+O1zBlRCgBvvpM4eU04R7s701abIhcVBVCuLyqxjaOVDTq1t4OThTuYB2tuq+knoZWmQJYCOG6elog9GpvB6cL90gsCnbKVARCCBf2yfFqIob6kGII0q0Gpwr3SfEhBPh4ylQEQgiXZbEoPiusYUZSpMOnHOjLqcLdu3sqgk/loqoQwkUdLG+grrlD1/Z2cLJwB2vTzOm6Fk7VNutdihBCXLGeKQduTIrQtQ6nC/eeAyJn70IIV/TJ8RrGDQ8iYqivrnU4XbgnRgQwPGQIn0m4CyFczNm2TvJPm3TtJdPD6cLdOhVBBJ+fqKFLpiIQQriQL07U0mVRure3gxOGO8CNSeGE+vtwoKxB71KEEGLAPj5eTYCPJ5PjQ/UuxTnDfUaSdX737Ucq9S5FCCEGRCnFJ8eruW5UBD5e+ker/hX0I9jfh6kjQ9l+pErvUoQQYkCKapopNbXytTH6N8mAk4Y7wC3J0Rw9c5aSOrk7kxDC+fV0gfyaE1xMBScO98yUaAC2SdOMEMIF9Nx1KT7cX+9SACcO9xHhASRFDZVwF0I4vbYOfe+61B+nDXeAW1Ki2X2yjsY2mSVSCOG8dhfXEeTnRWZytN6l9HLucE+Oosui+PiYTCQmhHBeWw+d4Wx7F1MTwvQupZdTh/vEuFDCA3ykaUYI4bQsFsUHhyu5eUwkft6eepfTy6nD3dNDY9bYKD48WiU3zhZCOKX9pfVUnW1nTsowvUs5h1OHO1jb3RvbuviyuE7vUoQQ4gJbD1fi5aExc0yU3qWcw+nD/aYk62gvGdDkfurr61m4cCFjx44lOTmZnTt3UldXR2ZmJklJSWRmZmIymQDr6L8nnngCo9FIWloa+fn5vdvJzs4mKSmJpKQksrOz9Xo5YpDaeugMGYlhBPt7613KOZw+3P19vLhhVDjbjlSilNK7HGFDTz75JPPmzePo0aPs37+f5ORkVq1axezZsykoKGD27NmsWrUKgPfff5+CggIKCgpYvXo1jz32GAB1dXWsWLGC3bt3k5uby4oVK3o/EISwt8KqJk5UNztdkwy4QLiDtWnmVG0LhVVNepcibKSxsZFPPvmEZcuWAeDj40NISAg5OTksXboUgKVLl7J+/XoAcnJyeOCBB9A0jenTp1NfX09FRQVbtmwhMzOTsLAwQkNDyczMZPPmzbq9LjG4fHDY2tmjZ9ClM3GJcJ891nrgPpBeM27j5MmTREZG8s1vfpNJkybx8MMP09zcTGVlJQaDAQCDwUBVlbU5rqysjLi4uN7nx8bGUlZWdtHl/Vm9ejXp6emkp6dTXS3da8W123r4DOOHBxMTMkTvUi7gEuE+LNiPtNhgth2WcHcXXV1d5Ofn89hjj7F3714CAgJ6m2D601+TnKZpF13en+XLl5OXl0deXh6Rkc4zklC4pqrGNvaermeOE561g4uEO1jP3veW1FPT1K53KcIGYmNjiY2NJSMjA4CFCxeSn59PdHQ0FRUVAFRUVBAVFdW7fklJSe/zS0tLiYmJuehyIeytpyVhTqrztbeDC4X7LSlRKAU7jkqvGXcwbNgw4uLiOHbsGADbt28nJSWFrKys3h4v2dnZLFiwAICsrCzWrl2LUopdu3YRHByMwWBg7ty5bN26FZPJhMlkYuvWrcydO1e31yUGj62HKhkR7s/o6KF6l9IvL70LGKgUQxAxwX5sO1zJovS4yz9BOL2XXnqJb3zjG3R0dJCYmMhrr72GxWJh0aJFrFmzhvj4eN566y0A5s+fz6ZNmzAajfj7+/Paa68BEBYWxnPPPcfUqVMB+MlPfkJYmPMMARfu6WxbJ1+cqOHB60detBlQb5oduxfafMM/yTnIP/NLyf3RLfj7uMznknBC6enp5OXl6V2GcFHv7S/n39/cy1uPXsfUkTY/mbDJp4XLNMsA3DpuGKDxaUGN3qUIIQaxrYcrCQ/wcYp7pV6MS4X71JFheHtqbDxQoXcpQohBqqPLwkdHq7glORpPD+dskgEXC3cvTw/mjTOw7UglrR1mvcsRQgxCu07Wcra9izmpztkFsodLhTvA7WkGWjrMfHRMes0IIRxv54lapiWEcYMxQu9SLsnlwj0jIYyIoT5s+EqaZoQQjtXRZeHNL08zLMjPqeZu74/Lhbu1aWYYO45U0dLRpXc5QohB5LPCaupbOsma4PwD5Vwu3AFuGx9Da6dZBjQJIRzq3X3lBA/xdqobYV+MS4b7tIQwIgN92bBfmmaEEI7R2mFm6+FKbh03DB8v549O56+wH54eGvPHDePDY1U0tUvTjBDC/rYfraSlw0zWROdvkgEXDXeA2yfE0N5lYbtMAyyEcIB395UTFehLRkK43qUMiMuG+5T4UKKDfNkgA5qEEHbW0NrJR8equT0txqkHLvXlsuHu4aExf7yBj49Vc7atU+9yhBBubMvBM3SYLS7TJAMuHO4At6fFEBXky0dH5a46Qgj7eXd/OSPC/ZkQG6x3KQPm0uE+KS4YD03j73kll19ZCCGuQtXZNr44UcPX02Kcdnrf/rh0uHt4eHDnpOF8fqKG8vpWvcsRQrihTQcqsChY4EJNMuDi4Q5w9+RYlIJ/7e3/pshCCHEtcvaXM3ZYIEnRgXqXckVcPtzjw/2ZNjKMd/JL+71ZshBCXK2Suhb2nq53qQupPVw+3AHunjKck9XN7Cup17sUIYQbeXe/tUXg62kS7rqYP96An7cHb+8p1bsUIYSbUEqx5VAl90yJJS7MX+9yrphbhHugnzdzU4fx3v5y2jrlJh5CiGu355SJA6UN9rhHqkO4RbiD9cJqY1sX24/ITJFCiGv39y9LCPDx5LY0g96lXBW3CfcbjBEMC/LjnXxpmhFCXJuzbZ1sOFDB1yfEEODrpXc5V8Vtwt3TQ+OOScP5+Hg11Wfb9S5HCOHCNhyooLXTzKKpcXqXctXcJtwBFk4ZjtmiyNknfd6FEFfv71+WMDp6KJPiQvQu5aq5VbgbowKZEBssvWaEEFft2Jmz7CupZ1F6nEtNN3A+twp3gHunxRPk581XpdLnXQhx5f7+ZQnenhp3TY7Vu5Rr4nbhfut4A1+VNfDG7tN6lyKEcDHtXWb+tbeUOSnDCAvw0buca+J24R48xJsFE2PI2VdOQ6vM8y6EGLgPDldiaul06QupPdwu3AHumz6C1k4z/5RukUKIK/D3L0uICfbjRmOE3qVcM7cM93HDg5kYF8Jfd52SycSEEANSamrhs8Ia7kmPc5lb6V2KW4Y7WM/eT1Q3s/Nkrd6liEswm81MmjSJ22+/HYCioiIyMjJISkpi8eLFdHR0ANDe3s7ixYsxGo1kZGRQXFzcu42VK1diNBoZM2YMW7Zs0eNlCDew6asKAn29uCfdtS+k9nDbcL89zUCIvzd/3XVK71LEJbz44oskJyf3Pn722Wd56qmnKCgoIDQ0lDVr1gCwZs0aQkNDKSws5KmnnuLZZ58F4PDhw6xbt45Dhw6xefNmHn/8ccxmmV9IXJn2LjOrPykiIyGM2FDXmySsP24b7n7enixKj2ProUoqG9v0Lkf0o7S0lI0bN/Lwww8D1ln4duzYwcKFCwFYunQp69evByAnJ4elS5cCsHDhQrZv345SipycHJYsWYKvry8JCQkYjUZyc3P1eUHCZW08UEFNUzv3XzdS71Jsxm3DHeDfpsXTZVGsy5V7rDqj73znOzz//PN4eFjfhrW1tYSEhODlZZ3LIzY2lrIy62jjsrIy4uKsPRi8vLwIDg6mtrb2nOXnP0eIgVBK8drnxRijhnJTkutfSO3h1uE+MiKAGaMjeTP3NF1mi97liD42bNhAVFQUU6ZM6V3W38XvnhGCF/vZpZ5zvtWrV5Oenk56ejrV1dVXW7pwM3tOmfiqrIEHrx/p0iNSz+fW4Q5wX0Y8Zxrb2CZTATuVzz//nHfffZeRI0eyZMkSduzYwXe+8x3q6+vp6uoCrM02MTHWO+DExsZSUmL9H1hXVxcNDQ2EhYWds/z855xv+fLl5OXlkZeXR2RkpJ1foXAVr31eTJCfF3dNHq53KTbl9uE+a2wUMcF+/HVXsd6liD5WrlxJaWkpxcXFrFu3jlmzZvHGG28wc+ZM3n77bQCys7NZsGABAFlZWWRnZwPw9ttvM2vWLDRNIysri3Xr1tHe3k5RUREFBQVMmzZNt9clXEt5fSubD53h3mnx+Pu45tS+F+P24e7l6cGjN4/i6JmzHKlo1LsccRm//vWv+e1vf4vRaKS2tpZly5YBsGzZMmprazEajfz2t79l1apVAKSmprJo0SJSUlKYN28eL7/8Mp6ennq+BOFC1u60joW5/7oRepdic5odB/k4zeih+pYOrl+1g7mpw/jd4ol6lyOcQHp6Onl5eXqXIXTU2mFm+srtXD8qnD/dN+XyT3AcmzT8u/2ZO0CIvw9Lpsbz7v5ySk0tepcjhHAC/9xbSkNrJw/dmKB3KXYxKMIdYNlNCWjAms+K9C5FCKEzpRT/+3kx44YHkT4iVO9y7GLQhPvwkCFkTYhhXW4JpuYOvcsRQujos8IaCqqa+Ob1CW7V/bGvQRPuAI98bRStnWZelykJhBjUNh6oYNzwIG6fYNC7FLsZVOE+Zlggs8ZG8b9fFNPaIfOPCDEYHSitZ92XJdw6zoCvl/v2rBpU4Q7wyIxE6po7eHuPTEkgxGD0h+2FBA/x5gE37P7Y16AL92kJYUyKD2H1pydlSgIhBplD5Q1sO1LJQzckEOjnrXc5djXowl3TNB792ihK6lrZdPCM3uUIIRzojzsKCfT14sEbRupdit0NunAHyEyOJjEygD9/fELu1CTEIHHszFneP3iGb94wkuAh7n3WDoM03D08NB6Zkcjh8kY+K6zRuxwhhAO8tKOAAB9Ptx20dL5BGe4Ad0wazsT4EF7YelzO3oVwc4VVTWz8qoIHrh9JiL+P3uU4xKANd18v652a9pXUy3TAQri5lz8sxM/Lk4cHyVk7DOJwB1g4JZaR4f68sPUYFoucvQvhjopqmsnZV8Z90+MJH+qrdzkOM6jD3dvTg6cyR3P0zFneO1CudzlCCDt45cNCvD09+NaMRL1LcahBHe4AX0+LYeywQH6/rUD6vQvhZk5WN3H0zFn+LSOeqEA/vctxqEEf7h4eGt/NHE1RTTPv5JfqXY4Qwoae33yME9VNPH7zKL1LcbhBH+4AmSnRTIgL4cVtBbR3yZwzQriD3Sdr2XzoDI99bRSRg+ysHSTcAeuo1afnjKG8oY2/7T6tdzlCiGtksSh+ufEIhmA/Hr5pcLW195Bw73aDMZwFE2LY9FUFDa2depcjhLgG6/eV8VVZA8/MG8MQH/ed+fFSJNy7aZrGt2YkknfKxIvbCvQuRwhxlVo7zDy/+RhpscEsmDBc73J0I+Hex7jhwdw7LZ7sncUUVJ7VuxwhxFX4y6cnOdPYxo9vS8HDwz3vsjQQEu7n+d6cMQT4ePKz9w7JtARCuJjKxjb+9NEJ5o8fxrSEML3L0ZWE+3nCAnz4jzlj+Lywli2HKvUuRwhxBV7YegyzRfHsvLF6l6I7Cfd+fCMjnjHRgfxy42HaOqVrpBCu4FB5A2/tKeXBG0YyIjxA73J0J+HeDy9PD36alUKpqZXVn5zUuxwhxGUopfjdB8cJGeLN/5tp1LscpyDhfhHXj4rgtvEGXvmokLL6Vr3LEUJcwr/2lvF5YQ3P3Z4yKG7EMRAS7pfwg/nWdrvfbD6qcyVCiIupaWrn5xsOkxITzB0TB2/Xx/NJuF9CbKg/P7g1mW1Hqth6SO63KoQzWvHeYVrazfz67vGDuuvj+STcL+PeafHEhfnzo/UHqW/p0LscIUQf249U8t7+cr49y4gxKlDvcpyKhPtl+Hh58JuFaZiaO/j5hsN6lyOE6Ha2rZMfrz/ImOhAHv3a4Jv18XIk3Adg3PBgHr95FP/ML2P7Een7LoQzeH7zMc40trHq7vH4eEmUnU+OyAB9e1YSY4cF8sN/fSUTi9lASUkJM2fOJDk5mdTUVF588UUA6urqyMzMJCkpiczMTEwmE2Dt6vbEE09gNBpJS0sjPz+/d1vZ2dkkJSWRlJREdna2Lq9HOFZecR2v7zrFN69PYFJ8qN7lOCUJ9wGyNs9MoKapg19K88w18/Ly4oUXXuDIkSPs2rWLl19+mcOHD7Nq1Spmz55NQUEBs2fPZtWqVQC8//77FBQUUFBQwOrVqxfZK6YAABVCSURBVHnssccA64fBihUr2L17N7m5uaxYsaL3A0G4p6b2Lv5r6zGuSwzne3NH612O05JwvwLjY4N59GuJbD5YwYdHpXnmWhgMBiZPngxAYGAgycnJlJWVkZOTw9KlSwFYunQp69evByAnJ4cHHngATdOYPn069fX1VFRUsGXLFjIzMwkLCyM0NJTMzEw2b96s2+sS9vfc+oPkFtXxVOZo/H289C7HaUm4X6EnZieRFhvCf7x1gDMNbXqX4xaKi4vZu3cvGRkZVFZWYjAYAOsHQFVVFQBlZWXExcX1Pic2NpaysrKLLu/P6tWrSU9PJz09nerqaju+ImEv7+wp5V97y3hy9uhBPzHY5Ui4XyFfL09WLBhHa4eZJ9ftxWyRmSOvRVNTE3fffTe///3vCQoKuuh6/c3QqWnaRZf3Z/ny5eTl5ZGXl0dkZOTVFy10cbK6iedyDpKREMa3Z8kUA5cj4X4VjFFD+eUd49hdVMcftsuNPa5WZ2cnd999N9/4xje46667AIiOjqaiogKAiooKoqKiAOsZeUlJSe9zS0tLiYmJuehy4V7au8z8+5t78fXy4PdLJuIpg5UuS8L9Kt09JZa7Jg/nDzsK+OJEjd7luBylFMuWLSM5OZnvfve7vcuzsrJ6e7xkZ2ezYMGC3uVr165FKcWuXbsIDg7GYDAwd+5ctm7dislkwmQysXXrVubOnavLaxL2s+r9oxwqb+Q3CydgCB6idzmuQSllry+319TWqWb+14fqlhc+UpUNrXqX41I+/fRTBajx48erCRMmqAkTJqiNGzeqmpoaNWvWLGU0GtWsWbNUbW2tUkopi8WiHn/8cZWYmKjGjRunvvzyy95trVmzRo0aNUqNGjVKvfrqqwPa/5QpU+zyuoTtfXD4jBrx7Ab105yDepfiKDbJYE3Z725Dg6Ix+mhFI996PY/wAF/WLZ+On/fgvBmvq0lPTycvL0/vMsRlFFad5c6XP+eWlGGsuns8vl6D4u/LJm1O0ixzjcYagvjR/BT2ldTz7DsH5NZ8QtiIqbmDZdl5+Hp78b25YwZLsNuMhLsNzBs3jKfnjiFnXzkvf1iodzlCuLyOLguPvbGHivo2/nz/FIaHSDv7lZIRADby+M2jKKxq4r+2Hicxcijzxxv0LkkIl6SU4qfvHmTXyTp+t3gCU0bI9AJXQ87cbUTTNFbeNZ7J8SF89x/7+Kq0Qe+ShHBJr31ezJu5JTx+8yjunBSrdzkuS8Ldhvy8Pfnz/emEB/jy5N/zKTO16F2SEC5l44EKthw6w9zUaL43Z4ze5bg0CXcbiwz05X+WTsHXy5P71uRS1ShTFAgxEDuOVvaO+v7doolyV6VrJOFuB8mGYH55xzgqG9v4xv/sprapXe+ShHBqXxTW8Ohf80k2BPHqN6fi7yuXA6+VhLudTBkRxqsPTqXE1MJ9a3LlFn1CXMSeU3U8vDaPhPAA1j40jSA/b71LcgsS7nY0PTGc1fenc6KqiQdezaWxTW7yIURfB8saePC1L4kK9OX1h6cRGuCjd0luQ8LdzmaMjuRP903mcHkjj76+RwJeiG57T5v49eajBPl588a3phMV6Kd3SW5Fwt0BZidH89K9kzC1dLLov3fKPPBi0PvwWBX/9pfdnKpt4e/Lp8sgJTuQcHeQW8cb+OH8sZSaWrnzlc85XnlW75KE0MU7e0r5VnYeiZEBvPPY9cSG+etdkluScHegm5Ii+fsj0zFbFHf/6Qt2nqjVuyQhHGr1Jyf4j7f2k5EYxrrl04kM9NW7JLcl4e5gqTHB/PPx64kO8mPpq7m8u79c75KEsLsus4XffXCcX206ym1pBl59cCqB0ivGriTcdRAb6s/bj17HxLgQfpJzkJd2FMjt+oTbqmlq5/41ubzyUSFPzk7ipSWTZIZHB5Bw10mIvw9rl01jUXocL2w9ztJXc6k+K4OdhHvZe9rE11/6jPzTJn5153ieyhwtI08dRMJdR37envzg1rH8+u7xfFlcx/w/fCq37BNuQSnFm7mnWfznXXh6aLzz2PXckx6nd1mDioS7zjRNY/HUeHK+fQNBfl7c9z+7eXGbNNMI11XV2MbD2Xm8tKOAWclRbPj3Gxk3PFjvsgYduc2eE2lu7+LH6w/yZVEdMaFD+M87xpEUHah3WW5JbrNnH+/tL+e5nIO0dph5dt5YHrx+pDTDXDmbHDAJdyejlGLTVxX8aP1Bmtu7ePxmI4/PHCUXoGxMwt22qs628Z8bj5Czr5yJcSG8sGgCoyKH6l2Wq5Jwd2c1Te38YsNhcvaVY4wayn/eMY6MxHC9y3IbEu620dZpZs1nRbzyYSET4kK4wRjBIzMS8fKUFt9rIOE+GHx4rIqfv3eI9k4LE+JCeGbeWBIiAvQuy+VJuF8bpRTvHajg1+8fpay+lTkp0fxgfrK8N21Dwn2waGnv4i+fFvHnT07Q0WXh3zLieWJ2EhFDZXTf1ZJwv3r7Sur5xYbD7DllItkQxHO3J3P9qAi9y3InEu6DTdXZNv6wvYA3c0uYOjKUFEMwy25KkEmXroKE+5VRSrG7qI7VH5+grL6N2uYOnp47moVT4vCUC6a2JuE+WJ2oOst/f3ySf+0tQwFZE2JYPiORZEOQ3qW5DAn3gekyW9h08Ax/+eQkX5U1EBbgw7dnjmLR1HiGyt2S7EXCfbArq2/l1c+KeDP3NC0dZu6ZEsussVHMTo7Gx0suaF2KhPul1bd08M6eUl79vJiy+lYSIwJ4+KZE7po8HD9v6bllZxLuwqqhpZO/7j7F54U1fHGilrAAHxZMjOGeKXGkxMjZfH8k3C/U2mFm25FKcvaV8fHxaibGhaJp8K2bEpk9Nkr6qzuOhLs4V5fZwqeFNbydV8oHhytRSjHWEMTXRkcyJzWa8cOD0TT5AwUJ9x4dXRY+L6zhvf3lbDl0huYOM9FBvmRNiOGuycNJNsjIUh1IuIuLMzV3sP1IJW/nl5JbVIdFgSHYj6wJMUweEUpGQhgh/oP3fpWDNdyVUhyvbOLTgmo+L6xhd1EdoyKHUlzbzPxxBhZMiiEjIVwukupLwl0MjKm5gx1Hq9h6+AytHWY+KahB0yB5WBDTE8O5blQ4qTFBGIL9Bs2Z/WAJ97ZOM8crz3KwrIG8YhOfFdZQ1T37aGJEADcmRTA7OYrpieEyCtp5SLiLK9feZeZAaQM7T9Sy62Qte06ZSIwI4MiZs0QM9WHc8GAmxIaQFD2UxIihJEYGuMQFtM2bN/Pkk09iNpt5+OGH+f73v3/J9d0x3OuaOzhS0cih8gYOlzdyuKKRE9XNvZPQjY4eyujoQG5KiuDGpEjpQuu8JNzFtWvrNHO4vIGvyhr5qqyBg2UNeGhwuMJ6j1dNg+EhQxgXE0REoC8xIUOICR5CTMgQDMF+RAb66h7+ZrOZ0aNH88EHHxAbG8vUqVN58803SUlJuehzXC3clVKcbevkTGM7paYWykytlNa3Wr+bWvHy0Mg7Zepd3xDsR4ohiJSYIFJjgkgxBBMbOkQuiroGm/ySpKPqIOfn7cnkEWFMHhHWu6y1o4uimhZO1jRxoqqZkzVNtHWa2XCggvqWzt710mKDOVDaQKCvF+FDfYgP88fHy4MgP2+ChngT5OdFZKAvnh4eDPHxYIi3F/4+nvj7eOLj5WH98rR+9/bU8Pb0xNNDw8tDw9NDw1Ozfr9cIOXm5mI0GklMTARgyZIl5OTkXDLcbU0phdmiMCuFxQJmpeg0WzBbrN87uix0mi20d1n/3WVRNLV30dJuprmji+b2Llo6zDS1d+GhaZyqbcbU0kFtUwemlg5MzZ2MHRbIgbKG3n36eHoQE+LH8NAhJEUFMjd1GCkxQSQbgggLGLzXU4SVnLmLK9LS0UV5fRsVDa3UNXdQamqlpqmdmqYOLBYLxbUtNLZ10tjaRWNbJxPjQth7uv6cbWhc+OaYNjKM3OK6c5ZNGRHCnlPW54b6e5MQGcBXJQ1oHhoxwX6EBvjg7+1JXU0l1VVVTJ40ERScLimhsr6J1DGjMQOna1uIDT23CeKDXz1E5g9fBSAi0BeLRRHo50V5fRv+Pp4oZS1UQ2FRUNvUjrenJ21dZjw0jcPljcSFDaG4toXoQF/KG9ouOFb+3h60dFr6PY6pMUEcKm+8YLmXh8Z1o8IpM7USFuBDaIAPYf7W78ND/Aj292F4yBBiQ4cQOdRXzsTdk3M3y6SmpqohQ5y/Ta+6uprIyEi9y7gsV63TbLGGo0UpLEqhus9sLSiUovtLgQYWCyiUNfiVtUmo701LPDSt97Gm0Xvxt621lba2NkJDQwFoaWmho6OD4JBgQEMpRXO7mc7OTjo7OwDobKwmeNhIwPrBobq32WlW/f5lWWv8v59YLAoPD+u2Ne3/vkP3X6Zm/a5pWvd3a/09yzy0nu8aHh7g2f3v869nu+rv3Rm5Qo0Ae/bsOaSUGnfNG1Ldf3C2/poyZYpyBVKnbelR5xdffKHmzJnT+/hXv/qV+tWvfnXJ58jxtC1XqNMValRKKSBP2SCDZYy6cHlTp06loKCAoqIiOjo6WLduHVlZWXqXJYSu5IKqcHleXl788Y9/ZO7cuZjNZh566CFSU1P1LksIXdkt3JcvX26vTduU1GlbetU5f/585s+fP+D15XjalivU6Qo1dltti41IbxkhhHAuNuktI23uQgjhhq4p3DVNu0fTtEOaplk0TUvv+7OVK1diNBoZM2YMW7Zs6ff5RUVFZGRkkJSUxOLFi+no6LiWcgZk8eLFTJw4kYkTJzJy5EgmTpzY73ojR45k/PjxTJw4kfT09H7Xsaef/exnDB8+vLfWTZs29bve5s2bGTNmDEajkVWrVjm4Snj66acZO3YsaWlp3HnnndTX1/e7nl7H83LHp729ncWLF2M0GsnIyKC4uNhhtQGUlJQwc+ZMkpOTSU1N5cUXX7xgnY8++ojg4ODe98LPf/5zh9bY43K/Q6UUTzzxBEajkbS0NPLz8x1e47Fjx3qP08SJEwkKCuL3v//9OevodTwfeughoqKiGDfu/3o51tXVkZmZSVJSEpmZmZhMpn6fq2naUk3TCrq/lg5oh9fS1QZIBsYAHwHpfZanpKWlqba2NnXy5EmVmJiourq6Lujyc88996g333xTKaXUI488ol555RVb9ii6rO9+97tqxYoV/f5sxIgRqrq62qH19PXTn/5U/eY3v7nkOl1dXSoxMVGdOHFCtbe3q7S0NHXo0CEHVWi1ZcsW1dnZqZRS6plnnlHPPPNMv+vpcTwHcnxefvll9cgjjyillHrzzTfVokWLHFpjeXm52rNnj1JKqcbGRpWUlHRBjR9++KG67bbbHFpXfy73O9y4caOaN2+eslgsaufOnWratGkOrO5CXV1dKjo6WhUXF5+zXK/j+fHHH6s9e/ao1NTU3mVPP/20WrlypVJKqZUrV/b8/Zyfs2HAye7vod3/Dj1/vfO/runMXSl1RCl1rJ8fLViyZAm+vr4kJCRgNBrJzc294ENlx44dLFy4EIClS5eyfv36aynniiil+Mc//sG9997rsH3aWt9h9z4+Pr3D7h1pzpw5eHlZr8tPnz6d0tJSh+7/UgZyfHJycli61HoitHDhQrZv397zB+UQBoOByZMnAxAYGEhycjJlZWUO278t5eTk8MADD6BpGtOnT6e+vp6Kigrd6tm+fTujRo1ixIgRutXQ14wZMwgLCztnWd/33yUycC7wgVKqTillAj4A5l12h5dL/4F8ceGZ+x+B+/o8XgMsPO85EUBhn8dxwEFb1DPAmmdwicECQBGQD+wBljuqrj77/xlQDBwAXqWfT2pgIfA/fR7fD/zR0bX22f97fX/veh/PgRwf4CAQ2+fxCSBCp+M3EjgNBJ23/GagFtgPvA+k6lTfJX+HwAbgxj6Pt/fNBR3qfRX4dj/LdTue3b/jg30e15/3c1M/z/ke8OM+j58Dvne5fV22K6SmaduAYf386EdKqYudJvY7gvsq1rkqA6z5XuDNS2zmBqVUuaZpUcAHmqYdVUp9Yov6BlIn8CfgF1iPyS+AF4CHzt9EP8+1+WnnQI6npmk/ArqANy6yGbsfz37o+j68EpqmDQXeAb6jlDp/0pl8YIRSqknTtPnAeiDJ0TVy+d+hUxxLAE3TfIAs4Af9/NhZjudAXdVxvWy4K6VuuYpiSrGeifeIBcrPW6cGCNE0zUsp1XWRda7K5WrWNM0LuAuYcoltlHd/r9I07V/ANMCmYTTQY6tp2l+wnhWdbyDH+ZoN4HguBW4HZqvuU4t+tmH349mPgRyfnnVKu98XwUAdDqRpmjfWYH9DKfXP83/eN+yVUps0TXtF07QIpVSNI+scwO/QIe/HAboVyFdKVZ7/A2c5nt0qNU0zKKUqNE0zAFX9rFOK9X8bPWKxtpZckr26Qr4LLNE0zVfTtASsn4rnNLp3h8CHWP/rDLAUcFSD8S3AUaVUvw3EmqYFaJoW2PNvYA7W/747TPcvusedF9n/l0CSpmkJ3WcqS7Aee4fRNG0e8CyQpZRqucg6eh3PgRyfd7G+98D6XtxxsQ8oe9Css42tAY4opX57kXWGda+HpmnTsP7d1jqqxu79DuR3+C7wgGY1HWhQSunV6H7R/5k7w/Hso+/772IZuAWYo2laqKZpoViPff9dEPu6xvajO7F+qrQDlcCWPj/7Edb2y2PArX2WbwJiuv+diDX0C4G3AF8HtXv9L/DoectigE196trf/XUIa/ODo9sLXwe+wtrm/i5gOL/O7sfzgePdx1qPOguBEmBf99d/O9Px7O/4AD/H+mEE4Nf93ivsfi8mOvj43Yj1v9gH+hzD+cCjPe9R4Nvdx20/sAu4Xoffc7+/w/Pq1ICXu4/1V+jU3g74Yw3r4D7LdD+eWD9sKoDO7txcBoRjvTZR0P09rHvddM69XvRQ93u0EPjmQPZnzxGqQgghdCIjVIUQwg1JuAshhBuScBdCCDck4S6EEG5Iwl0IIdyQhLsQQrghCXchhHBDEu5CCOEENE2bqmnaAU3T/LpHBB/SNG3c5Z95ke3JICYhhHAOmqb9Euuo6SFAqVJq5VVvS8JdCCGcQ/ccSF8CbVinRTBf7bakWUYIIZxHGDAUCMR6Bn/V5MxdCCGchKZp7wLrgASskwV++2q3ddn53IUQQtifpmkPAF1Kqb9pmuYJfKFp2iyl1I6r2p6cuQshhPuRNnchhHBDEu5CCOGGJNyFEMINSbgLIYQbknAXQgg3JOEuhBBuSMJdCCHckIS7EEK4of8P4wfNbz+3SDoAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The Coefficients for } 3 x^{4} - 8 x^{3} - 37 x^{2} + 2 x + 40 \\text{ are }[40, 3, 2, -8, -37]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The number of roots are } 4 $" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{It solves to: } \\left[ -2, \\ - \\frac{4}{3}, \\ 1, \\ 5\\right]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEOCAYAAABy7Vf3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1yUZf7/8dfFDKAochBQEBRwSBFF0hG12kqNMLdwS1PadqVws7V2/W7toT100D1p3/323fpt1i6b7WLfTbfcTdpStDQ7E6JieShRMQFJkYN44Dhz/f4YJFRA1Jm5B/g8H4/JuOY+fO4beM/Ndd/3dSutNUIIIXoWL6MLEEII4XwS7kII0QNJuAshRA8k4S6EED2QhLsQQvRAEu5CCNEDSbj3Ykqpu5RSFR5QxyCl1EdKqXeVUpuVUuFG19QRpdRkpdTHLbWuUkp5G12TEO2RcO+llFJewGygxOhagOPAdVrrG4CVwHyD6+nMl8DUlloPAjMNrkeIdkm4917fBtYAdqML0VrbtNZn6/AHdhtZT2e01ke01nUtXzbjAftPiPZIuHdjSqn/U0qVK6VqlVL7lFLf6+J8JmAO8E8n1hKtlFqnlKpWSn2llHpWKWW+hPmTlFKfAD8Atjuhnk73jVLq1Hkvm1LqT5ew/BjgFuCNK6zTVym1Qin1pVLqpFJqh1LqlitZ5mXUEKeUqldK/V+btmCl1GtKqdMttX3bnTWJKyfh3r0tBaK11gOANOC3SqnxXZjvO8ArbY6WneE54BgQDiQBNwAPdHVmrXWh1noi8BjwCyfU0+m+0Vr3P/sCBgF1wKtdWbBSagCQDXxXa914kWkXK6UWdzKJGUfX2A1AAI7tf0UpFd2VWi5znedbDmxtp60Rx765G3heKZVwuTUJ95Nw78a01ru11g1nv2x5DQdQSv23Uuq1s9Mqpf6glNrUcgJwFDBPKZULxCml/p8TyonB8YFRr7X+CsgFWsOgs3qUUr5tlnMCOHOlxXS2b9oxG8cH0/tdqNUMrAIWa62/cEKdp7XWi7XWh7TWdq31G0Ax0PpBdJHv5RVRSqUDNcCmNm39gFnAY1rrU1rrD4DXge9e6fqEG2mt5dWNXziOmM/gCK/tQP+W9oE4fmmTgO8DnwEB7cxf4KQ6vo/jZKgfMATYBdze5v0O6wEmA+8B7wDrgXBX7pt2ptuMI6y7Uut3cZwA3tLymnuRGha3XXYXah4E1AMju1LPlawTGADsA6Ja5vm/lvargbrzpv0J8B+jf97l1fVXl/tEhWfSWj+glPohjoC8EWhoaa9USj2NI3ADcFyNcqKd+a1OKuVd4D6gFjDh6LZY22Y9Hdajtf4YuN5JdbTqaN+0pZQaiqNLZH6b+Tqr9SXgJWfX2lKLN/APIFtr/XlX6rlCvwFWaK1LlFJt2/vj+AuqrRM4TnaLbkK6ZXoA7bja5AMgEljY5q0dwBjgF1rrS7rkUSm1RSmlO3h9cN60XsAG4N9APyAECAKePG+xbqmnrU72zVnzgA+01sVOrPUNpVSNUqoG+Dnw87NfK6XaPQHbsg9fwtHP/YN2Jum0nktdp1IqCbgJ+GM76zqF46i+rQHAyY62WXgepbWM595TKKVeAE5rrf9LKTUGR+BuBCK11je5cL0hQAUQePaIUin1LeC3WuvRLV+7rZ4OamzdN+e17wOWaa1fbNPmtFrPntjUWi/uZBoFvAhEAzP015daXlY9XVznj4Df8XVg98fxF9de4BtANZCgtS5qmX4lcERr/fPO1i08hxy5d1NKqTClVLpSqr9SyqSUSgXuAjYrpYYA/8HRP/sAMEYpdaOratFaH8dxEnChUsqslAoEMoCdLbW6tZ7O9s15012D4/zAq23a3Fpri+eBeOC2doLdVfVk4TjBnNTy+jPwJpCqtT6N46+wXyul+imlrsVxs5ZLuqOEa0i4d18aRzdDKY6jrP8BfoTjpOQ64H+11q9rrc8Af8BxlOZKdwDTcRzB78dxg89DLZcNuruedveN1jrnvOkygH9rrU9C6yWObq1VKTUMuB9HwH6lvr7u/m5X1qO1PqO1/ursC0dXTL3W+uxwFA8AfXFcRbQKWKi19tiby8SFpFtGCCF6ILlaRnSZUioMuBaIwHHTzy4cl1LKLfhCeBg5chcXpZSaguMKjGAcV20cA/oAV+Hot10DPKW1rjWsSCHEOSTcxUUppf4A/Elrfbid98zArYBJa/0vtxcnhGiXhLsQQvRAcrWM6DKl1EtKqYA2X0crpTZ1No8QwhgS7uJSfAB8opSaoZS6D8dNNU8bXJMQoh2u7JaR/p4e6IMPPmDKlCmEhISwY8cOBg8ebHRJQvQ06uKTXJwcuYsue+mll8jMzGTlypXcc889zJgxg507dxpdlhCiHXLkLrrsW9/6FllZWYSFhQGQn5/P/fffz44dOwyuTIgeRY7chXutXbu2NdgBkpOT+eSTTzqdp76+nuTkZMaOHUtCQgJPPPEEAPfccw8xMTEkJSWRlJREYWEh4Hi+wKJFi7BYLCQmJrJ9+9dP3MvOziYuLo64uDiys7Nb27dt28aYMWOwWCwsWrQIuQJMCFz6sA7RQ/zmN7/RlZWVHb6/adMm/Z///Kfd9+x2uz558qTWWuvGxkadnJysP/74Y52RkaFfffXVC6Z/88039fTp07Xdbtcff/yxTk5O1lprXVlZqWNiYnRlZaWuqqrSMTExuqqqSmut9YQJE/RHH32k7Xa7nj59ul63bt2VbrIQRpKHdQj3GDNmDLfddht9+vRh3LhxhIaGUl9fT1FREYWFhdx000388pe/bHdepRT9+/cHoKmpiaamJs57MMQ5cnJymDdvHkopJk2aRE1NDeXl5WzZsoWUlBSCg4MBSElJITc3lxtvvJHa2lomT54MwLx581i7di233OLWZ0wL4XGkW0Zc1Jo1a/jwww9JTU0lISEBm83GgAED+M53vkN+fj5//OMfCQ0N7XB+m81GUlISYWFhpKSkMHHiRAB+9atfkZiYyEMPPURDg+MhSWVlZURFRbXOGxkZSVlZWaftkZGRF7S3JysrC6vVitVqJSFBnvUsejY5chcXtW3bNr788kv+8Y9/8M4775zzXl1dHX379u10fpPJRGFhITU1Ndx+++3s2rWLpUuXMnjwYBobG1mwYAFPPvkkjz/+eLv95UqpS25vz4IFC1iwYAEAVquzni4ohGeSI3dxUd///veZPn06n3/+eeuRr9VqZfz48ZcUkoGBgdx4443k5uYSHh6OUgpfX1/uvfde8vPzAceRd0nJ10+RKy0tJSIiotP20tLSC9qF6O1cFu77j53kxJkmVy1euNGiRYvYu3cvmZmZHDx4sPVVXFzMwYMHO523oqKCmpoawHGU//bbbzNy5EjKy8sBxwn9tWvXMnr0aADS0tJYuXIlWmvy8vIICAggPDyc1NRUNm7cSHV1NdXV1WzcuJHU1FTCw8Px9/cnLy8PrTUrV65k5syZrt0hQnQDLuuWuel/3+OpO8cya3zkxScW3cLzzz9/yfOUl5eTkZGBzWbDbrczZ84cbr31VqZOnUpFRQVaa5KSkvjzn/8MwIwZM1i3bh0WiwU/Pz/+9re/ARAcHMxjjz3GhAkTAHj88cdbT64+//zz3HPPPdTV1XHLLbfIyVQhcOFNTGMWb9C3jY3g97ePccnyhbgSVquVgoICo8sQoj2efRPTuKFBbDtU7arFCyGE6ITLwn38sCD2HTvJiTrpdxdCCHdzWbhbhwWhNew4LEfvQgjhbi4L97FRgZi8FNu+lHAXQgh3c1m49/M1Ex/uT4H0uwshhNu59CYm67BgCktqaLbZXbkaIYQQ53FpuI8fFkRdk4295SdduRohhBDncXm4A2z7ssqVqxFCCHEel4Z7RGBfIgL6UCAnVYUQwq1cPnDYuGFBcsWMEEK4mcvD3TosiPIT9RypqXP1qoQQQrRwfbhHOwZ3kq4ZIYRwH5eH+8jB/vj5mNh2SE6qCiGEu7g83M0mL5KiAtkmwxAIIYTbuOVJTNZhQewtP8nphmZ3rE4IIXo9t4T7uGFB2OyawpIad6xOCCF6PbeFu1LIJZFCCOEmbgn3AX28GTHIX66YEUIIN3FLuIPj6H3Hl9XY7a55rJ8QQoivuS3crcOCONnQzL5jMohYb1JfX09ycjJjx44lISGBJ554AoDi4mImTpxIXFwcc+fOpbGxEYCGhgbmzp2LxWJh4sSJHDp0qHVZS5cuxWKxMGLECDZs2NDanpuby4gRI7BYLCxbtsyt2yeEp3JjuLfczCTju/cqvr6+bN68mZ07d1JYWEhubi55eXk88sgjPPTQQxQVFREUFMSKFSsAWLFiBUFBQezfv5+HHnqIRx55BIA9e/awevVqdu/eTW5uLg888AA2mw2bzcaDDz7I+vXr2bNnD6tWrWLPnj1GbrIQHsFt4R4V3JeQ/r5sl373XkUpRf/+/QFoamqiqakJpRSbN29m9uzZAGRkZLB27VoAcnJyyMjIAGD27Nls2rQJrTU5OTmkp6fj6+tLTEwMFouF/Px88vPzsVgsxMbG4uPjQ3p6Ojk5OcZsrBAexG3hrpTCOixITqr2QjabjaSkJMLCwkhJSWH48OEEBgZiNpsBiIyMpKysDICysjKioqIAMJvNBAQEUFlZeU5723k6aheit3NbuINjfPfDVWc4drLenasVBjOZTBQWFlJaWkp+fj579+69YBqlFABaX3jCXSl1ye3tycrKwmq1YrVaqaiouNTNEKJbcW+4Rzse3iFdM71TYGAgN954I3l5edTU1NDc7LhjubS0lIiICMBx5F1SUgJAc3MzJ06cIDg4+Jz2tvN01N6eBQsWUFBQQEFBAaGhoa7aTCE8glvDfXREAD5mLzmp2otUVFRQU+O4M7muro63336b+Ph4pkyZwpo1awDIzs5m5syZAKSlpZGdnQ3AmjVrmDp1Kkop0tLSWL16NQ0NDRQXF1NUVERycjITJkygqKiI4uJiGhsbWb16NWlpacZsrBAexOzOlfmYvRgbGSD97r1IeXk5GRkZ2Gw27HY7c+bM4dZbb2XUqFGkp6fz6KOPcvXVVzN//nwA5s+fz3e/+10sFgvBwcGsXr0agISEBObMmcOoUaMwm80sX74ck8kEwLPPPktqaio2m43MzEwSEhIM214hPIVqr8/SSdpd8LL1n7Pig4N8tjiVPt4mV61biE5ZrVYKCgqMLkOI9rR/0ugSubVbBhw3MzXZNJ+WnnD3qoUQotdwe7iPG+Y4qVpYIl0zQgjhKm4P9+B+PowfFsQH+yvdvWohhOg13B7uAKMjBrC1uIrGZrsRqxdCiB7PkHCfPDyEuiabPLxDCCFcxJhwjx2IUvDh/uNGrF4IIXo8Q8I9wM+b0REBfHxA+t2FEMIVDAl3gGssA9lRUs2ZRnlothBCOJth4X7t8BCabJqtMhSBEEI4nWHhbo0Owtuk+Ej63YUQwukMC3c/HzNXDw3iI+l3F0IIpzMs3AGuGT6QXUdOUHOm0cgyhBCixzE03K+1hKA15B2Uo3chhHAmQ8N9bGQgfb1N0jUjhBBOZmi4+5i9SI4JlpuZhBDCyQwNd4BrLQM5UHGao7XyXFUhhHAWw8P9muEhAHx0QI7ehRDCWQwP91HhAwjo682HMgSwEEI4jeHh7uWlmBw7kI8PVOLCR/4JIUSvYni4g6Pfvaymji8rzxhdihBC9AgeEe7XWM72u0vXTE9TUlLClClTiI+PJyEhgWeeeQaAxYsXM2TIEJKSkkhKSmLdunWt8yxduhSLxcKIESPYsGFDa3tubi4jRozAYrGwbNmy1vbi4mImTpxIXFwcc+fOpbFRbooTAq21q15dZrfbdfLv3tIP/GPbpcwmuoEjR47obdsc39fa2lodFxend+/erZ944gn9hz/84YLpd+/erRMTE3V9fb0+ePCgjo2N1c3Nzbq5uVnHxsbqAwcO6IaGBp2YmKh3796ttdb6zjvv1KtWrdJaa33//ffr55577qJ1jR8/3olbKYRTOSWDPeLIXSnFtcNDyDtQid0u/e49SXh4OOPGjQPA39+f+Ph4ysrKOpw+JyeH9PR0fH19iYmJwWKxkJ+fT35+PhaLhdjYWHx8fEhPTycnJwetNZs3b2b27NkAZGRksHbtWrdsmxCezCPCHWDy8IFUnm7ki6MnjS5FuMihQ4fYsWMHEydOBODZZ58lMTGRzMxMqqsdQz+XlZURFRXVOk9kZCRlZWUdtldWVhIYGIjZbD6nvT1ZWVlYrVasVisVFRWu2kwhPILHhPu1Lf3ucrdqz3Tq1ClmzZrF008/zYABA1i4cCEHDhygsLCQ8PBwfvzjHwO0e8WUUuqS29uzYMECCgoKKCgoIDQ09Aq3SAjP5jHhHhHYl5iQfvLovR6oqamJWbNmcffdd3PHHXcAMGjQIEwmE15eXtx3333k5+cDjiPvkpKS1nlLS0uJiIjosD0kJISamhqam5vPaReit/OYcAdH10x+cSWNzXajSxFOorVm/vz5xMfH8/DDD7e2l5eXt/7/a6+9xujRowFIS0tj9erVNDQ0UFxcTFFREcnJyUyYMIGioiKKi4tpbGxk9erVpKWloZRiypQprFmzBoDs7Gxmzpzp3o0UwgOZjS6grWkjw/hP4REKS2pIjgk2uhzhBB9++CEvvfQSY8aMISkpCYDf//73rFq1isLCQpRSREdH85e//AWAhIQE5syZw6hRozCbzSxfvhyTyQQ4+uhTU1Ox2WxkZmaSkJAAwJNPPkl6ejqPPvooV199NfPnzzdmY4XwIKq9PksnueQFn6xvYtxv3iLzuhh+cUu8K2oSAgCr1UpBQYHRZQjRnvZPGl0ij+qW8e/jTXJMMJv3HjO6FCGE6NY8KtwBpo4cRNGxU5RUyVAEQghxuTwu3KeNDANg8+dy9C6EEJfL48I9OqQfsSH92CThLoQQl83jwh1g6sgw8g5Ucrqh2ehShBCiW/LMcI8Po9Fml7tVhRDiMnlkuE+IDsbf1yz97kIIcZk8Mty9TV5cf1Uomz8/Jk9nEkKIy+CR4Q4wZWQYx042sPtIrdGlCCFEt+Ox4X7jiFCUkksihRDicnhsuIf09yUpKlAuiRRCiMvgseEOMHVEGDtLaqg42WB0KUII0a14drjHO+5W3fKFHL0LIcSl8OhwHxU+gMED+ki/uxBCXCKPDnelFFNGhvF+0XF5gIcQQlwCjw53cAwkdqqhma2HqowuRQghug2PD/drLAPxMXuxScZ4F0KILvP4cPfzMXPN8IFs/vyo0aUIIUS34fHhDo6umUOVZzhYccroUoQQolvoFuE+RR7g0W2VlJQwZcoU4uPjSUhI4JlnngGgqqqKlJQU4uLiSElJobq6GgCtNYsWLcJisZCYmMj27dtbl5WdnU1cXBxxcXFkZ2e3tm/bto0xY8ZgsVhYtGiRjEckBN0k3COD/BgxyJ9PiiuNLkVcIrPZzFNPPcXevXvJy8tj+fLl7Nmzh2XLljFt2jSKioqYNm0ay5YtA2D9+vUUFRVRVFREVlYWCxcuBBwfBkuWLOGTTz4hPz+fJUuWtH4gLFy4kKysrNb5cnNzDdteITxFtwh3gNvGhrNp7zGOn5K7VbuT8PBwxo0bB4C/vz/x8fGUlZWRk5NDRkYGABkZGaxduxaAnJwc5s2bh1KKSZMmUVNTQ3l5ORs2bCAlJYXg4GCCgoJISUkhNzeX8vJyamtrmTx5Mkop5s2b17osIXqzbhPuN40ahF3D+l1fGV2KuEyHDh1ix44dTJw4kaNHjxIeHg44PgCOHXN0uZWVlREVFdU6T2RkJGVlZZ22R0ZGXtAuRG/XbcJ9xCB/4sL685+dR4wuRVyGU6dOMWvWLJ5++mkGDBjQ4XTt9ZcrpS65vT1ZWVlYrVasVisVFRWXUL0Q3U+3CXelFLcmRrD1UBVfnag3uhxxCZqampg1axZ33303d9xxBwCDBg2ivLwcgPLycsLCHCfNIyMjKSkpaZ23tLSUiIiITttLS0svaG/PggULKCgooKCggNDQUKdvpxCepNuEO8CtY8PRGt78rNzoUkQXaa2ZP38+8fHxPPzww63taWlprVe8ZGdnM3PmzNb2lStXorUmLy+PgIAAwsPDSU1NZePGjVRXV1NdXc3GjRtJTU0lPDwcf39/8vLy0FqzcuXK1mUJ0atprV31colbnn5Pf2v5B65avHCy999/XwN6zJgxeuzYsXrs2LH6zTff1MePH9dTp07VFotFT506VVdWVmqttbbb7fqBBx7QsbGxevTo0Xrr1q2ty1qxYoUePny4Hj58uH7xxRdb27du3aoTEhJ0bGysfvDBB7Xdbr9oXePHj3f+xgrhHE7JYKVdd02wSxb8/JYDPJn7Oe//bApRwX6uWIXoBaxWKwUFBUaXIUR72j9pdIm6VbcMwK2JjisspGtGCCE61u3CPSrYj6SoQLlqRgghOtHtwh3gtrER7D5SK2PNCCFEB7pluH9zTDhKwRufSteMEKLncOZl3t0y3AcH9GFCdDBvfCpdM0KInuMnr+502rK6ZbgD3JYYzr6jp/jiq5NGlyKEEFfsWG09Hx047rTlddtwv2VMOF4KObEqhOgR3vi0HLsTLyDvtuEe0t+Xa4aH8ManR2T8biFEt5ez8wgJER2Pu3Spum24g2MY4EOVZ9hVVmt0KUIIcdkOHT/NzpIaZia1Py7S5ejW4Z6aMBizl5ITq0KIbu31nUdQynGZt7N063AP9PPh+qtCeePTcumaEUJ0S1prcgrLSI4OJjygr9OW263DHRzDEZTV1LH9cI3RpQghxCXbU17LgYrTzEwa4tTldvtwTxk1CB+zl1w1I4Toll4vPIK3SXHL6MFOXW63D3f/Pt5MGRHKus/KsTnzOiIhhHAxu13z+s4j3HBVKEH9fJy67G4f7uA4CXHsZAP5xVVGlyKEEF229VAV5SfqnXoi9aweEe5TR4YxaIAv7xfJczGFEN1Hzs4j9PU2kTJqkNOX3SPC3c/HzDfiQln58Zecbmg2uhwhhLioxmY76z4r5+aEQfj5mJ2+/B4R7gDpE6I41dAs17wLIbqF94sqqDnT5NQbl9rqMeE+flgQcWH9eTm/xOhShBDionIKjxDk58034kJdsvweE+5KKe5KHsrOkhp2HzlhdDlCCNGh0w3NvLXnKDPGhONtck0M95hwB7hj3BB8zV6slqN3j5GZmUlYWBijR49ubVu8eDFDhgwhKSmJpKQk1q1b1/re0qVLsVgsjBgxgg0bNrS25+bmMmLECCwWC8uWLWttLy4uZuLEicTFxTF37lwaGxvds2FCXIG39hwlMTKAb13tmi4Z6GHhHujnwzfHhLN2RxlnGuXEqie45557yM3NvaD9oYceorCwkMLCQmbMmAHAnj17WL16Nbt37yY3N5cHHngAm82GzWbjwQcfZP369ezZs4dVq1axZ88eAB555BEeeughioqKCAoKYsWKFW7dPiEux8ufHOZobT3WYcEuW0ePCneAuyYO5WRDM2/slEfweYLrr7+e4OCu/QDn5OSQnp6Or68vMTExWCwW8vPzyc/Px2KxEBsbi4+PD+np6eTk5KC1ZvPmzcyePRuAjIwM1q5d68rNEeKK7T92ivxDVcydMBSllMvW0+PC3TosCEtYf17OP2x0KaITzz77LImJiWRmZlJdXQ1AWVkZUVFRrdNERkZSVlbWYXtlZSWBgYGYzeZz2juSlZWF1WrFarVSUSH3RAhjvFJQgtlLMWu8c8eSOV+PC/ezJ1YLS2rYc0TGefdECxcu5MCBAxQWFhIeHs6Pf/xjgHZH9lRKXXJ7RxYsWEBBQQEFBQWEhrrmCgUhOtPYbOdf20qZFh9GmH8fl66rx4U7wKxxQ/Axe7F6qxy9e6JBgwZhMpnw8vLivvvuIz8/H3AceZeUfH0yvLS0lIiIiA7bQ0JCqKmpobm5+Zx2ITzVW3uOUnm6kfTkoS5fV48M97MnVl/bXkZdo83ocsR5ysu/Ph/y2muvtV5Jk5aWxurVq2loaKC4uJiioiKSk5OZMGECRUVFFBcX09jYyOrVq0lLS0MpxZQpU1izZg0A2dnZzJw505BtEqIrVm89zJDAvlzvomvb23L+Pa8e4q7koby2o4z/fHqEOdaoi88gXOKuu+5iy5YtHD9+nMjISJYsWcKWLVsoLCxEKUV0dDR/+ctfAEhISGDOnDmMGjUKs9nM8uXLMZlMgKOPPjU1FZvNRmZmJgkJCQA8+eSTpKen8+ijj3L11Vczf/58w7ZViM6UVJ3h/aLj/OimOExerjuRepZy4ROMDB1/V2vNTf/7LgP6evPaA9caWYrwQFarlYKCAqPLEL3IUxu/4Nl39vPhI1OJCOz0iUtOSf4e2S0DX59Y3XG4hr3lcmJVCGGcZpudVwpKuOGq0IsFu9P02HAHmDUuEh+TF6vlskghhIHe3VfB0doG0ie4/kTqWT063IP6+XDLmMH8e4ecWBVCGGdVfgkh/X2ZFh/mtnX26HAH+HbyUPy8TeTuljtWhRDud6TmDLV1TXw7Ocplg4S1p8eHe3JMMCH+vjy/5QB2ecaqEMLNXso7TMGXVdzp5qv2eny4K6X43jdi2Hf0FFv2HTO6HCFEL1LXaGNV/mFSRg0iKtjPrevu8eEOcGtiBBEBffjzuweNLkUI0YusLSyj5kwT914b4/Z194pw9zZ5Mf8bseQXV7H9cLXR5QghegGtNX/7sJhR4QOYGOO6oX070ivCHRzPWA3o681f3j1gdClCiF7gw/2V7Dt6inuvjXbp0L4d6TXh3s/XzLzJw9i45ygHKk4ZXY4Qood78cNiBvbz4baxxgxm12vCHSDjmmi8TV688L70vQshXKf4+Gk2f36MuycNo4+3yZAaelW4h/T35c7xkfxrWxnHTtYbXY4QoofK/ugQ3ibFdya5747U8/WqcAe47xuxNNnt/P3DQ0aXIoTogWrrm3i1oIRbEyNc/kCOzvS6cI8O6cctowfzUt6XnGqQh2gLIZzr5bwviQ8fQOZ10YbW0evCHeD+64dzsr5ZBhQTQjhVfZONFz4oxs/XzJghgYbW0ivDfWxUIJNig1nxQTGNzXajy4Z4aucAABwySURBVBFC9BCr8w9z/FQjP5hiMbqU3hnuAPffMJzyE/XkFJYZXYoQogdoaLbxl/cOkhwTTLIBNy2dr9eG+41XhTIzKYLsjw7RZJOjdyHElfn39jLKT9Tzw6nGH7VDLw53pRS3Jkaw60gta7aVGl2OEKIba7bZeW7LfsZGBXKdJcTocoBeHO4AN8WHMW5oIE+/vY/6JnmYhxDi8ry+8wglVXX8cIrFkKEG2tOrw10pxSPTR3K0toGVHx8yupweKzMzk7CwMEaPHt3aVlVVRUpKCnFxcaSkpFBd7RjQTWvNokWLsFgsJCYmsn379tZ5srOziYuLIy4ujuzs7Nb2bdu2MWbMGCwWC4sWLcKFD30X4gI2u2b5O/uJDx/g1ictXUyvDneAibEDueGqUJa/c4ATdU1Gl9Mj3XPPPeTm5p7TtmzZMqZNm0ZRURHTpk1j2bJlAKxfv56ioiKKiorIyspi4cKFgOPDYMmSJXzyySfk5+ezZMmS1g+EhQsXkpWV1Trf+esSwpVyd33FgYrT/MCDjtpBwh2An6aO4ERdE399T8accYXrr7+e4OBzrx7IyckhIyMDgIyMDNauXdvaPm/ePJRSTJo0iZqaGsrLy9mwYQMpKSkEBwcTFBRESkoKubm5lJeXU1tby+TJk1FKMW/evNZlCeFqWmv+tLmI2NB+TB892OhyziHhDoweEsBtYyNY8UGxjDnjJkePHiU8PByA8PBwjh1zPCWrrKyMqKivH0cWGRlJWVlZp+2RkZEXtLcnKysLq9WK1WqloqLCFZslepm39x6j2WbnwRstmLw856gdJNxb/TjlKppsdpZv3m90Kb1ae/3lSqlLbm/PggULKCgooKCggNDQ0CsvVvRqTTY7S9fvBWCmQcP6dkbCvUV0SD/mTIji5fzDHK48Y3Q5Pd6gQYMoLy8HoLy8nLAwx4moyMhISkpKWqcrLS0lIiKi0/bS0tIL2oVwtdX5hzlYcZpfzIjHbPa8KPW8igz0X9Pi8FKKP769z+hSery0tLTWK16ys7OZOXNma/vKlSvRWpOXl0dAQADh4eGkpqayceNGqqurqa6uZuPGjaSmphIeHo6/vz95eXlorVm5cmXrsoRwldr6Jv74dhGTYoOZOtJzrpA5h9baVa9uaem6vfrapZv0Z6U1RpfSY6Snp+vBgwdrs9mshwwZol944QV9/PhxPXXqVG2xWPTUqVN1ZWWl1lpru92uH3jgAR0bG6tHjx6tt27d2rqcFStW6OHDh+vhw4frF198sbV969atOiEhQcfGxuoHH3xQ2+32i9Y0fvx452+o6DWeXL9XD3vkDf1piUtywikZrLTrrgnulhcbn6hr5OY/vseQwL6s+f41eHnYSRLhHFarlYKCAqPLEN1QWU0dU/9nCzPGhPPHuUmuWIVTQke6Zc4T0NeHn9w8gu2Ha2RYAiHEBZ7a8AUa+EnqCKNL6ZSEeztmjYvEOiyIZbmfU3Om0ehyhBAeYlfZCf69o4z518UwJLCv0eV0SsK9HV5eit98azQn6pr47w1fGF2OEMIDaK357Zt7CO7nw8IbhxtdzkVJuHcgPnwAGZOjWZV/mJ0lNUaXI4Qw2ObPj5F3sIof3RTHgD7eRpdzURLunXgoJY7Q/r48unYXNnu3PD8shHCCZpud36/bS2xIP+5KHmp0OV0i4d4J/z7ePHrrKD4rO8HL8rxVIXqtf20v5UDFaR65ZSTepu4Rm92jSgPdlhjONcMH8ofczzl+qsHocoQQbna0tp7fvrmXO64ews2jBhldTpdJuF+EUopfzxzN8ND+/Hfu5zJWuBC9iNaax9buorHZzqJpcR41pO/FSLh3gSWsPzeNGsQrBaXkFB4xuhwhhJus3/UVG/cc5aGUq4gO6Wd0OZdEwr2Lvn/DcKzDgnhs7S5Kq2VgMSF6uhNnmng8Zzejhwzge9fFGF3OJZNw7yKTl+KPc5PQwMOv7JSrZ4To4X63bg/VZxpZdkci5m5yErWt7lexgaKC/ViclkB+cRV/fV+e2iRET/Xh/uO8UlDKfd+IZfSQAKPLuSwS7pdo1rghzBgzmKc2fsGushNGlyOEcLK6Rhu/+PdnxIT040c3xRldzmWTcL9ESil+960xBPfz4Uf/LKS+yWZ0SUIIJ/rj2/s4XHWGpXeMoY+3yehyLpuE+2UI6ufD/9w5lv3HTrFs/edGlyOEcJK8g5VsLa4i89poJsUONLqcKyLhfpm+ERfKvddG8/ePDvHOF8eMLkcIcYWOn2pg0aodnKhr4uGbPXs4366QcL8Cj0wfycykCB5aXcih46eNLkcIcZnsds1D/yzkRF0Ty+8eR39fs9ElXTEJ9yvQx9vEj1NGoBR8b2UBtfVNRpckhLgMz23Zz/tFx1mclkB8+ACjy3EKCfcrNHSgH8/dPZ5Dx0+zaNUOuf5diG4m72Al//vWPmYmRZA+IcrocpxGwt0JJg8fyJKZCWz5ooInc+UE66WIjo5mzJgxJCUlYbVaAaiqqiIlJYW4uDhSUlKorq4GHON8LFq0CIvFQmJiItu3b29dTnZ2NnFxccTFxZGdnW3Itoju52w/e/TAfvzu9jHdauyYi5Fwd5K7Jw5j3uRhZL13UJ69eoneeecdCgsLWx9YvWzZMqZNm0ZRURHTpk1j2bJlAKxfv56ioiKKiorIyspi4cKFgOPDYMmSJXzyySfk5+ezZMmS1g8EITpytp+9pq6JZ7/dM/rZ25Jwd6LHbh3FNcMH8st/f8a2L6uMLqfbysnJISMjA4CMjAzWrl3b2j5v3jyUUkyaNImamhrKy8vZsGEDKSkpBAcHExQUREpKCrm5uUZugugGnn2npZ/9tgRGRfSMfva2JNydyNvkxXN3jyM8sA8LVm7jy0q5guZilFLcfPPNjB8/nqysLACOHj1KeHg4AOHh4Rw75rjUtKysjKior/tEIyMjKSsr67D9fFlZWVitVqxWKxUVFa7cLOHh3vy0nH9tK2Xe5GHcldxz+tnbknB3skA/H1ZkWEmIGMB3V+RzpKbO6JI82ocffsj27dtZv349y5cv57333utw2vbG0ldKddh+vgULFlBQUEBBQQGhoaFXVrjotj4+UMlD/ywkxN+XX86I71H97G1JuLuAJcyfH988guozjaRn5UnAdyIiIgKAsLAwbr/9dvLz8xk0aBDl5eUAlJeXExYWBjiOyEtKSlrnLS0tJSIiosN2Ic63t7yWBSsLGDrQjxUZ1m49vMDFSLi7yNioQF6aP5Hq043c9dc8yk9IwJ/v9OnTnDx5svX/N27cyOjRo0lLS2u94iU7O5uZM2cCkJaWxsqVK9Fak5eXR0BAAOHh4aSmprJx40aqq6uprq5m48aNpKamGrZdwjOVVp/hnr/l08/XTHZmMoF+PkaX5FI96/Swh0mKCuSl703kuy98QnpWHqsXTCI8oK/RZXmMo0ePcvvttwPQ3NzMt7/9baZPn86ECROYM2cOK1asYOjQobz66qsAzJgxg3Xr1mGxWPDz8+Nvf/sbAMHBwTz22GNMmDABgMcff5zg4GBjNkp4pOrTjWS8mM+ZRhuvfn8yQwJ7/u+hcuEzQeVunhY7Dlczb0U+A/v7sHrBZAYH9DG6pF7ParW2Xnopera6Rht3v5DHriO1rMxM7g4DgjnlJIB0y7jB1UODyJ6fzPFTjaRnfcxXJ+qNLkmIXqHZZueHq3awo6SGZ+YmdYdgdxoJdzcZNzSI7MyvA/6wXCYphEs12+w8nrOLwpJqFt+WwC1jwo0uya0k3N1o/LAgsjMnEB3Sj1l//phtX8pdlEK4Qn2TjYX/2M7L+SUsvMFCxjXRRpfkdhLubjZ+WDC/nBGPn4+Ju7LyeKWg5OIzCSG67HRDM/Ozt/LWnqMsSUtg/jdijC7JEBLuBrhqkD85D17LxNhgfrbmUxa/vpsmm93osoTo9mrONPKdFZ+Qd7CKp+4c2yuP2M+ScDdIoJ8Pf7tnAt+7Loa/f3SIjBfzqT7daHRZQnRbZTV1LFq1g91ltTx39zhmjY80uiRDSbgbyGzy4tFbR/HUnWMp+LKatOUfsPvICaPLEqLb+eRgJWl/+oDDVWf4+70TSE0YbHRJhpNw9wCzxkfyzwWTMCnFD1/eQdZ7B+ShH0J0gdaalR8f4u4XPiHAz5sXMiZwjSXE6LI8goS7h7h6aBD/WngNw8P68/t1n3Pnnz/iYMUpo8sSwmM1NNt45F+f8njObm64KpS1D16LJay/0WV5DAl3DzKwvy9Z3x3P03OTOFBxmlueeZ8X3j8oR/FCnOdAxSl+8upOXikoZdFUC3+dZ2VAH2+jy/IoMraMh1FK8a2rhzge+vHaZ/z2zb3sOFxD5nXRjB8m46WI3s1u1/z9o0M8mfs5fby9+Pu9E7hxRJjRZXkkGVvGg2mtyd31FU+8vptjJxuYnjCYR24ZSUxIP6NL6/ZkbJnup7T6DD999VM+PljJ1JFhLLtjDGEDeuQ4TU4ZW0bCvRs409jMC+8X85d3D9DQbOfuiUNZNC2Ogf19jS6t25Jw7z6abXZWby1h2frP0Vrz+G2jmGON6rEP2UDCvfepONnAM5v2sSq/hL7eJh6cMpw7rVGESMhfMgn37uHdfRX87s097Dt6im9PHMrCG4YTFexndFmuJuHeW+0/doq/vneQNdtLMSlFWlIE914bTUJEgNGldRsS7p5t/7GT/O7NvbzzRQVDg/345YyRpCYM7slH621JuPd2BypO8fcPD7FmWyl1TTYmxgSTeV0MU0eE4W2WC6E6I+Humb6sPM2q/MP89f1i/LxN/HCaY9AvX3PPfRxeOyTchcOJM038s+Aw2R99CTiu//3mmHBuGxvBuKFBeHn1iqOdSyLh7ll2ltTwl/cOkLvrK8xeiu99I5b518X01vNKEu7iXM02Ox8UHeefBSVs/vwYDc12IgL68M3EcG4ZHU5iZABmkxzRg4S7J7DZNe/uO0bWewfJO1iFfx8z35k0jHuvie6pV8F0lYS76Niphmbe3nOU/+w8wntFFQzo402jzc41wwdyXVwo11lCiB7o11v6MC8g4W6cL746yb+3l/LajjLC/H2pPN3I/OtiSE8eSn9fufUGCXfRVSfONPJe0XE+KDrOB/uPU1ZTB0BsSD/iBvVnbFQgSZGBJAwJIKBv77jLT8LdfbTW7D92irf2HmXD7q/YWXICs5fixhFhzBo3hJtGDcJb/qJsS8JdXDqtNYcqz5BfXMnHByrZWXqC4uOOR/5ZhwVxpKYOyyB/rgrrjyWsP5FBfkQF9yUisK9H/wLm5ubyX//1X9hsNr73ve/x85//vNPpJdxdq+ZMIwWHqvjoQCVv7T1KSZXjgCJtbDhXDw0ibWxEb+1P7woJd+EcNWca+bT0BAcqTvFp6Qn2HT3Jl8dPU99sp7llXBsFRAb3JbCvD6H+voT29yXU35fgfj7072NmQB8z/n28GdDHGz9fE328TfiavVr/NXupK+4C0lpj19Bst2O3O/612TVNzTYmTprMqn/+k0GDBnPbbbfx9P/7E7HDLdi1bp1Paw1a4efrxbdSbuAfb2xCoVBeCi/lGPrBSylMSqEUmE0Ks5cX3iaF2eTYBh+TwsvLcz/kjNBss1N8/DRffHWSvOJKthZX88XRkwBcHRVIUD8fpsWHMXVkGOEBfQ2utluQcBeuY7PZKa+tp6SqjpLqMxyprqOspo6KUw0cP9VAxckGjp9qxNukqG869ylSQ4L6UlZdd05bXFh/vqw8g5cXmJTCy0sxbmgQwf28OVhxmkA/HypO1lNWU09Ifx+O1jZgs2vs2vGy2TUTooP5pLjqnOUmxwSTf15buOkU5bYLRwccGxmAr9mLpKhA/nvhHdy+ZCWnGprZeujCZ9mOjQxgZ+mFY+uPHOzPgYpT+Ji88PU24WPyInpgP6rPNNLH2/Fh1sfbRGxIP07UNdHXx4Sfj4nBAX2w2TX9fM308zHj52PCv4+Zvj5m+vuaHO2+Zvp5mzB54F9IWmtqzjRxuOpM6+urE/XsKKlm39FTNDbbSY4OZveRE4wbFkRydDATYoIZGxlAXx/pR79Enh3uCQkJum9fz/+UrqioIDQ01OgyLspT67TZHcFr0xq7XVNdcwL/AQOw2zV2vj7aVi3Tnv1p01pj8nIcKdfWNdG/j7n16LrtEb5q+Y8CTF6KswNkKkAp8FKK06fPUF9fx8CBA1HA6dOnqG9oIGSgY1zvs4s7WVvLidpalN1GfX0dlhEjQdOmJgBHjQrlOOpvqVW3vK8Am9Zo/fW2eSlosn39F4Jda7zNXtQ12lo/nPy8TZxutJ2z77xNXhc8XlEpx7q9WrbNSzdjMvs4vvZSeJu80Frj1fLXhZdSmFsudXX85XF2f6mWZdH6ntmkaLbZHbW3bM/Z3//W76F2DM6lgcZmO002x19vNrud8wcnPXvys4+3iab604QFB+LrbXJOMrmAp/4OnW/btm27tdajr3Q5LvtI7du3b7fo0+wufa9SZ8deffVVNmzYwAsvvADASy+9RH5+Pn/60586nKdfv37s27XTXSVis2vqmmycbmjmdEMzZxptnGpoavnX0X6yronTjc3ntG18cy1J10/nTKPj68ggP3aW1lDXaKOh2fHBYI35+i+auLB+FB073brekYP9KT9Rx/hhwVxrGcirBaU02ewcqPh6molt5vcC+pq9GD8siKrTjYT6+xLS35eQ/j5EBvkRHtCHoQP9iAryo1+bK1u6w89nd6gRQClV74zlyN9LotuLjIykpKSk9evS0lIiIiI6ncdsdu+PvslL0d/XfMmX+lmfuo/V/7ek3fdsdk19k80R9DY7jc12GppsNNk0TXY7zTaNXTv+NXspwgb0YeRgf0xKYWo5h+Bt8qKP2Ys+Pib6t3QNefKJc9F1Eu6i25swYQJFRUUUFxczZMgQVq9ezcsvv9zpPHFxcW6qznVMXqq1r76rYkPlSUW9hcvCfcGCBa5atFNJnc5lRJ1ms5lnn32W1NRUbDYbmZmZJCQkdDqP7E/n6g51docaW2Q5YyFytYwQQngWp5yTls41IYTogSTchRCiB7qicFdK3amU2q2UsiulrG3fW7p0KRaLhREjRrBhw4Z25y8uLmbixInExcUxd+5cGhsbr6ScLpk7dy5JSUkkJSURHR1NUlJSu9NFR0czZswYkpKSsFqt7U7jSosXL2bIkCGtta5bt67d6XJzcxkxYgQWi4Vly5a5uUr46U9/ysiRI0lMTOT222+npqam3emM2p8X2z8NDQ3MnTsXi8XCxIkTOXTokNtqAygpKWHKlCnEx8eTkJDAM888c8E0W7ZsISAgoPVn4de//rVbazzrYt9DrTWLFi3CYrGQmJjI9u3b3V7jF1980bqfkpKSGDBgAE8//fQ50xi1PzMzMwkLC2P06K8vYa+qqiIlJYW4uDhSUlKorr7whjoApVSGUqqo5ZXRpRXqltuzL+cFxAMjgC2AtU37qMTERF1fX68PHjyoY2NjdXNzsz7fnXfeqVetWqW11vr+++/Xzz333AXTuNLDDz+slyxZ0u57w4YN0xUVFW6tp60nnnhC/+EPf+h0mubmZh0bG6sPHDigGxoadGJiot69e7ebKnTYsGGDbmpq0lpr/bOf/Uz/7Gc/a3c6I/ZnV/bP8uXL9f3336+11nrVqlV6zpw5bq3xyJEjetu2bVprrWtra3VcXNwFNb7zzjv6m9/8plvras/Fvodvvvmmnj59urbb7frjjz/WycnJbqzuQs3NzXrQoEH60KFD57QbtT/fffddvW3bNp2QkNDa9tOf/lQvXbpUa6310qVLz/7+nJ+zwcDBln+DWv4/6Pzpzn9d0ZG71nqv1vqLdt6amZ6ejq+vLzExMVgsFvLz8y/4UNm8eTOzZ88GICMjg7Vr115JOZdEa80rr7zCXXfd5bZ1Olt+fj4Wi4XY2Fh8fHxIT08nJyfHrTXcfPPNrdeMT5o0idLSUreuvzNd2T85OTlkZDgOhGbPns2mTZta79p0h/DwcMaNGweAv78/8fHxlJWVuW39zpSTk8O8efNQSjFp0iRqamooLy83rJ5NmzYxfPhwhg0bZlgNbV1//fUEBwef09b256+TDEwF3tJaV2mtq4G3gOkXXeHF0r8rLy48cn8W+E6br1cAs8+bJwTY3+brKGCXM+rpYs3XAwWdvF8MbAe2AQvcVVeb9S8GDgGfAi/Szic1MBt4oc3X3wWedXetbdb/n7bfd6P3Z1f2D7ALiGzz9QEgxKD9Fw0cBgac134jUAnsBNYDCQbV1+n3EHgDuK7N15va5oIB9b4I/KCddsP2Z8v3eFebr2vOe7+6nXl+Ajza5uvHgJ9cbF0Xvc5dKfU2MLidt36lte7oMLG9S3nOPxzqyjSXpYs13wWs6mQx12qtjyilwoC3lFKfa63fc0Z9XakTeB74DY598hvgKSDz/EW0M6/TDzu7sj+VUr8CmoF/dLAYl+/Pdhj6c3gplFL9gX8BP9Ja15739nZgmNb6lFJqBrAWMOIurIt9Dz1iXwIopXyANOAX7bztKfuzqy5rv1403LXWN11GMaU4jsTPigSOnDfNcSBQKWXWWjd3MM1luVjNSikzcAcwvpNlHGn595hS6jUgGXBqGHV13yql/orjqOh8XdnPV6wL+zMDuBWYplsOLdpZhsv3Zzu6sn/OTlPa8nMRAFThRkopbxzB/g+t9b/Pf79t2Gut1ymlnlNKhWitj7uzzi58D93y89hFtwDbtdZHz3/DU/Zni6NKqXCtdblSKhw41s40pTj+2jgrEkdvSadcdSnk60C6UspXKRWD41PxnE73lhB4B8efzgAZgLs6jG8CPtdat9tBrJTqp5TyP/v/wM04/nx3m5Zv9Fm3d7D+rUCcUiqm5UglHce+dxul1HTgESBNa32mg2mM2p9d2T+v4/jZA8fP4uaOPqBcQTmGwFwB7NVa/28H0wxumQ6lVDKO39tKd9XYst6ufA9fB+Yph0nACa21UZ3uHf5l7gn7s422P38dZeAG4GalVJBSKgjHvm//EsS2rrD/6HYcnyoNwFFgQ5v3foWj//IL4JY27euAiJb/j8UR+vuBVwFfN/V7/R34/nltEcC6NnXtbHntxtH94O7+wpeAz3D0ub8OhJ9fZ8vXM4B9LfvaiDr3AyVAYcvrz560P9vbP8CvcXwYAfRp+dnb3/KzGOvm/Xcdjj+xP22zD2cA3z/7Mwr8oGW/7QTygGsM+D63+z08r04FLG/Z159hUH874IcjrAPatBm+P3F82JQDTS25OR8YiOPcRFHLv8Et01o593xRZsvP6H7g3q6sz5XDDwghhDCI3KEqhBA9kIS7EEL0QBLuQgjRA0m4CyFEDyThLoQQPZCEuxBC9EAS7kII0QNJuAshhAdQSk1QSn2qlOrTckfwbqXU6IvP2cHy5CYmIYTwDEqp3+K4a7ovUKq1XnrZy5JwF0IIz9AyBtJWoB7HsAi2y12WdMsIIYTnCAb6A/44juAvmxy5CyGEh1BKvQ6sBmJwDBb4g8td1kXHcxdCCOF6Sql5QLPW+mWllAn4SCk1VWu9+bKWJ0fuQgjR80ifuxBC9EAS7kII0QNJuAshRA8k4S6EED2QhLsQQvRAEu5CCNEDSbgLIUQP9P8BvQjAOpZ5a1cAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The Coefficients for } 37 x^{2} + 2 x + 40 \\text{ are }[40, 37, 2]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The number of roots are } 2 $" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{It solves to: } \\left[ - \\frac{1}{37} - \\frac{\\sqrt{1479} i}{37}, \\ - \\frac{1}{37} + \\frac{\\sqrt{1479} i}{37}\\right]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAESCAYAAAAG+ZUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1xUdf7H8dcXEFBUBBVEQAEHFfFCOF7SMi+RZoWVrZf6JaZmaWVr7W5tbW22bVptu120C5u52M22m7alaKZumSmionkHRQVELnIRRe7f3x8QawaKOjNnZvg8Hw8ewpkz57zPYfzMl+98z/corTVCCCGci4vRAYQQQlieFHchhHBCUtyFEMIJSXEXQggnJMVdCCGckBR3IYRwQlLchV1TSl2tlPpRKfVfpdRHSqkWRmcSwhFIcRf27igwUmt9HXAYGGdwHiEcgpvRAYS4EK318XN+rAJqjMoihCORlruwGKXU+0qpbKXUKaXUQaXUjHMeO33eV7VS6vVL2HYocCPwlQVyeiilFiuljiqlSpRSO5RSN17pdi9h/+FKqTKl1PvnLfdVSn2hlDpTl+1OW2USzkda7sKS5gPTtdblSqmewAal1A6t9TatdeufV1JKeQE5wCdN2ahSqi2QANytta64yLrPAGitn7nAam5ABnAdcAwYC/xbKdVHa32kKZkuc78/WwRsbWR5BeAPRAFfK6V2aq33XE4m0bxJy11YjNZ6j9a6/Ocf6766NbDqHUAu8P3PC5RSLyqlvjjn55eUUt/WfYD6EfCM1vqAhXKe0Vo/o7U+orWu0Vp/BaQD/ZuY57IppSYBRcC35y33AsYDT2mtT2utNwJfAndfyf5E8yXFXViUUuoNpVQpsB/IBlY2sFocsFT/cta6F4ARSqkopdT9wBjgdmASMAh4Wim1QSk10QqZ/YHuwLkt5AbzaK0rr2A/bYFngUcbeLg7UK21PnjOsp1A5OXuTzRv0i0jLEprPVsp9RBwNTAcKD/3caVUF2q7Q6af97yTSqlXgKWAN3CN1roYeK/uyyrqWuIfAAla6/1NyHMl/gIs1lpnKKXOf6w1cP72i4E2V7hP0UxJy11YnNa6uq5bIQiYdd7DU4CNWuv0Bp66A+gD/FFrndHU/SmlvlJKFSmlioDHgcd//lkp1egHsEopF2rfOCqABy81z6XsVykVBVwP/KOROKeBtuctawuUNJZfiAuRlruwJjd+3ec+BVhw/opKqT7Am9R+cDoN+LCpO9Fa33zOdp6pW/bMhZ6japvOi6n98HLs+d0tTclzifsdDoQAx+pa7a0BV6VUL611NHAQcFNKhWutU+ue049fdhUJ0WTSchcWoZTyU0pNUkq1Vkq5KqVGA5OBdeesMwQI5LxRMkqpQOA/wP3AbKCPUmq4lSO/CUQAt2itz9ogTzy1b3RRdV9vAV8Do6H2Q17gc+BZpZSXUmootRdsWa1LSjg3Ke7CUjS1XTCZQCHwN+C3WusV56wTB3yuta7vaqj7kHEl8Het9Zda61LgJeCv1gqqlOoK3EdtkT1xztj7u6yVR2tdqrU+8fMXtd0wZVrrvHNWmw20pHYk0UfALBkGKS6XktvsCSGE85E+d3HFlFJ+wFCgM3AW2A0ka61lqgAhDCItd3HZlFIjqB0l4kvtyJJcwJPaMdvdgE+Bl7XWpwwLKUQzJcVdXDal1EvA61rrYw085gbcDLhqrT+zeTghmjkp7kII4YRktIy4Ykqp95RS3uf8HKKU+vZCzxFCWJcUd2EJG4EtSqmxSql7gTXAKwZnEqJZs2a3jPT3NCMbN25kxIgRdOjQgR07dtCpUyejIwnhqH418dDlkJa7uGLvvfce06ZNY+nSpUydOpWxY8eyc+dOo2MJ0axJy11csVtvvZX4+Hj8/PwASEpK4r777mPHjh0GJxPCIVmk5S7FXVhFRUUF7u7uRscQwhFJt4ww1nPPPUdBQUGDj7m7u7Nu3Tq++uqKb3kqhLgMMv2AuGx9+vThlltuwdPTk+joaDp27EhZWRmpqamkpKRw/fXX88QTTxgdU4hmSbplxGW7++67ee+993jxxRfx8/MjOzubli1bEhERwbBhw2jZsqXREYVwRBbplpGWu7hs27Zt4+jRo3zwwQesX7/+F4+dPXtWirsQBpLiLi7b/fffz5gxYzh8+DBms7l+udYapRSHDx82MJ0QzZt0y4grNmvWLN58802jYwjh8LKLzxLg3VJGywj74IiFfcyYMUZHEOJXZr2/3WLbslpxr6quobyq2lqbF+KK5OfnGx1BiF/YcayQlIwii23PasV92Ivr+XDLr6b5FkII0YB/bTpCGw/LfQxqteLu7+1JwqYj1NRI17sQQlxIzqkyvt6VzW/MwRbbptWK+7ShoRw5Wcr6A7nW2oUQQjiFD7Yco1prplzd1WLbtFpxH9O7E53aerLkhyPW2oUQQji88qpqPtxylJE9/Ajp4GWx7VqtuLdwdeHuq7uyMS2fgzkl1tqNEEI4tK92ZpN/uoJ7hoZadLtWHQp558AueLi5sOSHdGvuRgghHJLWmn9tOoLJrzVDTe0tum2rFncfL3duuyqQz7dnUXimwpq7EkIIh7PtaCE/ZRUzdUgISlnk2qV6Vr+I6Z6hoZRX1fDRVhkWKYQQ51qy6QhtPd24PTrQ4tu2enHv0akNQ03tee/Ho1RW11h7d8JBlJWVMXDgQPr160dkZCR//vOfAZg6dSqhoaFERUURFRVFSkoKUPvn65w5czCZTPTt25ft2/93JV9CQgLh4eGEh4eTkJBgyPEIcamyi8+SuPsEkwZ2oZW75af5ssnEYfcMCWXG0mRW7znBzX0722KXws55eHiwbt06WrduTWVlJddccw033ngjAC+99BJ33HHHL9ZftWoVqamppKamsmXLFmbNmsWWLVsoKChg3rx5JCcno5Sif//+xMbG4uPjY8RhCdFk720+SnSXdtw9yHLDH89lk7llRvb0o2v7Vry7UT5YFbWUUrRu3RqAyspKKisrL9jnuGLFCqZMmYJSisGDB1NUVER2djarV68mJiYGX19ffHx8iImJITEx0VaHIcRlOVNexfs/HqVDaw+C27eyyj5sUtxdXBRTh4Sw/VgROy04d4JwbNXV1URFReHn50dMTAyDBg0C4Mknn6Rv377MnTuX8vJyALKysggO/t/Ve0FBQWRlZTW6XAh79tn2TE6VVTHjWssOfzyXzWaFvKN/EK093EjYdMRWuxR2ztXVlZSUFDIzM0lKSmL37t3Mnz+f/fv3s3XrVgoKCnjhhReA2j738ymlGl3ekPj4eMxmM2azmby8PMsejBBNVFOjeXdjOlHB7YjuYr3uQ5sV9zaeLbj/ujC+3Z9LdvFZW+1WOIB27doxfPhwEhMTCQgIQCmFh4cH99xzD0lJSUBtizwjI6P+OZmZmXTu3LnR5Q2ZOXMmycnJJCcn07FjR+selBCN+HZ/LkdOljL9mlCLD388l03ncx8XFUhJWSX/ktZ7s5eXl0dRUW0X3dmzZ1m7di09e/YkOzsbqG2pL1++nN69ewMQGxvL0qVL0VqzefNmvL29CQgIYPTo0axZs4bCwkIKCwtZs2YNo0ePNuy4hLiYd74/TGC7ltzYu5NV92PT2+wF+7bixj4BfLjlGA+NDKe1Bae3FI4lOzubuLg4qqurqampYcKECdx8882MHDmSvLw8tNZERUXx1ltvATB27FhWrlyJyWSiVatWLFmyBABfX1+eeuopBgwYAMDTTz+Nr6+vYcclxIXszipmS3oBT46NwM3Vum1rm99mLyWjiFsX/cBTN/di+jXW+zBBiAsxm80kJycbHUM0M3M/TmHNnhP8+MQo2nq2aGw1x7zNXlRwOwaG+PLuxnSq5KImIUQzcaK4jP/sPM6EAcEXKuwWY8g9VGdcG0pW0VlW7T5hxO6FEMLmlv54hBqtuWeIbXosDCnu10f4E9rBi39+f7jBoWxCCOFMSsur+GDLMUZHdqKLlS5aOp8hxd3FRTH9mlB2ZRaTlF5gRAQhhLCZfydn4N/Ww6oXLZ3PkOIOMD46CJ9WLfjn94eNiiCEEFZXVV3D4h/S8fJws+pFS+czrLi3dHfl7qtDWLsvl0N5p42KIYQQVpW45wQZBWe5b1iYVS9aOp9hxR1gytVdcXdz4Z3vZUIxIYTz0VoT/91hQtq3IqaXdS9aOp+hxb1Daw/GRwfy+fZM8k+XGxlFCCEsbvPhAnZlFjPj2jBcXWzXageDizvA9GvCKK+q4b0fjxodRQghLCr+u0O093Lnjv5BNt+34cXd5NeaUT39eG/zUcoqq42OI4QQFnEwp4T1B/KIGxKCZwtXm+/f8OIOMOPaMKpravh613GjowghhEXEf3eYli1cuXuwde60dDF2UdwHh/kS7t+G19alUV0jFzUJIRzbieIyVqRkMcEchI+XuyEZ7KK4K6WYcU0oR0+Wsmp3ttFxhBDiiizZlE51jWbGtWGGZbCL4g5wQ69OhHX04o31h2RKAiGEwzpVVsm6/TncMzSUYF/bTDXQELsp7i4uivuv68be7FN8l5pvdBwhhLgs7/14lNScM9x2VaChOeymuAPcGhVIgLcnb25IMzqKEEJcsrLKapb8kM6w7h3pHehtaBa7Ku7ubi7MuDaMzYcL2H6s0Og4QghxST5JziD/dAWzh3czOop9FXeASQOCadeqBW9uOGR0FCGEaLKq6hre/u4w0V3aMSjU+Fs92l1x9/JwI+7qEL7Zm0NqTonRcYQVlZWVMXDgQPr160dkZCR//vOfAUhPT2fQoEGEh4czceJEKioqACgvL2fixImYTCYGDRrEkSNH6rc1f/58TCYTPXr0YPXq1UYcjmjm/rPrOJmFZ5k93GTTCcIaY3fFHWDqkBBatnDlzf9K692ZeXh4sG7dOnbu3ElKSgqJiYls3ryZxx57jLlz55KamoqPjw+LFy8GYPHixfj4+JCWlsbcuXN57LHHANi7dy/Lli1jz549JCYmMnv2bKqr5WpnYTs1NZo3Nxyih38bRvb0MzoOYKfF3cfLnckDu/BlynEyC0uNjiOsRClF69atAaisrKSyshKlFOvWreOOO+4AIC4ujuXLlwOwYsUK4uLiALjjjjv49ttv0VqzYsUKJk2ahIeHB6GhoZhMJpKSkow5KNEsfbs/l4M5p7l/eBguNp4grDF2Wdyh9j6rSiHTATu56upqoqKi8PPzIyYmhm7dutGuXTvc3NwACAoKIisrC4CsrCyCg4MBcHNzw9vbm5MnT/5i+fnPOVd8fDxmsxmz2UxeXp4Njk40B1pr3tiQRpBPS27p29noOPXstrh3bteSW6MCWbb1GCdlOmCn5erqSkpKCpmZmSQlJbFv375frfNz/2VDF7cppRpdfr6ZM2eSnJxMcnIyHTt2tEB6IWBLegE7jhVx37Aw3Fztp6TaT5IG3HddGG4uis+2ZRodRVhZu3btGD58OJs3b6aoqIiqqioAMjMz6dy5tjUUFBRERkYGAFVVVRQXF+Pr6/uL5ec/RwhrW74jC782HvzGHHzxlW3Irou7ya8NI3v68/q6NIrPVhodR1hYXl4eRUVFAJw9e5a1a9cSERHBiBEj+PTTTwFISEhg3LhxAMTGxpKQkADAp59+ysiRI1FKERsby7JlyygvLyc9PZ3U1FQGDhxozEGJZiUlo4hlWzO4d1ioIdP6Xoib0QEuZuawML7ceZyETUeYMyrc6DjCgrKzs4mLi6O6upqamhomTJjAzTffTK9evZg0aRJ/+tOfuOqqq5g+fToA06dP5+6778ZkMuHr68uyZcsAiIyMZMKECfTq1Qs3NzcWLVqEq6t9/UcTzmnhulS8W7Zg8kBjpvW9EGXFSbostuHp/9rKtmOFbHxsJK097P79SDgAs9lMcnKy0TGEA9tzvJibXtvI3Ou78/D1Fm14WmS4jV13y/zsoVHhFJVWyq34hBB2Y+G6NNp4uDF1aIjRURrkEMU9Krgd14Z34J3vD1NaUWV0HCFEM3cwp4RVu08QNyQE75YtjI7TIIco7gBzRoVz8kwFH245ZnQUIUQzt2h9Gq3cXZl2TajRURrlMMV9QIgvg8N8if/usNxIWwhhmPT8M/xn53HuHtwVX4NuodcUDlPcobb1nltSzr+TMy6+shBCWMGi9Wn105PbM4cq7leHtcfc1Ye3NhyioqrG6DhCiGYmo6CUL3ZkMXlgFzq28TA6zgU5VHFXSvHQqHCOF5fx2Xa5alUIYVvvfH8YV6W4b5jxN+O4GIcq7gDDwjvQv2s71u3Llda7EMJmMgtL+SQ5g1nDw+jk7Wl0nItyuOKulOKBEeF8sy9HWu9CCJtZtD6NqhqYNLCL0VGaxOGKO8CIHh2JCm7HwnVplFfJyBkhhHVlFJTySXImdw7qQoB3S6PjNIlDFnelFI/EdCer6Cz/TpbWuxDCul5fl4qri2KWHdz4uqkcsrgDXBveAXNXHxatS5Nx70IIqzmSf4bPtmdx16Cu+Le1/772nzlscf+59X7iVBkfJclVq0II63h9XRotXBX3D7fvce3nc9jiDjDE1IHBYb68seEQZyuk9S6EsKzDeaf5Ykcmdw/uil8bx2m1g4MXd4C513cnr6ScD7bIjJFCCMt6fV0aHm6u3Hed4/S1/8zhi/ugsPZcY+rAmxsOyYyRQgiLScstYUVKFlOGdKVDa/u+GrUhDl/cAebGdOfkmQqWynzvQggLefXbNDxbuDrE1agNcYri3r+rD8N7dOTt/x7idLm03oUQV2b/iVPknCrjnqGhdj3z44U4RXGH2r73wtJK/vVDutFRRBNkZGQwYsQIIiIiiIyM5NVXXwXgmWeeITAwkKioKKKioli5cmX9c+bPn4/JZKJHjx6sXr26fnliYiI9evTAZDKxYMECmx+LcD5/X3OQfcdPMcOO52u/GKe5IWm/4HZcH+HHZ9trP9n2buWY77bNhZubGy+//DLR0dGUlJTQv39/YmJiAJg7dy6/+93vfrH+3r17WbZsGXv27OH48eNcf/31HDx4EIAHHniAb775hqCgIAYMGEBsbCy9evWy+TEJ55CSUcSavTk8GtMdHwdttYMTtdwBHo3pTnZxGe9slNa7vQsICCA6OhqANm3aEBERQVZWVqPrr1ixgkmTJuHh4UFoaCgmk4mkpCSSkpIwmUyEhYXh7u7OpEmTWLFiha0OQzihv60+QHsvd+5x4FY7OFlxj+jszfUR/rzzfTp5JeVGxxFNdOTIEXbs2MGgQYMAWLhwIX379mXatGkUFhYCkJWVRXBwcP1zgoKCyMrKanR5Q+Lj4zGbzZjNZvLy8qx4RMJRbUrLZ2NaPrNHmGjt4dgdG05V3AEevaEHFdU1LFyXanQU0QSnT59m/PjxvPLKK7Rt25ZZs2Zx6NAhUlJSCAgI4NFHHwVAa/2r5yqlGl3ekJkzZ5KcnExycjIdO3a07IEIh6e15sXVBwjw9uSuQY4x8+OFOF1xD+3gxcQBwXyYdIxjJ0uNjiMuoLKykvHjx3PXXXdx++23A+Dv74+rqysuLi7ce++9JCUlAbUt8oyM/91eMTMzk86dOze6XIhLtXZfLikZRTw8KhzPFq5Gx7liTlfcAeaMDMdFKf6x9qDRUUQjtNZMnz6diIgIHnnkkfrl2dnZ9d9/8cUX9O7dG4DY2FiWLVtGeXk56enppKamMnDgQAYMGEBqairp6elUVFSwbNkyYmNjbX48wrHV1Gj+tvoAoR28GN8/yOg4FuHYnUqN6OTtydShIcR/d5j7rgujZ6e2RkcS5/nhhx9477336NOnD1FRUQA8//zzfPTRR6SkpKCUIiQkhLfffhuAyMhIJkyYQK9evXBzc2PRokW4uta2rhYuXMjo0aOprq5m2rRpREZGGnZcwjGt2p1Nam4Jr0y6ihauztHmVQ31WVqI1TbcFEWlFVz74noGhfryTtwAI6MIO2Q2m0lOTjY6hrAD5VXVXP/3/xLWsTVL4gbg4tLwZzY2ZJEAzvEW1YB2rdy5/7purN2XS/KRAqPjCCHs1Aebj5FRcJbpQ0PtobBbjNMWd4B7hobQobUHLyTub3BUhRCieTtVVsnr61K5xtSBYd2dawSVUxf3Vu5uzBnZjcrqGjYckHHNQohfevu/hygsreSxMT2NjmJxTl3cofZO5UWllTy/ch9V1TVGxxFC2ImcU2Us3phObL/O9AnyNjqOxTl9cXd3c+XxG3uSmnuaT7bJzbSFELVeWXuQ6hrN727oYXQUq3D64g4wOrIT5q4+/P2bg5yRKYGFaPbSckv4eGsGdw3qSpf2rYyOYxXNorgrpXjipgjySsqJ/+6w0XGEEAZ7IfEArdzdeGikyegoVtMsijtAdBcfbuoTQPx3h8k9VWZ0HCGEQbYeKSD3VBn3XRdGewe8fV5TNZviDvCHMT2oqqmRaQmEaKZqajTPfbWXnFPlTB/q2FP6XkyzKu5d23tx9+AQPt6awcGcEqPjCCFs7Mudx9mZWczvR/eglYNP6Xsxzaq4Azw00oSXhxvzV+4zOooQwobKKqt5MXE/vQPbcttVgUbHsbpmV9x9vNx5cISJ9Qfy+CEt3+g4QggbWbwxnePFZTw5tpdTTTPQmGZX3AHihoQQ2K4lS388QnWNTEsghLPLLSnjjfVp3NDLn6u7tTc6jk00y+Lu2cKVP90Uweo9OXy6LePiTxBCOLR/fJNKeVUNj9/ofNMMNKZZFneAMb070b+rDy+tPkBJWaXRcYQQVrL/xCk+3nqMu6/uSljH1kbHsZlmW9yVUvz5ll7kn65g4fo0o+MIIaxAa83f1xxkSLcOPDwq3Og4NtVsiztA36B23NE/iHc3pnMk/4zRcYQQFrZmbw5r9uZwfYQf7Vq5Gx3Hppp1cQf4w+geuLu68FcZGmlTGRkZjBgxgoiICCIjI3n11VcBKCgoICYmhvDwcGJiYigsLARqW2Bz5szBZDLRt29ftm/fXr+thIQEwsPDCQ8PJyEhwZDjEfanrLKa577eS3f/1vzf4K5Gx7G5Zl/c/dp68sBIE9/szZGhkTbk5ubGyy+/zL59+9i8eTOLFi1i7969LFiwgFGjRpGamsqoUaNYsGABAKtWrSI1NZXU1FTi4+OZNWsWUPtmMG/ePLZs2UJSUhLz5s2rf0MQzdvijelkFJzl6ZsjcXOS+6JeiuZ3xA2YNjSUYN+WPPufvTLnu40EBAQQHR0NQJs2bYiIiCArK4sVK1YQFxcHQFxcHMuXLwdgxYoVTJkyBaUUgwcPpqioiOzsbFavXk1MTAy+vr74+PgQExNDYmKiYccl7MOJ4jIW1Q19vCa8g9FxDCHFndqhkU+O7cWBnBI+2y5zvtvakSNH2LFjB4MGDSInJ4eAgACg9g0gNzcXgKysLIKDg+ufExQURFZWVqPLRfP2QuJ+qmo0f7qpl9FRDCPFvc7oSH/GRwfy/Mr9FJypMDpOs3H69GnGjx/PK6+8Qtu2bRtdr6F74CqlGl3ekPj4eMxmM2azmbw8ue2is9p2tJAvdmRx77WhTjtXe1NIca+jlOK+67pxpryKl1bvNzpOs1BZWcn48eO56667uP322wHw9/cnOzsbgOzsbPz8/IDaFnlGxv8uOMvMzKRz586NLm/IzJkzSU5OJjk5mY4dnetmyKJWdY3m1W8P4t/Wg9nDnXeu9qaQ4n6O7v5tmDokhGVbM9iZUWR0HKemtWb69OlERETwyCOP1C+PjY2tH/GSkJDAuHHj6pcvXboUrTWbN2/G29ubgIAARo8ezZo1aygsLKSwsJA1a9YwevRoQ45JGO/jrRn8eOgkz9wSiZeTz/p4UVpra305pFNnK7T5uW907Ovf6+rqGqPjOK3vv/9eA7pPnz66X79+ul+/fvrrr7/W+fn5euTIkdpkMumRI0fqkydPaq21rqmp0bNnz9ZhYWG6d+/eeuvWrfXbWrx4se7WrZvu1q2bfvfdd5u0//79+1vluIRxTp4u1/3mrdYT3tqka2oc+v+uRWqw0g30WVrqfcNaG7a2L3ZkMvfjnSy4vQ+TBnYxOo6wArPZTHJystExhAX98fNd/Ds5k1UPX0t3/zZGx7kSFpmyUrplGnBrVCADQ3x5IXE/RaXy4aoQ9m7HsUKWbc1g2tAQRy/sFiPFvQFKKeaNi6S8sprFG9ONjiOEuIDqGs3TK/bg18aDh6/vbnQcuyHFvRERAW2ZMiSEhevT2HFMrngUwl59lHSMn7KKefKmXrRu7h+inkOK+wU8ODIc/zaePPHFbrlyVQg7lFdSzqrd2Vwf4cctfQOMjmNXpLhfQGsPN/58Sy/2ZZ/iX5uOGB1HCHGev369l6T0Ah6/MaLRi9eaKynuFzGmdydG9OjI3785yPGis0bHEULU2Ziaz/KU48wabsLk13xuwtFUUtwvQinFs+N6U6M18/6zx+g4Qghqp/P90/KfCO3gxezh3YyOY5ekuDdBsG8r5owKZ/WeHNbuzTE6jhDN3hvr0zhyspTnbu2NZwtXo+PYJSnuTTTjmjDC/Vrz8poDnCmXe64KYZS03BLe/O8hbrsqkKGm5jmdb1NIcW8idzcXFozvQ/apMv7+TarRcYRolmpqNC8mHqCVuxtP3hRhdBy7JsX9EvTv6stNfQJY8kM6KTKxmBA2t2xrBv89mMuzsZF0aO1hdBy7JsX9Ej1+Y0/82njy2Ke7qKiSse9C2MqJ4jLmr9xHdBdfYqMantZZ/I8U90vUxrMFz93amwM5Jbz130NGxxGiWdBa86flP1FRXcP82/vImPYmkOJ+Ga7v5c/NfQNYuC6NtNwSo+MI4fS+2pXN2n25PHpDd0I6eBkdxyFIcb9Mz8RG0srDlcc++4maGoed3VgIu1d4poJnvtxDn0Bvpg0NNTqOw5Difpk6tPbgqZt6se1oIe9vOWp0HCGc1l++3kvx2UpeGN8XN1cpWU0lZ+oK3B4dSGy/znyxPYuMglKj4wjhdNbvzyWjoJT7r+tGr86N30Bd/JoU9yuglOKxG3uSmnuaP3y6S7pnhLCg4tJKHv98F8VnK3lwpEwxcKmkuF+hwHYteermCH48fFK6Zy7RtGnT8PPzo3fv3vXLnnnmGQIDA4mKiiIqKoqVKwakj6oAAB1ISURBVFfWPzZ//nxMJhM9evRg9erV9csTExPp0aMHJpOJBQsW2PQYhPU8+9Ve8k9X8PJvovBsIfO0Xyop7hYwwRzMdd07Mn/lfo6ePGN0HIcxdepUEhMTf7V87ty5pKSkkJKSwtixYwHYu3cvy5YtY8+ePSQmJjJ79myqq6uprq7mgQceYNWqVezdu5ePPvqIvXv32vpQhIWt3ZvDZ9szmT28G32CvI2O45CkuFuAUooF4/vg5qr4/SfSPdNUw4YNw9fXt0nrrlixgkmTJuHh4UFoaCgmk4mkpCSSkpIwmUyEhYXh7u7OpEmTWLFihZWTC2sqKq3gj1/8RM9ObXhoZLjRcRyWFHcLCfBuyZ9viSTpSAFL5MYeV2ThwoX07duXadOmUVhYe4vDrKwsgoOD69cJCgoiKyur0eUNiY+Px2w2YzabycvLs+5BiMv2zJd7KDxTwd9+0w93NylRl0vOnAWNjw5kVE8//rZ6P4dyTxsdxyHNmjWLQ4cOkZKSQkBAAI8++ihQe4Xi+ZRSjS5vyMyZM0lOTiY5OZmOHTtaNriwiMTdJ8goPMuDI0z0DpTumCshxd2ClFLMv70PvQO9eeTfKVTKfVcvmb+/P66urri4uHDvvfeSlJQE1LbIMzIy6tfLzMykc+fOjS4Xjif3VBl//HwXldU1PDBCRsdcKSnuFubX1pN7hoayM7OY176VqYEvVXZ2dv33X3zxRf1ImtjYWJYtW0Z5eTnp6emkpqYycOBABgwYQGpqKunp6VRUVLBs2TJiY2ONii8uk9aaP3y2i7OV1fxjYhQt3OQGHFdKxhdZwdg+AdzRP4hF69MY1r0jA0Ka9qFhczN58mQ2bNhAfn4+QUFBzJs3jw0bNpCSkoJSipCQEN5++20AIiMjmTBhAr169cLNzY1Fixbh6lpbABYuXMjo0aOprq5m2rRpREZGGnlY4jK8v/koGw7k8ZdxkXTrKPdDtQTVUJ+lhTTrISOny6sY++r31GjNyoevpa1nC6MjiXOYzWaSk5ONjiGAQ3mnuem17xkc1p4lUwfIjI9gkRMg3TJW0trDjX9M7MfxorM886XcWFuIhlRW1zD34xRatnDlxfF9pbBbkBR3K+rf1ZcHR4bz+fYsvtp13Og4Qtidf35/mIyCUubf3he/tp5Gx3EqUtyt7KGRJvoFt+OJz38iu/is0XGEsBub0vJ5afUBbu7bmTG9Oxkdx+lIcbeyFq4uvDIxihZuLvxt9QGq5epVITh5upzffpxCWAcv/ji2p9FxnJIUdxsI7eDFEzdG8Nn2LBkeKZo9rTW//3QXRWcreX1yNK3cZdCeNUhxt5HbowO5PTqQ19alsikt3+g4Qhjm3R+OsG5/Lk+OjZA52q1IiruNKKX4y7jehHXw4uGPU8grKTc6khA2tzurmAWr9nF9hD9Tru5qdBynJsXdhrw83Fh0VzSnzlYy9+MU6X8Xzcqpskrmr9pHREBbXrpDhj1amxR3G+vZqS3zYiPZmJbPG+vTjI4jhE1orfnDJ7vYfLiAP90UgY+Xu9GRnJ4UdwNMHBDMuKjO/GPtQTYfPml0HCGsbvHGdBL3nODxMT0ZGNre6DjNghR3Ayil+OttfQhp78Wcj3aQf1r634XzSj5SwIJV+7mhlz8zrg01Ok6zIcXdIK093Fh4ZzTtvdx5esVu6X8XTin/dDkPfriDQJ+WvPSbftLPbkNS3A3Uq3Nbpg4NYeVPJ/jbmgNGxxHCoqprNA8v20FBaQVv3BWNd0uZPM+WpLgbbOKALtw5qAtvbjjEqp+yL/4EIRzEK2sP8kPaSf4yLpLIznJXJVuT4m4H/nxLL6KC2/G7T3aSlltidBwhrtjqPSf4z87j3DMkhAnm4Is/QVicFHc74OHmypv/F01Ld1dmvreNkrJKoyMJcdkOnCjhkY9T8G7Zgsdu7Cn97AaR4m4nArxbsvDOaI6eLOXJL3ZTIx+wCgdUeKaCGUu34uXhxtt3m/FsIbfLM4oUdzsyOKw9z8ZGkpRewCtrDxodx+qmTZuGn59f/X1SAQoKCoiJiSE8PJyYmBgKCwuB2otg5syZg8lkom/fvmzfvr3+OQkJCYSHhxMeHk5CQoLNj0PUqqqu4YEPt5NTXM5bd/enk7fMz24kKe525s5BXRjWvQOvrUvjy53OfYOPqVOnkpiY+ItlCxYsYNSoUaSmpjJq1CgWLFgAwKpVq0hNTSU1NZX4+HhmzZoF1L4ZzJs3jy1btpCUlMS8efPq3xCEbT339T42HTrJ87f3IbqLj9Fxmj0p7nZGKcVzt/ZhYIgvv/9kJykZRUZHspphw4bh6/vLm4evWLGCuLg4AOLi4li+fHn98ilTpqCUYvDgwRQVFZGdnc3q1auJiYnB19cXHx8fYmJifvWGIazv31sz+NemI0y/JpQ7+gcZHUcgxd0uubu58Ob/RdOxjQczlyY3qzs45eTkEBAQAEBAQAC5ubkAZGVlERz8v1EXQUFBZGVlNbpc2M62owU8ufwnrg3vwB9vlBtv2Asp7naqfWsPFscN4Ex5FfcuTaa0osroSIbS+tcfMCulGl3ekPj4eMxmM2azmby8PItnbI4yCkp57dtUAtu1ZOHkaNxcpaTYC/lN2LEendrw2uSr2HP8FL//ZFezGEHj7+9PdnbtxVzZ2dn4+fkBtS3yjIyM+vUyMzPp3Llzo8sbMnPmTJKTk0lOTqZjx45WPIrmobi0kqlLkth+tJDFUwfg3UquQLUnUtzt3KgIf566KYJDead5IXG/0XGsLjY2tn7ES0JCAuPGjatfvnTpUrTWbN68GW9vbwICAhg9ejRr1qyhsLCQwsJC1qxZw+jRo408hGahvKqae99LJqPgLP+MG0C3jq2NjiTOIzcvdAD3DA0lPb+Ut787TCdvT+4Z6hwz602ePJkNGzaQn59PUFAQ8+bN4/HHH2fChAksXryYLl268MknnwAwduxYVq5ciclkolWrVixZsgQAX19fnnrqKQYMGADA008//asPaYVl1dRofvfJLpLSC3h1UhSDw2QKX3ukGuqztBDn70Owoeoazaz3t/HNvhzeuDOaG/sEGB3JoZnNZpKTk42O4ZBeSNzPmxsO8diYnswa3s3oOM7IIpf0SreMg3B1Ubw2+Sqiu/jw8McpJKUXGB1JNEPvbz7KmxsOcdegLtx/XZjRccQFSHF3IJ4tXHlnipkgn5bcuzRZJhkTNrV2bw5Pr9jNyJ5+zIuNlDlj7JwUdwfj4+VOwj0DaeHqQty7WznRjMbAC+NsPVLA/FX7uDa8I69PvkqGPDoA+Q05oGDfVvzrngF0aOPOrPe3U3CmwuhIwontzipm2pKtaA0vT+iHl4eMw3AEUtwdVO9Abx4b05O92aeY8u4Wis/KNMHC8tJyS5jybhJtW7bg/RmD6NDaw+hIoomkuDuwId068Nbd/TlwooSpS5I4Xd68r2IVlpVRUMpd72zBRSnenzGIzu1aGh1JXAIp7g5uRA8/Xp8cza7MYmYkbOVsRbXRkYQTyDlVxl3vbKGssob3ZwwktIOX0ZHEJZLi7gTG9O7E3yf0Y0t6Afe9v43yKinw4vIVnC7n7sVbOHm6nH/dM4CendoaHUlcBinuTmJcVCAv3N6X7w7m8dCHO6isrjE6knBABWcqmLpkK209W/DPODNXybzsDkuKuxOZMCCYZ8dFsmZvDo9+nEKVFHhxCfJPl3PnPzdzIKeEh0aFM6RbB6MjiSsgxd3JTLk6hCdu7ElG0Vke/jhFWvCiSXJLypgcv5kjJ8/w7tQBXNddZs10dDJg1QnNvK4bLi6K577eR3llNQvvjJYbFYtG5ZwqY/I/N5NdVMaSqQO5uptMBOYMpOXupGZcG8Zzt/Zm7b5cZiTIzT5Ew7KLzzIpfjM5xWUkTJPC7kykuDux/xvclZd/049Nh/KJezeJkjK50En8z7GTZ5j1/nbySspZOn0gA0NlqmRnIsXdyY3vH8Trk6PZcayIu97ZQlGpTFUgYF/2Ke5460cqq2t4b/pA+neVwu5spLg3Azf1DeDtu/tz8EQJf/h0F1lFMtlYc7b58EkmvPUjLkrxj4lRMtzRSUlxbyZGRfjz/oxB/Hj4JLct+oHdWcVGRxIGSNx9ginvJuHX1oPPZg+hu38boyMJK5Hi3oyYQ3z5bNYQ3FwUE9/+kfUHco2OJGzogy1Hmf3BNnoFtOXT+4cQKHPFODUp7s1Md/82fPHAUEI6eDEjIZmPko4ZHalBISEh9OnTh6ioKMxmMwAFBQXExMQQHh5OTEwMhYWFAGitmTNnDiaTib59+7J9+3Yjo9ud6hrN8yv38em2TIZ378iH9w7Cx8vd6FjCyqS4N0P+bT35+L6ruTa8A3/8/CdeWr0fK95L97KtX7+elJSU+nudLliwgFGjRpGamsqoUaNYsGABAKtWrSI1NZXU1FTi4+OZNWuWkbHtyqmySmYkbCX+u8P07uzN23f3p5W7XN7SHEhxb6Zae7jxzhQzkwd2YdH6Qzy1fDdllfY94diKFSuIi4sDIC4ujuXLl9cvnzJlCkopBg8eTFFREdnZ2UZGtQtH8s9w+xub+D41n+du7c1fbu1NCze5mK25kOLejLm5uvD8bb154saerN2Xy/g3N5FRUGp0LACUUtxwww3079+f+Ph4AHJycggICAAgICCA3NzazwyysrIIDg6uf25QUBBZWVm/2mZ8fDxmsxmz2UxeXp4NjsI4m9LyGbfoB/JP145h/7/BXY2OJGxM/j5r5pRSzLyuG938WvPbj1OIXbiR1yZfxbXhxs4t8sMPP9C5c2dyc3OJiYmhZ8+eja7bUJdSQzdvnjlzJjNnzgSo78d3Ru/9eIRn/rOXsA5evBNnpmt7mYu9OZKWuwBqh0r+58Fr8GvjSdy7Sby54ZCh/fCdO3cGwM/Pj9tuu42kpCT8/f3ru1uys7Px8/MDalvqGRkZ9c/NzMysf35zUlZZzQuJ+3lqxR6Gd+/I57OHSGFvxqS4i3ohHbz4fPYQxvYJ4IXE/cz+YLshUxacOXOGkpKS+u/XrFlD7969iY2NJSEhAYCEhATGjRsHQGxsLEuXLkVrzebNm/H29q7vvmkuDuWd5rY3NrF00xEeiQknfoqZNp4tjI4lDCTdMuIXvDzceH3yVUQFt2Ppj0f5zVs/smB8X6KC29ksQ05ODrfddhsAVVVV3HnnnYwZM4YBAwYwYcIEFi9eTJcuXfjkk08AGDt2LCtXrsRkMtGqVSuWLFlis6z24NNtmTy9Yjcebi68NvkqRkX4Gx1J2AFlxT+97W9snbgkW48U8NtlKZw4VcZvR4Uze4QJV5df92U7IrPZXD/E0lGdLq/i6eW7+XxHFoNCfXl10lV08vY0Opa4chb5TybFXVxQ8dlKnlq+my93Hsfc1Yd/TIwi2LeV0bGumKMX958yi5izLIWjJ88wZ1Q4D40Md5o3XiHFXdjQ8h1ZPLV8NwDP3hrJrVGBDY5IcRSOWtwrqmp4c8Mh1u7LIf90Of+YGMXgMJmD3clY5D+W9LmLJrn1qkD6d/Vh7scpPPLxTrYcLuCRmO74tZVuAFv5KbOY33+6k/0nShgX1Zn3pg2knUwjIBohLXdxSaqqa/ho6zH+8tU+PNxceGxMT+4c2AUXB+sScKSWe1llNa99m8rb3x2mvZc7f72tDzG95ENTJybdMsI4h/NO8+QXu/nx8En6d/Vh/u19HGr6WEcp7j+k5bPkh3TW7stlgjmIJ2/qhXdLGeLo5KS4C2NprflsexZ//XovJWVVzI0JJ25IKK097L+3z96Le2ZhKX/9eh+rdp8gKrgdc2O6c113Y68aFjYjxV3Yh4IzFSxYtY/vDuZTVVPDw6PCmTSwCy1c7fcaOXst7mWV1bz130O8ueEQLkrxwIhuzLg2DM8WMuFXMyLFXdiXlIwinl+5j6T0AkI7ePHYmB6Mjuxkl6Nq7K24V1bX8O/kDN7ffJTDeWeI6eXPE2Mj6Cw31GiOpLgL+6O1Zt3+XBas2k9q7mmiu7TjibERmEPs6wbM9lLcq2s0y3dk8eq3qRwrKCW6SzuevClCbljdvElxF/arqrqGT7dl8vdvDtKprSferVpw/3XdGNKtvV205I0u7jU1msTdJ/j72oOk5Z4msnNbfndDD4b36GgX50cYSoq7sH+lFVV8ui2T19elkVdSTt8gb+6/rhujIzsZekWlUcW9tKKKz7ZlsnhjOv5tPSk4U8EjMd0ZHdnJ4YaTCquR4i4cR1llNZ9vzyL+u0McOVlKt45e3DW4K7dfFUi7Vra/EMfWxf140Vk+2HKUD7Yco6i0kn7B7bhvWJjhb3LCLklxF46nukazes8Jvtmbwxc7snB3deGGSH8mDghmaLcONmu92qK4l1dV8+2+XD5JzmBnRjGllVUM7+7HvcNCie7iI90vojFS3IVj23v8FP9OzuCLHVkUn60ksF1L7ugfxLiozoR1bG3VfVuruGut2ZlZzPIdWSxPyaKotJJObT0Z3z+QyQO6EOQEk64Jq5PiLpxDWWU13+zN4d/JGSSln8TNxYWAdi0Z2dOPkT396N/Vx+Jj5i1Z3Cuqath8+CTf7M3hm705lFdWU15dw8iefvzGHMw1pg7S9SIuhRR34XxOFJexanc26/bnsvnwSSqrNW093biuhx+jevoR3cWHYN+WV9ylcSXFvaZGs/9ECVvST5J8pICNaScpPluJZwsXruvekZhenYiJ8Me7lUwTIC6LFHfh3E6XV7ExNY9v9+Wy/kAe3Tp6sSW9AJ9WLegT1I5+Qd70DWpH36C2+LXxvKSC39TiXl2jOXLyDPuzS9h/4hQFZyr4z87jnCqrAiDIpyU39u7EoND2XBPeQa4kFZYgxV00HzU1mv05p9h+tIhdmUXsyizmYE4JNRoiOrUhPa+E8oJsKC2gV9dO3DJqKEHtWuLr5U4bzxa09nTDs4ULLqqGFrqGEcOvY9W6jZytquF0WRWnzlaSfaqME8VlnKj7t6KqhuSjBZRV1gDg6qKI6eVPu5YtGBTmy8DQ9gTKFaTC8qS4i+attKKKPcdPcTi3hMdfWMTV199EQTnsz8iDFi0x+XmRlnsGgIEhvhwvOovJ34t9WcUceudhuk5/jZNnKgC4KrgdOzKKAGjv5Y5/W09CO7bCv01LIgLaEBHQFpNfa2mZC1uQm3WI5q2VuxsDQnypyj5A99M7+XDWiwDMnz+fCu3CnXfN5uSZCk6draSyWlNaUQVak3HyNN6tWvDYmB54tHDFy90NXy93OrT2wK+thxRw4RSkuAuHl5WVRXBwcP3PQUFBbNmyhXD/NoQ3sP5vBnTBvMydCQO62C6kEDZmtW6ZyMhI3bKl/fdH5uXl0bGj/c+TLTkbV1hYyKlTp+jatSsAJ0+e5MyZM3Tp8svinZeXR35+PgCVlZX07dvXpjkvh/zeLccRMgJs27Ztj9a69xVvSGttla/+/ftrRyA5LcuInJs2bdI33HBD/c/PP/+8fv755y/4HDmfluUIOR0ho9ZaA8naAjXYfu+mIEQTDRgwgNTUVNLT06moqGDZsmXExsYaHUsIQ0mfu3B4bm5uLFy4kNGjR1NdXc20adOIjIw0OpYQhrJacZ85c6a1Nm1RktOyjMo5duxYxo4d2+T15XxaliPkdISMdeItsREZ5y6EEPbFIuPcpc9dCCGc0BUVd6XUb5RSe5RSNUop87mPzZ8/H5PJRI8ePVi9enWDz09PT2fQoEGEh4czceJEKioqriROk0ycOJGoqCiioqIICQkhKiqqwfVCQkLo06cPUVFRmM3mBtexpmeeeYbAwMD6rCtXrmxwvcTERHr06IHJZGLBggU2Tgm///3v6dmzJ3379uW2226jqKiowfWMOp8XOz/l5eVMnDgRk8nEoEGDOHLkiM2yAWRkZDBixAgiIiKIjIzk1Vdf/dU6GzZswNvbu/618Oyzz9o0488u9jvUWjNnzhxMJhN9+/Zl+/btNs944MCB+vMUFRVF27ZteeWVV36xjlHnc9q0afj5+dG79/9GORYUFBATE0N4eDgxMTEUFhY2+FylVJxSKrXuK65JO7ySoTZABNAD2ACYz1neC9gJeAChwCHAtYHn/xuYVPf9W8AsSwwBuoT8LwNPN/LYEaCDLfOct/9ngN9dZB3XunMbBrjXnfNeNs55A+BW9/0LwAv2cj6bcn6A2cBbdd9PAj62ccYAILru+zbAwQYyDge+smWuy/kdAmOBVdR2KwwGthic1xU4AXS1h/MJDAOigd3nLHsReLzu+8cb+v8D+AKH6/71qfve52L7u6KWu9Z6n9b6QAMPjQOWaa3LtdbpQBow8NwVVO0UfiOBT+sWJQC3XkmeS1G3/wnAR7bapxUMBNK01oe11hXAMmrPvc1orddoravqftwMBNly/xfRlPMzjtrXHtS+FkcpG94iSWudrbXeXvd9CbAPCLTV/i1sHLBU19oMtFNKBRiYZxRwSGt91MAM9bTW3wEF5y0+9/XXWA0cDXyjtS7QWhcC3wBjLrY/a/W5BwIZ5/ycya9fsO2BonMKQ0PrWNO1QI7WOrWRxzWwRim1TSll1MfsDyqldiml3lVK+TTweFPOsy1No7bl1hAjzmdTzk/9OnWvxWJqX5s2p5QKAa4CtjTw8NVKqZ1KqVVKKaPGeV7sd2hvr8dJNN54s4fzCeCvtc6G2jd6wK+BdS7rvF50KKRSai3QqYGHntRar2jsaQ0sO3/0TFPWuSxNzDyZC7fah2qtjyul/IBvlFL76955LeZCOYE3gb9Qe07+Qm0X0rTzN9HAcy0+Sqkp51Mp9SRQBXzQyGasfj4bYOjr8FIopVoDnwG/1VqfOu/h7dR2LZxWSo0FlkOD0+ZY28V+h3ZxLgGUUu5ALPDHBh62l/PZVJd1Xi9a3LXW119GmEwg+Jyfg4Dj562TT+2fbW51LaaG1rksF8uslHIDbgf6X2Abx+v+zVVKfUHtn/gWLUZNPbdKqX8CXzXwUFPO8xVrwvmMA24GRum6TsIGtmH189mAppyfn9fJrHtdePPrP52tSinVgtrC/oHW+vPzHz+32GutVyql3lBKddBa59syZxN+hzZ5PTbRjcB2rXXO+Q/Yy/msk6OUCtBaZ9d1YeU2sE4mtZ8T/CyI2s85L8ha3TJfApOUUh5KqVBq3xWTzl2hrgisB+6oWxQHNPaXgKVdD+zXWmc29KBSyksp1ebn76n90HC3jbL9nOHcvsrbGtn/ViBcKRVa11KZRO25txml1BjgMSBWa13ayDpGnc+mnJ8vqX3tQe1rcV1jb1DWUNe/vxjYp7X+eyPrdPr5cwCl1EBq/9+etFXGuv025Xf4JTBF1RoMFP/c5WCARv8yt4fzeY5zX3+N1cDVwA1KKZ+67tkb6pZd2BV++nsbte8q5UAOsPqcx56kdqTCAeDGc5avBDrXfR9GbdFPAz4BPKz1SfV5uf8F3H/ess7AynNy7az72kNt94OtP1l/D/gJ2FX3Agg4P2fdz2OpHWFxyKCcadT2B6bUfb11fk4jz2dD5wd4lto3IwDPutdeWt1rMczG5+8aav/E3nXOORwL3P/zaxR4sO687aT2Q+shBvyeG/wdnpdTAYvqzvVPnDOCzsZZW1FbrL3PWWb4+aT2zSYbqKyrm9Op/XznWyC17l/funXNwDvnPHda3Ws0DbinKfuz5hWqQgghDCJXqAohhBOS4i6EEE5IirsQQjghKe5CCOGEpLgLIYQTkuIuhBBOSIq7EEI4ISnuQghhB5RSA+omCvSsuyJ4j1Kq98Wf2cj25CImIYSwD0qp56i9arolkKm1nn/Z25LiLoQQ9qFuDqStQBm10yJUX+62pFtGCCHshy/Qmtq7cnleyYak5S6EEHZCKfUltXcMC6V2ssAHL3dbF53PXQghhPUppaYAVVrrD5VSrsAmpdRIrfW6y9qetNyFEML5SJ+7EEI4ISnuQgjhhKS4CyGEE5LiLoQQTkiKuxBCOCEp7kII4YSkuAshhBOS4i6EEE7o/wFdug7l1pIQdwAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The Coefficients for } x^{2} + 3 x + 4 \\text{ are }[4, 3, 1]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{The number of roots are } 2 $" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle \\text{It solves to: } \\left[ - \\frac{3}{2} - \\frac{\\sqrt{7} i}{2}, \\ - \\frac{3}{2} + \\frac{\\sqrt{7} i}{2}\\right]$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAETCAYAAADNpUayAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVyVZf7/8dfFDioICgoibuCGKx7Fpk1zSc1kNDOdFkwdJ6spbWpyZn4z35oWtaZ92mjM1CktrdQpM03TNFfcVwTBBURZZJf9XL8/QIccVIRzzn3O4fN8PM5Dzn3uc98fbo5vbq77uq9Laa0RQgjhXFyMLkAIIYTlSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4IQl3IYRwQhLuwq4opW5SSm1TSm1SSi1RSrkbXZMQjkjCXdibU8AdWuvbgWQgxuB6hHBIbkYXIERNWuuzNZ5WAGajahHCkcmZu7BLSqkOwEjgGwtt799KqXSlVL5S6rhSapoltlvHfUcopUqUUv+21T6FUDK2jLA3SilfqkL9t1rrhDqs/xyA1vq5a6wTCSRprUuVUl2BjcBdWuvd9azxuvusse5awBs4pbV+oD77E+JGyZm7MIRS6hWl1Nc1nr+qlFpffQF1CfBcXYK9rrTWh7XWpZeeVj861bGeelNKTQRygfUN2Y4QN0rCXRhlHjBYKdVHKfUIMAIYB0wEooG/KaU2KqXus9QOlVLvKaUuAseAdGD19erRWpc3YH++wN+BPzSgbCHqRS6oCkNorbOVUm8CiwA/4BatdR6wuPphjX0+qpT6PXATMAgorfHa1eppiBeA+VrrM0qpBm5KiBsjZ+7CSHuBnsCftNZnbuSNSqlvlFK5SqlcYDYw+9JzpdRVL8JqrSu11luAUGDGjdRzI/tUSvUBhgJv3Mj3JYSlyAVVYQilVE/ge2AtEKq1HtqAbT0Hdbu4WeM9/wKKtNZP1qee6+1TKTUTeAkoqF7UFHAFjmqto+papxD1JWfuwuaUUm2A/wCPAI8CPZVSg6y4vyCl1ESlVFOllKtS6k5gErDBivXEUXXBtk/14wPgW+DOBm5XiDqRcBc2VX2RcTXwutZ6ldb6IvAqVWe51qKpaoJJBXKAfwAztdYrrVWP1vqi1vrcpQdQCJRorTMb9J0IUUfSLCOsSikVBNwMhADFwCEgXmstd54KYUUS7sIqlFKDqbroGEDVhcoMwAvoTFVzxXLgNa11vmFFCuHEJNyFVSilXgXe0VqfruU1N2A04Kq1/tLmxQnRCEi4CyGEE5ILqsKqlFKLlVJ+NZ63V0pd81Z8pdTHSqkMpdShWl57WimllVItq58rpdTbSqkkpdQBpZR0MxQCCXdhfVuAHUqpUUqp31LVj/zN67znE6pu//8FpVRbYBhQs6lnJBBR/ZgOvG+BmoVweDL8gLAqrfWHSqnDwI9AFtC3umvgtd7zk1KqfS0vvQH8EVhZY1kMsEhXtS9uV0o1V0oFa63TLfINCOGgrHnmruUhj8WLF+uIiIjNn332mdvs2bNb9+3bN33//v3XfV9KSkpKZGRk5KXnq1at0k888cQ9Wut97dq1a5eZmZkJ6Lvuumv65s2bP7u03h133NF5165dZ43+vuUhjwY8LELO3IVVffnll2zZsoWgoCAmTZrE2LFjmTx5Mnv37q3zNi5evMhLL73E2rVr/+e12joEXG2Qrri4OOLi4gAoLi7m8OHDda5BCEcjbe7CqlasWEFQUNDl5wMGDGDHjh03tI0TJ06QkpJC7969ad++PampqURFRXHu3DlCQ0M5c+a/Y3ylpqYSEhJS63amT59OfHw88fHxeHt71+8bEsJBSLgLq3jxxRe5cOFCra95eHiwYcMGvvmmbjPo9ezZk4yMDE6ePMnJkycJDQ1lz549tG7dmjFjxrBo0SK01mzfvh0/Pz+Cg4Mt+a0I4ZCkWUZYRc+ePbn77rvx8vIiKiqKwMBASkpKSExMZN++fQwdOpQ///nPtb530qRJbNy4kaysLEJDQ3n++eeZOnVqreuOGjWK1atXEx4ejo+PDwsWLLDmtyWEw7DmTUxW27Cwfw8++CCLFy/mlVdeISgoiPT0dLy9venWrRu33Xab4c0iJpOJ+Ph4Q2sQ4iosMrOLnLkLq9i9ezenTp3i008/5ccff/zFa8XFxYaHuxDOTsJdWMUjjzzCiBEjSE5OxmQyXV6utUYpRXJysoHVCeH8pFlGWNWMGTN4/337u2lUmmWEHbNIs4z0lhFWZY/BLoS9evfHJIttS8JdCCHsQHpeMW/9kGix7Um4CyGEHfhwUzJmCzaTS7gLIYTBzueX8NnO09wTFWqxbUq4CyGEwT7clEylWfPY4HCLbVPCXQghDJRRUMKnO04xtm8bwlr4WGy7Eu5CCGGgj35KprzSzOMWPGsHCXchhDBMVmEpi7ef4td92tC+ZROLblvCXQghDPLR5mTKKsw8dodlz9pBwl0IIQxxoaiMxdtOcXfvEDoFNrX49iXchRDCAP/anExxeSW/t8JZO0i4CyGEzV0oLGVjQiZ39QwmPKiZVfYh4S6EEDb20ZYUjqbn8+SQCKvtQ8JdCCFsKKuwlIVbT3J37xAiWlnnrB0k3IUQwqY+3HSCkvJKnhxqvbN2kHAXQgibycgvYdG2U/y6bxur9JCpScJdCCFs5P1NJ6gwa564w7pn7SDhLoQQNpGeV8ynO04zPirU4nej1kbCXdidKVOmEBQURI8ePS4ve+aZZ+jatSu9evVi7Nix5ObmXn5tzpw5hIeH06VLF77//nsjShbiut778QRms+ZxK/Vrv5KEu7A7kydPZs2aNb9YNmzYMA4dOsSBAwfo3Lkzc+bMAeDIkSMsXbqUw4cPs2bNGh599FEqKyuNKFuIq0rLLWbprtNM6N+WtgGWG/nxWiTchd257bbbCAgI+MWy4cOH4+bmBsDAgQNJTU0FYOXKlUycOBFPT086dOhAeHg4O3futHnNQlzLPzckolAWH/nxWiTchcP5+OOPGTlyJABpaWm0bdv28muhoaGkpaXV+r64uDhMJhMmk4nMzEyb1CrE6eyLLItPZdKAtoQ097bZfiXchUN56aWXcHNz4/777wdA1zLnpFKq1vdOnz6d+Ph44uPjCQwMtGqdQlyyZOdp/H08eNSGZ+0AbjbdmxANsHDhQr755hvWr19/OcBDQ0M5c+bM5XVSU1MJCQkxqkQhfiEpo4APfzrB1Fs60srXy6b7ljN34RDWrFnDvHnzWLVqFT4+/70gNWbMGJYuXUppaSkpKSkkJiYyYMAAAysV4r9eX3ccb3dXHrm9o833LWfuwu5MmjSJjRs3kpWVRWhoKM8//zxz5syhtLSUYcOGAVUXVT/44AMiIyOZMGEC3bt3x83NjXfffRdXV1eDvwMh4GBqHqsPnuOJIRG0aOpp8/2r2tosLcRqGxaioUwmE/Hx8UaXIZxY7Mc72Z+ay+Y/DqaZl/uNvLX2i0Y3SJplhBDCwnYkZ7PpeCaPDup0o8FuMRLuQghhQVpr/rE2gVa+njx0U3vD6pBwF0IIC9p4PJNdJ3P4/R0ReLkbd/1Hwl0IISzEbNa8uiaBsAAfJpjaXv8NViThLoQQFrL6UDpH0vOZNSwCDzdj41XCXQghLKC80sz7G08wulcwY3q3MbocCXchhLCEpbvOcPhsPmP7tsHVxSK9GRtEwl0IIRqoqLSCt35IZED7AO7oGmR0OYCEuxBCNNj8LSlkFZby7MiuVx24ztYk3IUQogGyC0v5cNMJRkS2pl87f6PLuUzCXQghGuCdDUmUVJh5ZkQXo0v5BQl3IYSop9PZF/l0xykmmNrSKbCp0eX8goS7EELU0z/WJuDqopg5NMLoUv6HhLsQQtTDobQ8Vu0/yzQDJuKoCwl3IYSoh7nfHcPfx53pBkzEURcS7kIIcYM2JmSQkV/C03d2wdegIX2vR8JdCCFuQEWlmZdXH6W00sy9/YwdHOxaJNyFEOIGfBGfyvHzhcwe0dXwwcGuxX4rE0IIO1NYWsHr6xLo396fET1aG13ONUm4CyFEHX2w8QRZhWX85a7udjPMwNVIuAshRB2czS3mo83JxPQJoU/b5kaXc10S7sLuTJkyhaCgIHr06HF52YULFxg2bBgREREMGzaMnJwcoGq+yieeeILw8HB69erFnj17jCpbOLlXv09AA8/caV/DDFyNhLuwO5MnT2bNmjW/WDZ37lyGDBlCYmIiQ4YMYe7cuQB89913JCYmkpiYSFxcHDNmzDCiZOHkDqTm8vXeNKbe0oFQfx+jy6kTCXdhd2677TYCAgJ+sWzlypXExsYCEBsby4oVKy4vf+ihh1BKMXDgQHJzc0lPT7d5zcJ5aa158dujtGjiwaODOhldTp1JuAuHcP78eYKDgwEIDg4mIyMDgLS0NNq2/W9f49DQUNLS0mrdRlxcHCaTCZPJRGZmpvWLFk5h7ZHz7Ey5wMxhnWlmpzcs1UbCXTg0rfX/LLtaL4bp06cTHx9PfHw8gYGB1i5NOIGyCjNzvztGeFBTJvW33xuWaiPhLhxCq1atLje3pKenExRUNZVZaGgoZ86cubxeamoqISEhhtQonM+Xe85wMruIv4zqhpurY8WlY1UrGq0xY8awcOFCABYuXEhMTMzl5YsWLUJrzfbt2/Hz87vcfCNEQ1woKmPO6mPE9A5hUBfH+0vPzegChLjSpEmT2LhxI1lZWYSGhvL8888ze/ZsJkyYwPz58wkLC2PZsmUAjBo1itWrVxMeHo6Pjw8LFiwwuHrhLN5Yd5yiskoeHRxu9zcs1UbV1mZpIVbbsBANZTKZiI+PN7oMYaeOpudz19ubeeim9jw3JtLWu7fIbxJplhFCiBq01vz9P0fw9Xa3yxmW6krCXQghavj+8Dm2JWfzh2Gdae7jYXQ59SbhLoQQ1UrKK3nx26N0bd2MSQPCjC6nQSTchRCi2r82J5OaU8zf7u7ucF0fr+TY1QshhIWcyyvh3R9PMLJHa37VqaXR5TSYhLsQQgCvrU2gUmv+PKqb0aVYhIS7EKLR25lygbVHzvH08M60DXCMUR+vR8JdCNGoVVSa+dvKQzT1dOfBge2NLsdiJNyFEI3aom2nOHaugL+O7o63h6vR5ViMhLsQotHKKCjhjXXHua1zIHdGtjK6HIuScBdCNFpzvztGSUUlz91t/xNe3ygJdyFEoxR/8gJf7Unjt7d2pGNgU6PLsTgJdyFEo1NRaeavKw8T4ufF43eEG12OVUi4CyEancXbT3E0PZ+/ju6Oj4dzjnwu4S6EaFQyCkpYsuM09/YLZUSP1kaXYzUS7kKIRuWFb45yMvsiMwZ1crqLqDVJuAshGo2fjmfyn/1neXRwJ6e8iFqThLsQolEoKa/krysP0bFlE2YM6mR0OVbnnFcShBDiCu/+mMSp7It8Ni0aTzfnuRP1auTMXQjh9JIyCvhg0wnG9m3Dr8IdfzjfupBwFw7ljTfeIDIykh49ejBp0iRKSkpISUkhOjqaiIgI7rvvPsrKyowuU9gRrTV/+foQPh5u/OUu5xjOty4k3IXDSEtL4+233yY+Pp5Dhw5RWVnJ0qVLefbZZ5k1axaJiYn4+/szf/58o0sVduTLPWnsSLnA7JFdadnU0+hybEbCXTiUiooKiouLqaio4OLFiwQHB7NhwwbGjx8PQGxsLCtWrDC4SmEvcorKeHn1Ufq18+c+U1ujy7EpCXfhMNq0acPTTz9NWFgYwcHB+Pn50a9fP5o3b46bW1XfgNDQUNLS0gyuVNiLjzYnU1hSwUtje+Di4rx92msj4S4cRk5ODitXriQlJYWzZ89SVFTEd9999z/rXe3GlLi4OEwmEyaTiczMTGuXKwz2c1IW7208we/vCKdra1+jy7E5CXfhMH744Qc6dOhAYGAg7u7ujBs3jq1bt5Kbm0tFRQUAqamphISE1Pr+6dOnEx8fT3x8PIGBgbYsXdhYcVklf/rqIB1aNuG3t3U0uhxDSLgLhxEWFsb27du5ePEiWmvWr19P9+7dGTx4MMuXLwdg4cKFxMTEGFypMNrr6xI4feEic8f1xMvd+fu010bCXTiM6Ohoxo8fT1RUFD179sRsNjN9+nTmzZvH66+/Tnh4ONnZ2UydOtXoUoWB9p/JZf6WFH4THUZ0xxZGl2MYpbW21rattmEhGspkMhEfH290GcLCyivN3P3OFnIulrHuqdvx9XI3uqT6sMiVXxl+QAjhND7cdIJj5wr46CGTowa7xUizjBDCKSRlFPL2+iTu6hXMsO7ONdl1fUi4CyEcntmsmf3lAXw8XXnu7kijy7ELVgv30opKSsorrbV5IYS4bMmu08SfyuGvd3UnsFnjGWLgWqwW7r9+dyvz1hyz1uaFEAKA09kXmbP6KA9EhzEuqo3R5dgNq4V7//b+LPj5JNuTs621CyFEI2c2a55Zvh+F4tHB4U49bd6Nslq4zx7ZlbAAH/64/ABFpRXW2o0QohH7ZOtJdqRc4G93dyekubfR5dgVq4W7j4cb/7i3N2dyLkrzjBDC4pIzC3nl+2MM6RrE+H6hRpdjd6zaW2ZAhwAe/lUHFm07xdakLGvuSgjRiFSaNU8v24+nmytzxvWU5phaWL0r5DN3dqFDyyY8s/wAhdI8I4SwgH9tTmbP6Vz+HhNJkK+X0eXYJauHu7eHK/+4tzfpecW89O1Ra+9OCOHkEs8X8Nq649wZ2YoxvWsfAVTY6Camfu38+e2tHVmy8zQ/HZdxtIUQ9VNRaeYPy/bT1NONl8ZKc8y12OwO1VnDOtMpsAmvrU0gr7jcVrsVQjiRDzad4EBqHi/E9GhU86HWh83C3cvdlTfv60NyVhH/t/KQrXYrhHASR87m8db6REb3CuauXsFGl2P3bDq2TM/Q5ky7pSMr9p1l1f6ztty1EMKBlZRXMvPzfdzUqQUvxPQwuhyHYPOBwx4b3Im+Yc35f18f5Gxusa13L4RwQHO/O8bx84VMvaUj/k08jC7HIdg83N1cXXjzvj5UmDV/+GI/ZrPM6SGEuLofEzL4ZOtJptzcgds7y9y3dWXIkL/tWjTh/+7uzrbkbD7+OcWIEoQQDiCrsJRnlh2ga+tm/HFEF6PLcSiGjec+wdSW4d1b8cqaBI6dyzeqDCGEndJa8+zyA+SXlPPWxL6NdqLr+jIs3JVSzBnXE19vd2Yu3SdjvwshfuHfO06z/lgGfxrZlS6tmxldjsMxdCamFk09eXV8L3w8XHl93XEjSxFC2JGkjAJe/OYIt3cOZPKv2htdjkMyfJq9wV2D6BXanLifkll/9LzR5Qg7l5uby/jx4+natSvdunVj27ZtXLhwgWHDhhEREcGwYcPIyckxukzRAKUVlTyxZB9NPN149d5echdqPRke7lA19nu3YF+eXrafc3klRpcj7NiTTz7JiBEjOHbsGPv376dbt27MnTuXIUOGkJiYyJAhQ5g7d67RZYoGeH3tcY6k5/PKPb0IaiaDgtWXXYS7l7sr//xNX0orzMz8fC+V0j1S1CI/P5+ffvqJqVOnAuDh4UHz5s1ZuXIlsbGxAMTGxrJixQojyxQNsO1EFnGbk7k/Ooyh3VsZXY5Ds4twB+gU2JTnx0SyPfkC7/2YZHQ5wg4lJycTGBjIww8/TN++fZk2bRpFRUWcP3+e4OCq29GDg4PJyMgwuFJRHxkFJfx+yT5GRLbm/93V3ehyHJ7dhDvA+H6hxPQJ4Y0fjrPr5AWjyxF2pqKigj179jBjxgz27t1LkyZNbqgJJi4uDpPJhMlkIjNTRie1J5VmzazP91FYWs7MoZ3x9pBujw1lV+GulOLFX/egbYAPTy7ZS+7FMqNLEnYkNDSU0NBQoqOjARg/fjx79uyhVatWpKenA5Cenk5QUFCt758+fTrx8fHEx8cTGCh3OtqTdzYk8nNSNn8f00O6PVqIXYU7QDMvd96e2JeMglKeXX4AraX9XVRp3bo1bdu2JSEhAYD169fTvXt3xowZw8KFCwFYuHAhMTExRpYpbtDWpCzeWp/IuL5tuNckc6FairJieDZow/O3pLBybxrjotow+eYOlqpJOLh9+/Yxbdo0ysrK6NixIwsWLMBsNjNhwgROnz5NWFgYy5YtIyAg4JrbMZlMxMfH26hqcTUZBSWMemsLft5urHr8Fpp4uhldkj2wSN9Puw13s1kzfXE8m45n8sXvbqJvmL+l6hJCwt0OVJo1D87fwZ7TOax87BZpjvkvi4S73TXLXOLionjt3j608vXisU/3kFMk7e9COJO31yey9UQ2f4+RdnZrsNtwB/Dzcef9+/uRVVjGzM/3yfDAQjiJn5OyeHtDIuOi2nBvP2lntwa7DneAnqF+/O3u7mw6nsm70v9dCIeXUVDCk0v30SmwKS/+uocML2Aldh/uAPdHh/Hr6v7vPydlGV2OEKKeKirNzP3uGIWl5bx3fxQ+HnIB1VocItyVUrw0tiedApvyxJK9pMv0fEI4pHlrjvHVnjT+Mb43nVtJO7s1OUS4AzTxdOP9B6LoHuzL40v2Uloh478L4UhW7T/LR5tTeHBgO0b3DjG6HKfnMOEOEB7UjEnRYew+lcNzqw4bXY4Qoo6Opufz7PIDmNr589fRMm6MLThUuAOM6hnMo4M6sWTnGT7dccrocoQQ15F3sZzfLd5NMy833rs/Cg83h4sdh+SQR/kPw7swqEsgz606TLwMMCaE3ao0a578fC/pecW8/0A/gnxlfHZbcchwd3VRvDWxL22ae/PIv/fIBB9C2Kk3fzjOxoRM/u/uSPq1k7vMbckhwx3Az9uduIdMFJdV8Mi/d8sFViHszA9HzvPOhiQmmEK5PzrM6HIaHYcNd4DOrZrx2oTe7DuTy19XHJIRJIWwE0fT83liyR7G9m3D32PkRiUjOHS4A4zoEczjg8P5Ij6VL+LPGF2OEI1eZkEp0xbG4+vtweyRXfFyl4k3jOAUt4c9NawzecXl/PnrQ4Q09+bWCJmIQQgjlJRX8rvF8WQXlbL8kV/RSi6gGsbhz9yhagTJZ0d2JSKoKY9+uoekjAKjSxKi0dFaM/vLA+w5ncsbE/rQo42f0SU1ak4R7gBNPd34V6wJTzcXpnwSzwUZIlgIm3pv4wlW7DvL08M7M7JnsNHlNHpOE+4Aof4+xD1k4lx+CY8slh40QtjKmkPpvPp9AjF9QnhscLjR5QicLNwBosL8eXV8L3aevMCfv5IeNEJY26G0PGZ9vp8+bZsz755e0jPGTjjFBdUrxfRpQ3JmEW+tT6RbcDOm3drR6JKEcErpecX8fsle/H3ciXuon/SMsSNOGe4AM4dGUFBSzhvrjhPYzJOYPm2MLkkIp1JQUs6UT+Lxdnfh3d/0JaiZ9IyxJ07XLHOJUoo/juhKZBs/nl62n60nZJIPISylvNLMo5/u4fj5Ap4d2Y3uIdIzxt44bbgDeLm78tGDJtq1aMLvFu8m4Zx0kXQGlZWV9O3bl9GjRwOQkpJCdHQ0ERER3HfffZSVSU8pa6rq8niQzYlZzBnXk9s7y30l9sipwx2qJtleOGUA3u6uTF6wk/Q8mcXJ0b311lt069bt8vNnn32WWbNmkZiYiL+/P/PnzzewOuf3xrrjfLknlVlDOzPB1NbocsRVOH24A7Rp7s2Ch/tTUFLBwwt2kV9SbnRJop5SU1P59ttvmTZtGlB1FrlhwwbGjx8PQGxsLCtWrDCyRKe2dOdp3t6QxH2mtjwxRLo82rNGEe4AkSF+vP9AFEkZhfxx2QHpA++gZs6cySuvvIKLS9VHNzs7m+bNm+PmVtU3IDQ0lLS0NCNLdFprD5/j671pDOoSyItjZTAwe9dowh3g1ohAXpvQm/hTF5j1+T4qzdIH3pF88803BAUF0a9fv8vLaruP4WqhExcXh8lkwmQykZmZabU6ndG2E9k8vmQvJRVm3p0Uhbtro4oOh+S0XSGvJqZPGzILSnnx26P4eh1kzriecgbiIH7++WdWrVrF6tWrKSkpIT8/n5kzZ5Kbm0tFRQVubm6kpqYSElL75MvTp09n+vTpAJhMJluW7tAOpubx20XxtAvw4ZPJ/Wni1ehiwyE1yl+/027tyOODw1m66wzz1iQYXY6oozlz5pCamsrJkydZunQpd9xxB59++imDBw9m+fLlACxcuJCYmBiDK3UeSRmFxC7YiZ+3O4unRuPfxMPokkQdNcpwB/jD8M7cHx3GB5tO8OGmE0aXIxpg3rx5vP7664SHh5Odnc3UqVONLskppOUW89D8Hbgo+Pe0aFr7yU1KjkRZcewVu2/QrjRrnly6l61J2fxxZBcm9pepwBoLk8lEfHy80WXYrayCEibEbSczv5SlvxtIpNykZEsWaSdutGfuUDXR9usT+nB7l0Bmf3mQZTKTkxDkXizjd4t308TDjfmT+0uwO6hGf2XEw82FOeN6kllQyh+/PICHm4uMQyMarbzich6cv5OEcwXEPdSPAR0CjC5J1FOjPnO/xMvdlY8eMjGgfQBPfbGf7w6mG12SEDZXUFLO5AU7OXYunw8ejGJQlyCjSxINIOFezdvDlY8n96dP2+b8fsle1h05b3RJQthMUWkFUz7ZxcHUPN79TRR3dG1ldEmigSTca2ji6caCh/sTGeLLY5/uYdPxDKNLEsLqissqmbpwF3tO5/L2pL4Mj2xtdEnCAiTcr+Dr5c6iKdEM7daKxz7dy/qjcgYvnNfFsgr+9NUBDqbl8fqE3oySuU+dhoR7Lfx83Hl5XA86BlYNFSxt8MIZFZSUE/vxTlbtP8u8cb2kI4GTkXC/iuY+Hvx7WjS9Qv14fMleVu6TwaiE87jUK+ZSU8zo3rUP2SAcl4T7Nfh6ubNoajT92vkz6/N9LN+danRJQjRYTlEZ9/9rO4fP5vHe/VGM7iXB7owk3K+jqacbCx8ewK86teSZ5fv5bMdpo0sSot4y8kuY9NF2jp8vJO5BE3fKxVOnJeFeB94ervwr1sTtnQNZsTeNuJ9kLBrheM5cuMiED7fRsqkHH8f2Z3BX6cfuzCTc68jL3ZUPH+hHkK8nL68+xpzVR2sdS1wIe3T8fAHjP9jKhaIyZg7tzC0RLY0uSVhZox9+4EZ4urvy1sS++LOYU5cAABMoSURBVPt48OFPyWQVljHvnp64ycQFwo7tPpXDlE924enmwheP3ETX1r5GlyRsQML9Brm6KP4eE0mLph68+UMiuRfL+OdvovD2cDW6NCH+x6aEDB759x6CfD1ZPCWasBY+RpckbEROOetBKcXMoZ154dc92JCQwYPzd5B3USbdFvZlWfwZXvz2KJEhvix75CYJ9kZGwr0BHhzYjn9OiiI9r5hpi3Zx5sJFo0sSAq01b6w7zjPLD9DK14v5k00ENZOJNhobCfcGuqtXMK9N6EPCuQLGvvcze0/nGF2SaMTKKsw8vewAb61PZHy/UBY83B8/b5karzGScLeAgR1b8NWjN+Pt4crEuO0yXIEwRF5xGZMX7OTLPanMGtqZV8f3wl0u9jda8pO3kPCgpqx49GYiQ3yZ8ekePtx0QrpKCps5mVXEbz7aQWZBKf+4tzdPDo1AKYvM1iYclIS7BbVo6slnvx3I6F7BrDmUzjPLD1BSXml0WcLJbUnMIubdnzmbW8wLMT0Y3y/U6JKEHZBwtzAvd1fentiXwV2DWL47lYlx2zmfX2J0WcIJaa1Z8HMKsQt20trXi1WP38LATi2MLkvYCQl3K3BxUTwxpDMfPBDF8fMF3P3OFrnQagFnzpxh8ODBdOvWjcjISN566y0ALly4wLBhw4iIiGDYsGHk5Dj/sS6tqOTZLw/w/H+OMKRrEF8++ivaBkhXR/FfyortwtLgDBw7l89vF8WjzZrH74jgvv5tpS20ntLT00lPTycqKoqCggL69evHihUr+OSTTwgICGD27NnMnTuXnJwc5s2bd81tmUwm4uPjbVS5ZZ3NLeZvKw+xLTmbqTd3YObQzri4yGfKiVjkhyln7lbWtbUvqx67hQEdWzD7q4M8s/wAxWXSDl8fwcHBREVFAdCsWTO6detGWloaK1euJDY2FoDY2FhWrFhhZJlWtTkxk9HvbGHbiWzevK8PTw3vIsEuaiXDD9iAfxMPXh3fm1B/H97ZkMihtDzef6AfHVo2Mbo0h3Xy5En27t1LdHQ058+fJzi4anq44OBgMjKcb+5bs1nzzx+TeOOH40QENeX9B/rRKbCp0WUJOyZn7jbi6qJ4alhnFkzuz7n8Eu5+ZwtrD58zuiyHVFhYyD333MObb76Jr2/dB8GKi4vDZDJhMpnIzMy0YoWWlV1Yyqwv9vH6uuP8uk8bVjx2swS7uC5pczdAWm4xc787yn/2pzNpQFv+Oro7Ph7yR1RdlJeXM3r0aO68806eeuopALp06cLGjRsJDg4mPT2dQYMGkZCQcM3tOEqb++bETJ76Yj8BPh48eFMY90e3k2s2zk/a3B1Vm+bevD6hDzMGdWLprjPc/c4WDp/NM7osu6e1ZurUqXTr1u1ysAOMGTOGhQsXArBw4UJiYmKMKtFiyirMvLz6KA/O30lzb3fenNiHBwa2l2AXdSZn7gbbmpTFrC/2kVNUzl/u6sqDA9vLBbKr2LJlC7feeis9e/bExaXqvOTll18mOjqaCRMmcPr0acLCwli2bBkBAQHX3JY9n7mfyCzkyaV7OZSWzwMDw/h/d3XHy12GlG5ELBIAEu524EJRGX/++gAJ5woJbObJP8b3luFZrcwew91s1nyy9SRrj5zj2LkCXrmnF8NljtPGSJplnEVAEw/ev78fMwZ14ujZfO588ycWbTuJ2Sy/HxuLlKwi7ovbxt+/OYKXmwvfz7xNgl00iJy525mzucXM/uogPx3P5KaOLXhlfC+589AK7OXMvdJcNYTAq98n4Onmwv/dHcm4qDbStt64SbOMs9Ja8/muqll0OgY2IaZPG2JvaidztVqQPYR7YkYBs788yO5TOQztFsRLY3vSylcm1RAS7k4vLbeY19cm8OWeNCJDfHl5bE96t21udFlOwchwv1hWwTsbkvh812mae3vwxJAIYvqEyNm6uETCvTHQWrP64Dme/89hMgtLeXBgO54a1pnmPjK7TkMYEe6XfpYvfnuE9LwS7okK5U+jutKyqadN6xB2T8K9MSkoKee1tcfZnpxNZkEpfxjehfv6t8VVuk3Wi63DPSmjkOdWHWZLUhbdgn15ISYSU/trd9cUjZaEe2N0KC2P5/9zmF0nc+gW7MvfRnfnJhnD+4bZKtzzistZvO0kb61PxMvdlaeHd+H+6DC5fiKuRcK9sdJa8+3BdOasPkZabjH39gvlt7d1pHOrZkaX5jCsHe4l5ZUs3HqS9zaeQCkY1SOYWcM6E9hMmmDEdUm4N3Yl5ZUs3XWa174/TmFZBWP7tmHW0M7SdbIOrBXuFZVmvtqTxhs/HCc9r4RBXQL5451d6R5S9wHORKMn4S6q5BSV8f6mEyzcehKz1kwaEMZjgzrRys/b6NLslqXDvdKsWXv4HK+tO05SRiF92jZn9siuDOwoTWbihkm4i19Kzyvm7fVJnMgoZN+ZXMabQnnktk4ylEEtLBXupRWVfL0njQ9/SiYlq4jBXQK5r38Yd0a2kq6Nor4k3EXtTmcX8eFPySyLT6XCbObu3iHMGNSJrq2laeCShoZ7YWkFS3ac5l9bkjmfX0qPNr7MuD2cET1aSw8m0VAS7uLazueXMH9LCv/efoqwAB+CfL2Ivakdg7oENfoAqm+4n8sr4cvdqcRtTiavuJxfdWrBjEGduCW8pZypC0uRcBd1k3uxjK/3pvHBphOczy8lLMCHBwe2415TaKO9GepGwr3SrNl0PIPPdpxhw7HzRIX506KpB4/c3om+Yf5WrlQ0QhLu4saUV5pZd+Q8n2w9yc6UC/Rr50+ovzfjokK5uVOLRtX3ui7hnp5XzBe7Uvl812nO5pXQsqknE0yh3Ne/Le1ayPy3wmok3EX9HU3PZ/XBdBZtO0VecTlBzTyJ6RPCuKhQugU7f9v81cK9oKScH46eZ2dKDp/vOo1Zw60RLfnNgDCGdm+FeyP6BSgMI+EuGq60opIfj2Xw1Z40fkzIoLxSM7JHayKCmjK0eyt6tvFzyrbkmuFeUFzOhoQMvj2QzsbjmZRVmOka3Iw7ugQxsX+Y9DYStibhLizrQlEZ3xw4y8aETDYmZGDW0NrXi6HdgxjWrRXRHVs4xXRvWmt69oni8beXsykhk6yiUhLPF9LK15NRPYMZ3SuEvm2by3SHwigS7sJ6LhSVseFYBj8cOc9PiZlEhviy/0wefdo2Z2DHAAZ2bEFUO3+HCHutNak5xew9k8PGhEw2J2Zx4J8zCI59k66tm3Fb55YM796aqDB/CXRhDyTchW2UlFcSf/ICm5Oy2H4im4NpeZg1+Hm70aFlU3q28aNnqB892/gRHtgEdzdjAz+7sJTDZ/M5mJZHRn4J3x06R0ZBKf4+7iiluDm8JatfiGXr9p0yOYawRxLuwhgFJeXEn8zh8Nk8fkrM4nBaHkVllTTxcKW8UtMxsAmRIb609vOic6tmBPt50cq36mGJM32z2UzOxXLS80o4n19CcmYRJ7OLKK0wszEhg2Ze7qRkFQEQ3cGfVr7emNr706+dP11bNcPV1cUuZmIS4iok3IV9MJs1yVlFJJzL52BaPskZhRzPKOBMTjGmdlX9wPOKy9Fak1VYRjMvN8ICfPB0d8HHw5XWvl54uLri6gKuLi6YtaZSa8xmKK+s5GKZmYKSckorzJzPL6GgpJzTFy5SaaaquSg1jyBvyDq2E22u5KZuYTz+wDgiQ/zw83GvtWYJd2HHLBLubpbYiGjcXFwU4UFNCQ9qyl29Qi4vL680czanmPS8Ys4XlJJdWMq5vBLS80u5WFpBfnEFmQWlFJWaqTSbUQpclKLSbEZrhae7C64uClelcHdzIbCZJ20DfPDzdsfX251WzTwJae5FsK8nA/r04Id16wgNDaV///40n3ALfj4tDTwqQhhLwl1YjburC+1aNqFdS+ve8LNt2zbCw8Pp2LEjABMnTmTlypV0797dqvsVwp7JHRnC4aWlpdG2bdvLz0NDQ0lLSzOwIiGMZ7U298jISO3tbf/jiWdmZhIYGGh0GdcldV5dTk4O+fn5tGvXDoDs7GyKiooICwv7n9qysrIAKC8vp1evXjatsz7k5245jlAjwO7duw9rrXs0eENaa6s8+vXrpx2B1GlZRtS5detWPXz48MvPX375Zf3yyy9f8z1yPC3LEep0hBq11hqI1xbIYGmWEQ6vf//+JCYmkpKSQllZGUuXLmXMmDFGlyWEoeSCqnB4bm5u/POf/+TOO++ksrKSKVOmEBkZaXRZQhjKauE+ffp0a23aoqROyzKqzlGjRjFq1Kg6ry/H07IcoU5HqLFanCU2IjcxCSGEfbHITUzS5i6EEE6oQeGulLpXKXVYKWVWSpmueO3PSqkTSqnjSqkRVP02+sVDKdVRKbVTKZWklPpCKeVZ23qWfFTvZ3/145RSav9V1jullDpUvd5ua9dVy/6fV0qdrVHrXVdZb2T1MT6hlPqTAXX+QymVoJQ6qJRaoZTyt6fjeb3jo5Tyqv5MnKj+LHaw8fELU0ptVEodU0odUUrNrGWdwUqp/Bqfhf+z9c+5Lj9DpZSLUuqd6mN5UCnVz4Aau9Y4TvuVUgVKqVn2cDyVUguUUplKqcM1lrVQSv1QnYE/KKUCqIVSKlYplVj9iK1tnf/RkK42QDegC7ARMNVY3h3YD3gCHYATgGst7/8CmFj99QfADEt0AbqB+l8D/naV104CLW1ZzxX7fw54+jrruFYf246AR/Ux727jOocDbtVfzwPm2cvxrMvxAR4FPqj+eiLwuY1rDAaiqr9uBhyvpcZBwDe2rKs+P0NgFPAdVcE1ENhhcL2uwDmgnT0cT+A2IAo4VGPZK8Ds6q9n1/b/BwgAkqv/9a/+2v96+2vQmbvW+qjWOqGWl2KApVrrUq11CpAEDKi5gqqa3ucOYHn1ooXArxtSz42o3v8EYImt9mkFA4AkrXWy1roMWErVsbcZrfVarXVF9dPtQKgt938ddTk+MVR99qDqszhE2XDqKa11utZ6T/XXBcBRoI2t9m9hMcAiXWU70FwpFWxgPUOAE1rrUwbWcJnW+ifgwhWLa37+rpaBdwLrtNYXtNY5wDpgxPX2Z6029zbAmRrPU/nfD2wLILdGMNS2jjXdCpzXWide5XUNrFVK7VZKGXWZ/XGl1AGl1MfVzR1XqstxtqUpVJ251caI41mX43N5nerPYh5Vn02bU0q1B/oCO2p5+abqJoTvlFJG9fO83s/Q3j6PE7n6yZs9HE+AVlrrdKj6RQ8E1bJOvY7rdbtCKqV+AFrX8tJftNYrr/a2WpZd2XumLuvUSx1rnsS1z9pv1lqfVUoFAeuUUseqf/NazLXqBN4HXqDqmLxAVRPSlCs3Uct7Ld5LqS7HUyn1F6AC+PQqm7H68ayFoZ/DG6GUagp8CczUWudf8fIeqpoWCpVSo4AVQISta+T6P0O7OJYASikPYAzwp1petpfjWVf1Oq7XDXet9dB6FJMKtK3xPBQ4e8U6WVT92eZWfcZU2zr1cr2alVJuwDig3zW2cbb63wyl1NdU/Ylv0TCq67FVSn0EfFPLS3U5zg1Wh+MZC4wGhujqRsJatmH141mLuhyfS+ukVn8u/PjfP52tSinlTlWwf6q1/urK12uGvdZ6tVLqPaVUS611li3rrMPP0CafxzoaCezRWp+/8gV7OZ7VziulgrXW6dVNWBm1rJNK1XWCS0Kpus55TdZqllkFTFRKeVb3PogAdtZcoToEfgTGVy+KBa72l4ClDQWOaa1Ta3tRKdVEKdXs0tdUXTQ8ZKPaLtVQs61y7FX2vwuIUEp1qD5TmUjVsbcZVdUT6llgjNb64lXWMep41uX4rKLqswdVn8UNV/sFZQ3V7fvzgaNa69evsk7rS9cBlFIDqPp/m22rGqv3W5ef4SrgIVVlIJB3qcnBAFf9y9wejmcNNT9/V8vA74HhSin/6ubZ4dXLrq2BV3/HUvVbpRQ4D3xf47W/UNVTIQEYWWP5aiCk+uuOVIV+ErAM8LTWleor6v4EeOSKZSHA6hp17a9+HKaq+cHWV9YXAweBA9UfgOAr66x+PoqqHhYnDKoziar2wH3Vjw+urNPI41nb8QH+TtUvIwCv6s9eUvVnsaONj98tVP2JfaDGMRwFPHLpMwo8Xn3c9lN10fpXBvyca/0ZXlGnAt6tPtYHqdGDzsa1+lAV1n41lhl+PKn6ZZMOlFfn5lSqru+sBxKr/w2oXtcE/KvGe6dUf0aTgIfrsj9r3qEqhBDCIHKHqhBCOCEJdyGEcEIS7kII4YQk3IUQwglJuAshhBOScBdCCCck4S6EEE5Iwl0IIeyAUqp/9UCBXtV3BB9WSvWo9/bkJiYhhLAPSqkXqbpr2htI1VrPqfe2JNyFEMI+VI+BtAsooWpYhMr6bkuaZYQQwn4EAE2pmpXLqyEbkjN3IYSwE0qpVVTNGNaBqsECH6/vtq47nrsQQgjrU0o9BFRorT9TSrkCW5VSd2itN9Rre3LmLoQQzkfa3IUQwglJuAshhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjghCXchhHBCEu5CCOGE/j9yYh3nAhrfqgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Quadratic equation" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import scipy as sp", | |
"execution_count": 9, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "a = 3 \nb = 7 \nc = 5 \n\nquadPositive = ( -b + sp.sqrt(b**2 - 4*a*c)) / (2*a)\nquadNegative = ( -b - sp.sqrt(b**2 - 4*a*c)) / (2*a)\nprint(quadPositive)\nprint(quadNegative)", | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "(-1.1666666666666665+0.5527707983925666j)\n(-1.1666666666666665-0.5527707983925666j)\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "def quadeq(a,b,c):\n out = sp.zeros(2,dtype=complex)\n out[0] = ( -b + sp.sqrt(b**2 - 4*a*c)) / (2*a)\n out[1] = ( -b - sp.sqrt(b**2 - 4*a*c)) / (2*a)\n return out\n\nquadeq(2,7,5)", | |
"execution_count": 20, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 20, | |
"data": { | |
"text/plain": "array([-1. +0.j, -2.5+0.j])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "a = 1\nbs = range(-5,6)\ncs = range(-2,11)\nresult = np.zeros((len(bs),len(cs)),dtype=complex)\nfor bi in range(0,len(bs)):\n for ci in range(0,len(cs)):\n result[bi,ci] = quadeq(1,bs[bi],cs[ci])[0]\n\nplt.subplot(1,3,1)\nplt.imshow(np.real(result),extent=[ cs[0],cs[-1], bs[0],bs[-1]])\nplt.title('real part')\n\nplt.subplot(1,3,2)\nplt.imshow(np.imag(result),extent=[ cs[0],cs[-1], bs[0],bs[-1]])\nplt.axis('off')\nplt.title('imaginary part')\n\nplt.subplot(1,3,3)\nplt.imshow(np.absolute(result),extent=[ cs[0],cs[-1], bs[0],bs[-1]])\nplt.axis('off')\nplt.title('magnitude')\nplt.show()", | |
"execution_count": 33, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 3 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAACBCAYAAADDnAG5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAUvklEQVR4nO3de5AdZZnH8e8vyeTKkAAhgUAwaBAMKggYsHBrcUUuUResEkFRMeBGXHG1il0VXVnKpVZwcb0sKouAgILKikBEUOIFkSqRmyAguAQIJOR+v84wl2f/6J6kOUy/k5lzMrf+faqmps95uvt9py/P6XnP228rIjAzs+FvxEBXwMzM+ocTvplZRTjhm5lVhBO+mVlFOOGbmVWEE76ZWUU44TeQpJA0c6DrMRRJekLScQNQ7hWSvtjf5drgJulMSXc1cH0fkXRvo9bXV6MGugLWN5KuBZZExL8OdF0aISIOHaByzx2IcvuDpAAOioiFA12XoSYibgBu6Ho9XLalr/BzkobMh5+kkQNdB0sbyONpKB3L1r8qnfAlLZL0WUl/BrZIGiVpmqSbJa2S9JykfyrMP1vSHyStl7RM0uWSRu9kWXdL+rKk+yVtkHSbpD0L8f+VtDyP3SPp0ELsWknfkXSHpC3AOcCZwGckbZb0s8ZtlYGR74vj8+mL8u3xA0mbJD0m6bWSLpC0UtJiSScUlp0r6cl83mclfaxm3Z/J99dSSR8tNr3l2/bifPo4SUsknZ+Xs0zS3MJ63inpT5I25nW4qBCbka/3HEkvAL+R9HNJn6ypy58lndrN39+1/Ly8nssknV+IJ4+9fNlPSHoaeFrSPXno0fwYOb0v+2Ug5MfCv+TbaoukqyVNlXRnvo9/JWmPfN7UebOXpJ/l++sBSRcXm1XybXaupKclrZP0LUnKY9ubYLrbluqmiabmuNpL0vy87PuB19TMe4ikBZLWSvqrpPftim35ChFR2R9gEfAIMB0YR/YB+BBwITAaeDXwLHBiPv+RwDFkTWEzgCeBTxfWF8DMkrLuBl4EXg9MAG4GflCInw00A2OArwOPFGLXAhuAY/M6js3fu3igt2GD98Xx+fRFQAtwYr6trweeA74ANAH/ADxXWPadZCeUgL8FtgJH5LGTgOXAocB44PvF/VTcjsBxQDvwpbycOfm69ijE35DvgzcCK4BT89iMfL3X5/t3HPA+4I+Feh4GrAFGd/P3dy3/w3z5NwCrCttkZ469BcCewLiejsfB/JMfC/cBU4H9gJXAw8Cb8vPjN8C/7cR586P8ZzwwC1gM3FuzzW4HJgEH5Nv7pDz2kW7mnVl4/bJ47Tx5uTfl+/L1ZOf+vXlsQl6Xufn+PAJYDRy6y7ftQO/cQXBgnV14fTTwQs08FwDfK1n+08AtZQdFzbx3A5cUXs8CXgJGdjPvpHxdE/PX1wLX18xzLcM74S8oxN4NbO7aVvkJHsCkknXdCnwqn74G+HIhNpN0wt8GjCrMvxI4pqScrwNfy6dn5Ot9dSE+BlhL1vYLcBnw7ZJ1dS1/SOG9rwBX9+LY+7uaeYZywj+z8Ppm4DuF158Ebu1mue3nDTASaAMOLsQv5pVJ/K2F1zcBn8unP9LNvDuV8AtlF/flf7Aj4Z8O/L5m2f8h/xDblT+VbtLJLS5MvwqYlv/bvF7SeuDzZFca5M0Kt+f/Qm4k24mT+1jW82RXkZMljZR0iaRn8vUuyueZXLJsFawoTG8DVkdER+E1wG4Akk6WdF/+7/F6sivzrm03jZdvu56245qIaC+83loo52hJv1XW3LcBOJdX7v/t64+IVrIk8kFJI4D3k/2HkVJ7jEzLy96ZY284HSO1+7/29W49nDd7k10997Tvlxemt+/rOnVX9vOF6VcBR9fkmTOBfRpQdpITfvap3GUxWVPBpMJPc0TMyePfAZ4iu2LbnezDQL0oa3ph+gCyq4DVwAeAU4Djya5OZuTzFNddO6yphzkFJI0huwK8DJgaEZOAO9ix7ZYB+xcWmU7f3QjMB6ZHxETgCl65/2v3y3VkJ/Pbga0R8Yceyqg9Rpbm0ztz7FXtmEidN6vImucate9rbSFrKsoKlIrJuqvs2n3ZZTHwu5o8s1tEfLyB9euWE/7L3Q9sVPZF7rj8CuL1kt6cx5uBjcBmSYcAvd1BH5Q0S9J4snbin+RXrc1AK1n77niyq7eerCD7jqHqRpM1nawC2iWdDJxQiN8EzJX0uny7X1hHWc3A2ohokTSbLOEk5Qm+E/gqPV/dA3xR0vj8y8e5wI8LZff22Bvux0jpeZOfVz8FLsq35yHAh+soq3ZbPgocKulwSWPJmiHLyp4FnFVY9nbgtZI+JKkp/3mzpNfVUb+d4oRfkO+odwOHk31JuBq4iuzqAeCfyU7yTcB32XEy7qzvk7UZLyf74rWrB9D1ZP/yvQj8hewLq55cDczK/yW8tZf1GDYiYhPZdrwJWEe2f+YX4ncC3wR+CywEuq6wW/tQ3D8CX5K0ieyD46adXO56si9hf7AT8/6OrJ6/Bi6LiK6bf/py7F0EXJcfI/3TC6R/9XTenEd27i4nO/d+SN/2O9Rsy4j4P7KLtl8BTwO1N1WdR9Y8tJzsnP9eVyA/Zk8AziD7D245cCnZhcsupfwLA9vFJN1N1ivnqoGuS5XlV1GPA2Nq2up3ZZkfBuZFxFsT88wgu8ho6q96VY2kS4F9IuKsHmcepnyFb8OepPdIGp333b4U+Fk/JvvxZP8ZXNkf5dkOeV/3Nyozm+z+lVsGul4DqWEJX9nNEo9JekTSg93EJembkhYqu6HiiEaVbdaDj5G18T8DdND77176RNKJebkryL7wtf7VTNaWvoWs+e2rwG0DWqMB1rAmHUmLgKMiYnVJfA5Z/9k5ZP3dvxERRzekcDMz61F/NumcQnbzUETEfcAkSfv2Y/lmZpXWyIQfwF2SHpI0r5v4frz8RoQl+XtmZtYPGjmq3rERsVTSFGCBpKci4p5CvLsblF7RnpR/WMwDmDBeRx4ys3xssg46y2M9NFW1J+6Xao/052A76cEq26J8s7Z2pjd5S0c63tbR/wNltq1cT/vGrb25wSzpHSNOc9ewGptOP6Y0tn5m+nhsmdZRGmuavK00BvD0aV9s2H7tXH5Qcr+u7thSGlvRkf4bX2zfvTS2uG2v5LIvvJSOP7Nl79LYcxv3LI0BLF2Sjo/cUH4+d45NnwYxpny/jhhbHgN47gOf73a/NizhR8TS/PdKSbcAs4Fiwl/Cy+88258ddxEW13MleY+Gow4bG/f/svzmuM2dLaWxtZ3pThjrE4l3VceE5LKrEgcfwNK2PUpji1rSB9+TG9J3Vy/f2JyM7wrPnv/dfi/TzBqvIU06kiZIau6aJrup4PGa2eYDH8576xwDbIiIZY0o38zMetaoK/ypwC3KhpIeBdwYEb+QdC5ARFxBNr7JHLK7CLeS3TZuZmb9pCEJPyKeJRvru/b9KwrTAXyiEeWZmVnv+U5bM7OKcMI3M6uIQf2w4/WdI5i/ZXx5vKP82SOre+hJs6KtPL6yNd0TZsmWScn4M4unJONDTWcPXeYM1s59SzK+6cD08q37lPcqmzB5U3LZQ/ZYVxqb2bwqXXADfX3djGT8xdby3mvLWiaWxgCWbU2cr5vSzyzZvKY8hwDs/nh51+/29KKMHp/uWtkxbnD1QPaZbGZWEU74ZmYV4YRvZlYRTvhmZhXhhG9mVhFO+GZmFTGou2Vu7BjHXevfUBpf/VL5IGdrWtIDoK1Jdfdcm+7mxYamdHy46WjYgIqDWmrESkiPWpkasRJ6HrVyxp4bSmMzd+/2mULbvXbC8tLYwWP6b7iqGxe9ORnfuGVsaax1Y/r53SPXlZ9zE15MH597bUp3jWzr//EIB4yv8M3MKsIJ38ysIupO+JKmS/qtpCclPSHpU93Mc5ykDfkDzh+RdGG95ZqZWe80og2/HTg/Ih7Ox8R/SNKCiPhLzXy/j4h3NaA8MzPrg7qv8CNiWUQ8nE9vAp7Ez6o1Mxt0GtqGL2kG8Cbgj92E3yLpUUl3Sjo0sY55kh6U9OC2deWPMDQzs95pWMKXtBtwM/DpiNhYE34YeFVEHAb8N3Br2Xoi4sqIOCoijhq3R3k3LjMz652G9MOX1ESW7G+IiJ/WxosfABFxh6RvS5ocEckOxlvaR/PgqvKHmG/cWv6B0LI53a939PPl8fLBUqtJ6S7mQ0b9Qxi3lcYmTN6aXPaAxBDGkB7G+ODx5f3sAQ4aXR4/qCldbiOtXrhXMt60sby//O5r0n3ppzxUfh/DtqnpM7ZlojsjdmlELx0BVwNPRsR/lcyzTz4fkmbn5a6pt2wzM9t5jbjCPxb4EPCYpEfy9z4PHADbn2v7XuDjktqBbcAZ+TNuzcysn9Sd8CPiXiD5/1hEXA5cXm9ZZmbWd27cMjOrCCd8M7OKcMI3M6uIQT08cnvbSFauTDzNfnN59UevGZlc9+jy0WitxlDqlpka4njLtHTXv5f2Sv+hoye2lsb2bt6cXHa/8ekDbvrYteWxpnSHtumjytc9bVS6e3IjNT+Xvn4cu7a8n8buz6WHj7bG8BW+mVlFOOGbmVWEE76ZWUU44ZuZVYQTvplZRTjhm5lVhBO+mVlFNGp45JOAbwAjgasi4pKa+BjgeuBIslEyT4+IRT2uuF1obVNpuGlT+edV8/Mem61RRgyhfvht48v72neOSR8T0dSZjDc1lW+IcaPKh04GGDfypWR8/Ijy+Fil1z1W5fUeo/Lzp9Gal6QPlHEryv/GEb//U3LZzr95U5/qZC/XiOGRRwLfAk4GZgHvlzSrZrZzgHURMRP4GnBpveWamVnvNKJJZzawMCKejYiXgB8Bp9TMcwpwXT79E+DtXePjm5lZ/2hEwt8PWFx4vYRXPsR8+zwR0Q5sANKPxzEzs4ZqRMLv7kq9trF0Z+bJZiw8xLxjy5a6K2dmZplGJPwlQPHBs/sDS8vmkTQKmAh0O1pU8SHmIydMaED1zMwMGpPwHwAOknSgpNHAGcD8mnnmA2fl0+8FfuNHHJqZ9a9GPOKwXdJ5wC/JumVeExFPSPoS8GBEzCd7yPn3JS0ku7I/Y2fWrc5018umOlp8xq5Pd8GzHdQ+0DXYeU1by68jRrSmr2/Ulo63tZUPub2tPd39cVvH6GR8a2d5vCXS626J8nq3Rg/dRZPR3kl1uwRoWrmpNDaEev4OaQ3phx8RdwB31Lx3YWG6BTitEWWZmVnf+E5bM7OKcMI3M6sIJ3wzs4pwwjczqwgnfDOzinDCNzOriIZ0y9xV1AkjW8rjI1r7vu6xa9J9hm2HEe1D556F5h/fVxprm/uW5LKdY9LXP61NY0pjq5p2Sy5bz/DJqaGTIT188litSy77mmS0d0Zt2JaMa/PWBpZmfeErfDOzinDCNzOrCCd8M7OKcMI3M6sIJ3wzs4qoq5eOpP8E3g28BDwDzI2I9d3MtwjYRDYoXntEHFVPuWZm1nv1dstcAFyQD5F8KXAB8NmSed8WEat7tfaAEYnebCPqGFN165Ty4WjHr+xhmNfV1epepiHULTNlz+/9IRlvOv2YZHx9a/kwxVvb0t0yn0kMrQzp4ZV7HFp5Qt+HVm5kt0xtTfeTjta+96MevXBZIrpvctmWiWP7XO5wU1eTTkTclT+jFuA+sqddmZnZINTINvyzgTtLYgHcJekhSfNSK3nZM223+Zm2ZmaN0mOTjqRfAft0E/pCRNyWz/MFoB24oWQ1x0bEUklTgAWSnoqIe7qbMSKuBK4EGLfPdD8G0cysQXpM+BFxfCou6SzgXcDby55TGxFL898rJd0CzAa6TfhmZrZr1NWkI+kksi9p/z4iuv0mU9IESc1d08AJwOP1lGtmZr1Xbxv+5UAzWTPNI5KuAJA0TVLXM26nAvdKehS4H/h5RPyiznLNzKyX6uqWGREzS95fCszJp58FDqunHDMzq9+gHh6ZgBHt5WF19P073c5RKo21Tkr3XYbxyWjTUy/2oUaDWHsdNzwMIamhlSH7V7bM2h6GXt504IRkfNE+iaGXJ6f7+L+4x8TS2OLmPZPLnpqM9o5a00NAR3viZO5BtJT34W9aviG57B49rHvlkeP6UKOhyUMrmJlVhBO+mVlFOOGbmVWEE76ZWUU44ZuZVYQTvplZRQzqbpkClBqZt46RdiLxUdfZVN5lE6BtQg+b7ZD9SkOjNqSHiNWy9AjSHStWpsveBXYMiGplehp6Od05EjYlhmZeP7O82yXAU9PKu20+M3lyuuAj0uFeaeuhW2ZH34fZTnXpHLEtfU6NWrctGZ/yUHmsZe/00NQbD0gPe71lkA0H5it8M7OKcMI3M6sIJ3wzs4qod7TMiyS9mA+c9oikOSXznSTpr5IWSvpcPWWamVnfNOJL269FxGVlQUkjgW8B7wCWAA9Imh8Rf2lA2WZmtpP6o0lnNrAwIp6NiJeAHwGn9EO5ZmZW0IiEf56kP0u6RlJ3A9PtBywuvF6Sv2dmZv1IJU8l3DFD4pm2wH3AarIe8f8O7BsRZ9csfxpwYkR8NH/9IWB2RHyypLx5QNeDzg8G/rrTf80rTc7rN5gNhToeHBGp0YHNbAio+5m2XSR9F7i9m9ASYHrh9f7A0kR52x9iXi9JD0bEUY1Y164yVOo40HUws/rV20tn38LL99D9s2ofAA6SdKCk0cAZwPx6yjUzs96rt5fOVyQdTtakswj4GGTPtAWuiog5EdEu6Tzgl8BI4JqIeKLOcs3MrJd6bMMfyiTNy5uIBi3X0cz6y7BO+GZmtoOHVjAzq4hhmfCHylAOkhZJeiwflmJQ9ITJ76dYKenxwnt7Slog6en8d3f3W5jZIDfsEn5hKIeTgVnA+yXNGthaJb0tIg4fRF0zrwVOqnnvc8CvI+Ig4Nf5azMbYoZdwsdDOdQlIu4B1ta8fQpwXT59HXBqv1bKzBpiOCb8oTSUQwB3SXoov8N4sJoaEcsA8t9TBrg+ZtYHg/oRh33U3fMJB2tXpGMjYqmkKcACSU/lV9hmZg03HK/wezWUw0CKiKX575XALWTNUYPRiq67qvPf/f9gXTOr23BM+ENiKAdJEyQ1d00DJ9D90BSDwXzgrHz6LOC2AayLmfXRsGvSGUJDOUwFbpEE2X64MSJ+MbBVAkk/BI4DJktaAvwbcAlwk6RzgBeA0wauhmbWV77T1sysIoZjk46ZmXXDCd/MrCKc8M3MKsIJ38ysIpzwzcwqwgnfzKwinPDNzCrCCd/MrCL+H1kZEpx87UXuAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.7.4", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"toc": { | |
"nav_menu": {}, | |
"number_sections": true, | |
"sideBar": true, | |
"skip_h1_title": false, | |
"base_numbering": 1, | |
"title_cell": "Table of Contents", | |
"title_sidebar": "Contents", | |
"toc_cell": false, | |
"toc_position": {}, | |
"toc_section_display": true, | |
"toc_window_display": false | |
}, | |
"gist": { | |
"id": "1f9bc8dbf6f1e983797a56a41f68556f", | |
"data": { | |
"description": "Algebra 2", | |
"public": true | |
} | |
}, | |
"_draft": { | |
"nbviewer_url": "https://gist.github.com/1f9bc8dbf6f1e983797a56a41f68556f" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment