Last active
March 11, 2020 15:03
-
-
Save DBremen/c34091364ef87cf7c720d973dda66548 to your computer and use it in GitHub Desktop.
graphs and plots
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import matplotlib.pyplot as plt", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = 3\ny = 5\n#red o = ro\n#green square = gs\nplt.plot(x,y,'ro')\n#plot is of square shape\nplt.axis('square')\n#specify x- and y-axis limits\nplt.axis([-6,6,-6,6])\n#show grid lines\nplt.grid()\nplt.show()\n", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAD8CAYAAACYVXqwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAMaklEQVR4nO3dX4xc5XnH8e9jE4roBlGJRUjYxKBm3VJCVOyQRqitNyQRIRZIVS+InAglF6v8Q64URACrVxVq1VRJkBKpsoDcsFK6ItCmEU1ilHWrXkCxCYSAiYUQASdBhIs22VoFWX56MbPu2t2d3XDOzDnk+X6kkX1m3n3PT/aen9+Zeb0TmYmkmjZ1HUBSdywAqTALQCrMApAKswCkwiwAqbBWCiAizo+IByLiuYg4EhHva2NeSeN1Vkvz3A18JzP/PCLOBs5taV5JYxRNNwJFxHnAU8Bl6a4i6S2ljRXAZcAvgK9HxLuBw8DezPzvlYMiYg6YAzjnnHN2XHLJJS2cuh0nT55k06b+vBzStzzQv0zmGe3o0aOvZeb0ugMzs9EN2AmcAN47PL4b+KtRXzMzM5N9sri42HWE0/QtT2b/MplnNOBQbuD6baOyjgHHMvOx4fEDwFUtzCtpzBoXQGa+ArwcEduHd10LPNt0Xknj19a7ALcA88N3AF4APtHSvJLGqJUCyMwnGbwWIOktpD8vW0qaOAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtANc3Pw7ZtsGnT4Nf5+a4TdaKt/wsgvXXMz8PcHBw/Pjj+yU8GxwB79nSXqwOuAFTPvn3/d/EvO358cH8xFoDqeemlX+/+32AWgOpZ68fR9ejH1E2KBaB67roLzj3jB1efe+7g/mIsANWzZw/s3w/veAdEDH7dv7/cC4DguwCqas+ekhf8mVwBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhrRVARGyOiB9ExLfbmlPSeLW5AtgLHGlxPklj1koBRMQW4CPAPW3MJ2ky2loBfAW4DTjZ0nySJiAys9kEEbuB6zPzMxGxC7g1M3evMm4OmAOYnp7esbCw0Oi8bVpaWmJqaqrrGKf0LQ/0L5N5RpudnT2cmTvXHZiZjW7AXwPHgBeBV4DjwP2jvmZmZib7ZHFxsesIp+lbnsz+ZTLPaMCh3MD12/gpQGbekZlbMnMbcBPw/cz8WNN5JY2f+wCkwlr9kWCZeRA42OacksbHFYBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhFoBUmAUgFWYBSIVZAFJhjQsgIrZGxGJEHImIZyJibxvBJI1fG58OfAL4fGY+ERFvBw5HxIHMfLaFuSWNUeMVQGb+PDOfGP7+V8AR4OKm80oav8jM9iaL2Ab8G3BFZv7yjMfmgDmA6enpHQsLC62dt6mlpSWmpqa6jnFK3/JA/zKZZ7TZ2dnDmblz3YGZ2coNmAIOA3+23tiZmZnsk8XFxa4jnKZveTL7l8k8owGHcgPXbSvvAkTE24BvAvOZ+WAbc0oavzbeBQjgXuBIZn6peSRJk9LGCuAa4OPA+yPiyeHt+hbmlTRmjd8GzMx/B6KFLJImzJ2AUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAV1tbHg18XET+OiOcj4vY25pQ0fm18PPhm4GvAh4HLgY9GxOVN55U0fm2sAK4Gns/MFzLzDeAbwI0tzCtpzBp/PDhwMfDyiuNjwHvPHBQRc8AcwPT0NAcPHmzh1O1YWloyzzr6lsk87WijAGKV+/L/3ZG5H9gPsH379ty1a1cLp27HwYMHMc9ofctknna08RTgGLB1xfEW4GctzCtpzNoogMeBd0bEpRFxNnAT8K0W5pU0Zo2fAmTmiYj4HPBdYDNwX2Y+0ziZpLFr4zUAMvNh4OE25pI0Oe4ElAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpMAtAKswCkAqzAKTCLACpsEYFEBFfjIjnIuKHEfFQRJzfVjBJ49d0BXAAuCIzrwSOAnc0jyRpUhoVQGZ+LzNPDA8fBbY0jyRpUiIz25ko4p+Bf8jM+9d4fA6YA5ient6xsLDQynnbsLS0xNTUVNcxTulbHuhfJvOMNjs7ezgzd647MDNH3oBHgB+tcrtxxZh9wEMMC2W928zMTPbJ4uJi1xFO07c8mf3LZJ7RgEO5gWvxrA0UxAdGPR4RNwO7gWuHJ5b0FrFuAYwSEdcBXwD+NDOPtxNJ0qQ0fRfgq8DbgQMR8WRE/H0LmSRNSKMVQGb+bltBJE2eOwGlwiwAqTALQCrMApAKswCkwiwAqTALQCrMApAKswCkwiwAqTALQCrMApAKswCkwiwAqTALQCrMApAKswCkwiwAqTALQCrMApAKswCkwiwAqTALQCrMApAKswCkwiwAqTALQCqslQKIiFsjIiPigjbmkzQZjQsgIrYCHwReah5H0iS1sQL4MnAbkC3MJWmCGhVARNwA/DQzn2opj6QJiszR/3BHxCPARas8tA+4E/hQZv5XRLwI7MzM19aYZw6YA5ient6xsLDQJHerlpaWmJqa6jrGKX3LA/3LZJ7RZmdnD2fmznUHZuabugHvAl4FXhzeTjB4HeCi9b52ZmYm+2RxcbHrCKfpW57M/mUyz2jAodzAdXzWm22YzHwauHD5eL0VgKT+cR+AVNibXgGcKTO3tTWXpMlwBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFSYBSAVZgFIhVkAUmEWgFRY4wKIiFsi4scR8UxE/G0boSRNRqNPB46IWeBG4MrMfD0iLmwnlqRJaLoC+DTwN5n5OkBmvto8kqRJabQCAGaAP46Iu4D/AW7NzMdXGxgRc8Dc8PD1iPhRw3O36QLgta5DrNC3PNC/TOYZbftGBq1bABHxCHDRKg/tG3797wB/BLwHWIiIyzIzzxycmfuB/cM5D2Xmzo0EnATzrK9vmcwzWkQc2si4dQsgMz8w4iSfBh4cXvD/EREnGTThLzYaVFJ3mr4G8I/A+wEiYgY4m34tgySN0PQ1gPuA+4bP598Abl5t+b+K/Q3P2zbzrK9vmcwz2obyxMauV0m/idwJKBVmAUiFdVoAfdxGHBG3RkRGxAUd5/hiRDwXET+MiIci4vyOclw3/Dt6PiJu7yLDiixbI2IxIo4Mv2f2dplnWURsjogfRMS3u84CEBHnR8QDw++fIxHxvrXGdlYAZ2wj/gPg77rKsiwitgIfBF7qOgtwALgiM68EjgJ3TDpARGwGvgZ8GLgc+GhEXD7pHCucAD6fmb/PYO/JZzvOs2wvcKTrECvcDXwnM38PeDcjsnW5AujjNuIvA7cBnb8ympnfy8wTw8NHgS0dxLgaeD4zX8jMN4BvMCjtTmTmzzPzieHvf8XgG/virvIARMQW4CPAPV3mWBYR5wF/AtwLkJlvZOZ/rjW+ywJY3kb8WET8a0S8p8MsRMQNwE8z86kuc6zhk8C/dHDei4GXVxwfo+MLbllEbAP+EHis2yR8hcE/Gic7zrHsMgYb8b4+fFpyT0T89lqDm+4DGKmtbcQTynMn8KFxnfvXzZOZ/zQcs4/B0nd+ktmGYpX7Ol8dRcQU8E3gLzLzlx3m2A28mpmHI2JXVznOcBZwFXBLZj4WEXcDtwN/udbgsenbNuK18kTEu4BLgaciAgbL7Sci4urMfGXSeVbkuhnYDVw7zmIc4RiwdcXxFuBnHeQ4JSLexuDin8/MB7vMAlwD3BAR1wPnAOdFxP2Z+bEOMx0DjmXm8sroAQYFsKounwL0ZhtxZj6dmRdm5rbM3MbgD/GqcV7864mI64AvADdk5vGOYjwOvDMiLo2Is4GbgG91lIUYtPO9wJHM/FJXOZZl5h2ZuWX4PXMT8P2OL36G37MvR8Ty/wa8Fnh2rfFjXQGs481uI67iq8BvAQeGq5JHM/NTkwyQmSci4nPAd4HNwH2Z+cwkM5zhGuDjwNMR8eTwvjsz8+EOM/XRLcD8sLRfAD6x1kC3AkuFuRNQKswCkAqzAKTCLACpMAtAKswCkAqzAKTC/hdW/eOLnlET8gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<Figure size 432x288 with 1 Axes>" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = [-4,5,2,4,5,6,3]\ny = [0,3,4,5,2,-3,4]\n\nfor i in range(0,len(x)):\n plt.plot(x[i],y[i],'o',label='point %s' %(1+i))\n\nplt.axis('square')\nplt.axis([-6,7,-6,7])\nplt.grid()\nplt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True)\nplt.show() ", | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAAD4CAYAAABhaxTMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbvUlEQVR4nO3de3QVhb328e8v4RILQigGQbCHSw03CQnYAkVqECvtQYLL4im1PdJ2WdRle5CeQqseu1htXbQvb0Eoti7U1ktdUkothkNfodRQ8UYFUbBFQDCWSyilFCWpAUJ+7x8JlLDDkJ0Z9gzk+ay1F8lk75lHDE9m9sz8Yu6OiIg0LivuACIiSaaSFBEJoJIUEQmgkhQRCaCSFBEJ0CqOjebm5vpHP/rRODZ9QlVVFe3atYs1Q1JyJCFDUnIkIUMUOdavX7/f3fMijNRyuXvGH/n5+R63srKyuCO4ezJyJCGDezJyJCGDe/gcwDqP4d/2+fjQ4baISACVpIhIAJWkiEgAlaSISACVpIhIAJWkiEgAlaSISACVpIhIAJWkiEgAlaSISACVpIhIAJWkiEiASErSzHLNbImZvWVmm81sRBTrFRGJW1Sj0uYBz7r7RDNrA3woovWKiMQqdEmaWQfgk8CXANz9CHAk7HpFRJLAPOSvlDWzQmAh8GdgMLAemOruVac8bwowBSAvL2/o4sWLQ203rMrKStq3bx9rhqTkSEKGpORIQoYocowePXq9u18RYaSWK+xASuAKoAYYVv/5POB7Qa/R0N1/SUKOJGRwT0aOJGRw19DdJD2iOHGzC9jl7mvrP18CDIlgvSIisQtdku6+F9hpZn3rF42h7tBbROScF9XZ7a8DT9af2d4BfDmi9YqIxCqSknT316l7b1JE5LyiO25ERAKoJEVEAqgkRUQCqCRFRAKoJEVEAqgkRUQCqCRFRAKoJEVEAqgkRYD3li1j29Vj6HLb7Wy7egzvLVsWdyRJiKhuSxQ5Z723bBkV934Hr67GgJo9e6i49zsAdBw/Pt5wEjvtSUqLt2/u/Xh1dYNlXl3Nvrn3x5RIkkQlKS1eTUVFWsulZVFJSovXqlu3tJZLy6KSlBavy7Q7sZycBsssJ4cu0+6MKZEkiU7cSIt3/OTMvrn3c3TPHlpfcgldpt2pkzYCqCRFgLqi7Dh+PKtXr6a4uDjuOJIgOtwWEQmgkhQRCaCSFBEJoJIUEQmgkhQRCaCSFBEJoJIUEQmgkhQRCRBZSZpZtpltMLP/jWqdIiJxi/KOm6nAZqBDhOuUFmD5juXMe20eFVUVdFvSjalDpjKu97gmv75qwz7eX1HOsYOHyc5tS4exPWlX1OUsJpaWJJI9STPrAYwDHo5ifdJyLN+xnJkvzaSiqm4sWUVVBTNfmsnyHcub9PqqDfs4+PQ2jh08DMCxg4c5+PQ2qjbsO2uZpWWJ6nD7fmAGUBvR+qSFmPfaPKqPNRx4W32smnmvzWvS699fUY4fbfht50dreX9FeVQRpYULfbhtZtcB+9x9vZkVBzxvCjAFIC8vj9WrV4fddCiVlZWxZ0hKjjgzHN+DbGx5UzL1OZiFYSnLaw5WN+u/KQn/P5KUQ6J5T3IkUGJm/w7kAB3M7Bfu/sWTn+TuC4GFAH379vW4J60kZdpLEnLEmaHbkm6NFmW3dt2alKnilT+eONQ+WavcHIqLP552niT8/0hSDongcNvd73L3Hu7eE5gEPHdqQYqcztQhU8nJbjjwNic7h6lDpjbp9R3G9sRaN/w2ttZZdBjbM6qI0sJpnqTE6vhZ7BNnt9uld3b7+Flsnd2WsyXSknT31cDqKNcp579xvccxrve4Zh9itivqolJsgvXr1/fIyspaWVtb2w8aeSO3ZfKsrKy3amtrrx06dOiuxp6gPUmRFiIrK2tl165dL7v44ostK0s32wHU1tba3r1783ft2vV8SUnJFaWlpQdOfY7+pkRaiNra2n4XX3xxKxXkv2RlZdG1a9fsrKysXsDMkpKSS1KeE0MuEYmH9iAbkZWVhZlB3dU5KW+G629MRKROFdDp1IUqSRFJrFtuuYU///nPgc9ZunTpaZ/z/PPPM2TIEFq1asWSJUualUElKSKNWrphNyN/8By9vr2ckT94jqUbdmc8w8MPP8yAAQMCnxNUkh/5yEd49NFHuemmm5qdQSUpIimWbtjNXU9vYvfBD3Bg98EPuOvpTaGKsry8nH79+jF58mQKCgqYOHEi//znPwH4/e9/T1FREYMGDeIrX/kKhw/X3UVVXFzMunXrAGjfvj333HMPgwcPZvjw4fz1r3/lpZdeorS0lOnTp1NYWMj27dsbbLNnz54UFBQQ5r1YlaSIpJi9YgsfHD3WYNkHR48xe8WWUOvdsmULU6ZMYePGjXTo0IGf/OQnVFdX86UvfYlf/vKXbNq0iZqaGn7605+mvLaqqorhw4fzxhtv8MlPfpKHHnqIT3ziE5SUlDB79mxef/11+vTpEypfY1SSIlHZuBjmXg4zc+v+3Lg47kTNtufgB2ktb6pLL72UkSNHAvDFL36RF154gS1bttCrVy/y8/MBmDx5Ms8//3zKa9u0acN1110HwNChQykvLw+VpalUkiJR2LgYlv0XvLcT8Lo/l/3XOVuUl+RekNbypqq/1KbB5+7epNe2bt36xOuzs7OpqakJlaWpVJIiUfj9d+HoKXtZRz+oW34Omj62Lxe0zm6w7ILW2Uwf2zfUev/yl7/w8ssvA/DUU09x5ZVX0q9fP8rLy3n77bcBeOKJJ7jqqquavM4LL7yQQ4cOhcoVRCUpEoX3Gr3t9/TLE+76ou7MumEQ3XMvwIDuuRcw64ZBXF/UPdR6+/fvz2OPPUZBQQEHDhzg9ttvJycnh5///OfceOONDBo0iKysLG677bYmr3PSpEnMnj2boqKilBM3r776Kj169OBXv/oVt956KwMHDkw7s+7dFolCxx71h9qNLD9HXV/UPXQpniorK4sHH3wwZfmYMWPYsGFDyvKTBw9XVlae+HjixIlMnDgRgJEjR572EqCPfexj7NoV7geV9iRFojDmO9D6lPfrWl9Qt1zOaSpJkSgU/AeMnw8dLwWs7s/x8+uWC1B3zeKbb74Zd4y06XBbJCoF/6FSPA9pT1JEJIBKUkQkgEpSRCSASlJEEivsqLQ5c+YwYMAACgoKGDNmDO+++27aGVSSItK4BNyLHnZUWlFREevWrWPjxo1MnDiRGTNmpJ1BJSkiqc7CvehxjEobPXo0H/rQhwAYPnx4sy4sV0mKSKqzdC96nKPSHnnkET7zmc+knVklKSKpztK96HGNSvvFL37BunXrmD59etqZdTG5iKQ6S/eixzEqbdWqVdx333384Q9/oG3btukFJoI9STO71MzKzGyzmf3JzKaGXafIuWjr2r08dveLPHDbczx294tsXbs37kjNd5buRc/0qLQNGzZw6623UlpaSpcuXZqVOYrD7Rrgv929PzAcuMPMgk9HiZxntq7dS9mTb1F5oO6EQ+WBw5Q9+da5W5Rn6V70TI9Kmz59OpWVldx4440UFhZSUlKSdubQh9vuXgFU1H98yMw2A92B4IubRM4jLz+znZojtQ2W1Ryp5eVntpM/rGtMqUI6C/eiZ3pU2qpVq0Imjvg9STPrCRQBaxv52hRgCkBeXl6D//g4VFZWxp4hKTmSkCEpOZqbofJA7WmWH27e+hLwdyF1IitJM2sP/Bq4093fP/Xr7r4QWAjQt29fLy4ujmrTzbJ69WrizpCUHEnIkJQczc3w7soXTxxqn6z9h9tSXDwyYzmS7FwdlRbJJUBm1pq6gnzS3Z+OYp0i55IRE/rQqk3Df06t2mQxYkL0v+JUMiv0nqTVnZN/BNjs7nPCRxI59xx/3/HlZ7ZTeeAw7T/clhET+py770fKCVEcbo8E/hPYZGav1y+7291/G8G6Rc4Z+cO6qhTPQ1Gc3X4BsDM+UUTkHKTbEkUkscKOSnvwwQcZNGgQhYWFXHnllWdcV2NUkiLSqOU7lnPtkmspeKyAa5dcy/IdyzOeIeyotJtuuolNmzbx+uuvM2PGDL7xjW+knUElKSIplu9YzsyXZlJRVYHjVFRVMPOlmaGKMo5RaR06dDjxcVVVVcq9402hkhSRFPNem0f1seoGy6qPVTPvtXmh1hvHqLQHHniAPn36MGPGDObPn592ZpWkiKTYW9X4PeenW95UcYxKu+OOO9i+fTs//OEP+f73v592ZpWkiKTo2q7xS5lOt7yp4hiVdtykSZNYunRpWq8BlaSINGLqkKnkZOc0WJaTncPUIeEmIWZ6VNq2bdtOfLx8+XIuu+yytDOrJEUkxbje45j5iZl0a9cNw+jWrhszPzGTcb3HhVpvpkelLViwgIEDB1JYWMicOXN47LHH0s6syeQi0qhxvceFLsVTZXpU2rx54U40gfYkRUQCqSRFJCNa9Kg0EZHzlUpSRCSASlJEJIBKUkQkgEpSRBIr7Ki045YsWYKZnRiWkQ6VpIg06r1ly9h29Rg29x/AtqvH8N6yZRnPEHZUGsChQ4eYP38+w4YNa1YGlaSIpHhv2TIq7v0ONXv2gDs1e/ZQce93QhVlHKPSAO69915mzJhBTk5OyteaQiUpIin2zb0fr244Ks2rq9k39/5Q6830qLQNGzawc+fOE9ODmkMlKSIpaioq0lreVJkclVZbW8u0adP40Y9+FCqzSlJEUrTq1i2t5U2VyVFphw4d4s0336S4uJiePXvyyiuvUFJSkvbJG5WkiKToMu1O7JT38Cwnhy7T7gy13kyOSuvYsSP79++nvLyc8vJyhg8fTmlpKVdccUVamVWSIpKi4/jxdPved2l1ySVgRqtLLqHb975Lx/HjQ60306PSoqBRaSLSqI7jx4cuxVNlelTa6daVjkj2JM3s02a2xczeNrNvR7HOs2Xpht2M/MFzfOnZKkb+4DmWbtgddyQRSbDQe5Jmlg08AHwK2AW8amal7p7+bwE/y5Zu2M1dT2/ig6PHANh98APuenoTANcXdY8zmsh5ryWPSvs48La773D3I8AiYEIE643c7BVbThTkcR8cPcbsFVtiSiQiSRfFe5LdgZ0nfb4LSLn/x8ymAFMA8vLymv3+QBi7D35w2uVx5IG691ni2naSMiQlRxIyJCmHRFOS1siylAuf3H0hsBCgb9++XlxcHMGm09P9lecaLcruuRcQRx6oezM5rm0nKUNSciQhQ5JySDSH27uAS0/6vAewJ4L1Rm762L5c0Dq7wbILWmczfWzfmBKJSNJFUZKvApeZWS8zawNMAkojWG/kri/qzqwbBtE99wKgbg9y1g2DdNJGJKHCjkp79NFHycvLo7CwkMLCQh5++OG0M4Q+3Hb3GjP7GrACyAZ+5u5/Crves+X6ou5cX9RdhzMiZ7B17V5efmY7lQcO0/7DbRkxoQ/5w7pmNENTSm3p0qVcd911px2p9rnPfY4FCxY0O0Mk10m6+2/dPd/d+7j7fVGsU0Tis3XtXsqefIvKA3UjyyoPHKbsybfYunZvs9cZ16i0sHRbooikePmZ7dQcqW2wrOZILS8/E66EMj0qDeDXv/71iVLeuXNnytfPRCUpIimO70E2dXlTZXJUGsD48eMpLy9n48aNXHPNNUyePDntzCpJEUnR/sNt01reVJkclQbQuXNn2raty/zVr36V9evXp5lYJSkijRgxoQ+t2jSsh1ZtshgxIfVwNh2ZHJUGUHHSkODS0lL69++fdmaVpIikyB/WldFf6Hdiz7H9h9sy+gv9Qp/dzvSotPnz5zNw4EAGDx7M/PnzefTRR9POrFFpItKo/GFdI7/kJ9Oj0mbNmsWsWbPCZQ71ahGR85xKUkQyoiWPShMROW+pJEVEAqgkRUQCqCRFRAKoJEUkscKOSgNYvHgxAwYMYODAgdx0001pZ9B1kiLSqM1ryliz6HEO/X0/F3a+iFGTbqb/qNEZzRB2VNq2bduYNWsWL774Ip06dWLfvn1pZ9CepIik2LymjJULF3Bo/9/AnUP7/8bKhQvYvKas2euMY1TaQw89xB133EGnTp0A6NKlS9q5VZIikmLNosepOdJw4k/NkcOsWfR4qPVmelTa1q1b2bp1KyNHjmT48OE8++yzaWdWSYpIikN/35/W8qbK9Ki0mpoatm3bxurVq3nqqae45ZZbOHjwYFqZVZIikuLCzheltbypMj0qrUePHkyYMIHWrVvTq1cv+vbty7Zt29LKrJIUkRSjJt1MqzYNZ0e2atOWUZNuDrXeTI9Ku/766ykrq3sfdf/+/WzdupXevXunlVklKSIp+o8azbVTvsaFF+WBGRdelMe1U74W+ux2pkeljR07ls6dOzNgwABGjx7N7Nmz6dy5c1qZdQmQiDSq/6jRkV/yk+lRaWbGnDlzmDNnTvMzN/uVIiItgEpSRDJCo9JERM5DKkkRkQChStLMZpvZW2a20cx+Y2a5UQUTEUmCsHuSvwMud/cCYCtwV/hIIiLJEaok3X2lux+/7P0VoEf4SCIidcKOSps2bRqFhYUUFhaSn59Pbm76B7tRXif5FeCXp/uimU0BpgDk5eU1uP4pDpWVlbFnSEqOJGRISo4kZEhKjqoN+3h/RTnHDh4mO7ctHcb2pF1R+lN0wgg7Km3u3LknPv7xj3/c6LWYZ+TugQ9gFfBmI48JJz3nHuA3gJ1pfe5Ofn6+x62srCzuCO6ejBxJyOCejBxJyOAePgewzk/5d7du3bomv77ytb/6rv95wXd+6/kTj13/84JXvvbXZmd65513vG/fvn7zzTf7oEGD/LOf/axXVVW5u/uqVau8sLDQL7/8cv/yl7/s1dXV7u5+1VVX+auvvuru7u3atfO7777bCwoKfNiwYb53715/8cUXvVOnTt6zZ08fPHiwv/3226fd/ogRI3zlypWNfm3dunU+fvz4uePHj5/hp/y9nfFw292vcffLG3k8A2Bmk4HrgC+4N/FOdRFJtPdXlONHaxss86O1vL+iPNR6Mz0q7bh3332Xd955h6uvvjrtzGHPbn8a+BZQ4u7/DLMuEUmOYwcPp7W8qTI9Ku24RYsWMXHiRLKzs9POHPbs9gLgQuB3Zva6maXelCki55zs3LZpLW+qTI9KO27RokV8/vOfb3rQk4Q9u/1Rd7/U3QvrH00f3SEiidVhbE+sdcN6sNZZdBjbM9R6Mz0qDeoO8f/xj38wYsSIZmXWHTcikqJdURdyb7jsxJ5jdm5bcm+4LPTZ7UyPSoO6Mp40aVLKXmxTaVSaiDSqXVGXyC/5yfSoNICZM2c2PzDakxQRCaSSFJGM0Kg0EUk6r62tPfOzWpja2trAM+wqSZEWIisr6629e/fWqCj/pba2loqKitrq6urT/q5cnbgRaSFqa2uv3bt37+/27NnTr7lnes837k51dfWBJ5544gmgLVB16nNUkiItxNChQ3cB/UtKSiYB44DDgG4lrpNL3d/FqlO/oJIUSZDNa8pYs+hxDu3/G1t/9RijJt0c+W8sBBYDO4Bu6C2346qBt0pLS9859QsqSZGE2LymjJULF1BzpO7+6EP7/8bKhQsAIi3K0tLSWuCPka3wPKefIiIJsWbR4ycK8riaI4dZs+jxmBIJqCRFEuPQ3xs/wXq65ZIZKkmRhLiw80VpLZfMUEmKJMSoSTfTqk3DUWSt2rRl1KSbY0okoBM3Iolx/OTM8bPbF16Ud7bObksaVJIiCdJ/1Gj6jxrN6tWrKS4ujjuOoMNtEZFAKkkRkQAqSRGRACpJEZEAKkkRkQAqSRGRACpJEZEAKkkRkQCRlKSZfdPM3Mx0k6mInFdCl6SZXQp8CvhL+DgiIskSxZ7kXGAGGgMvIuchC/pVimd8sVkJMMbdp5pZOXCFuzc6/M7MpgBTAPLy8oYuXry42duNQmVlJe3bt481Q1JyJCFDUnIkIUMUOUaPHr3e3a+IMFLL5e6BD+p+Mc6bjTwmAGuBjvXPKwcuOtP63J38/HyPW1lZWdwR3D0ZOZKQwT0ZOZKQwT18DmCdN+Hfoh5nfpxxCpC7X9PYcjMbBPQC3qj/9ZQ9gNfM7OPuvjdcdYuIJEOzR6W5+yagy/HPz3S4LSJyLtJ1kiIiASIbuuvuPaNal4hIUmhPUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkgEpSRCSASlJEJIBKUkQkQOiSNLOvm9kWM/uTmf2fKEKJiCRFqzAvNrPRwASgwN0Pm1mXaGKJiCRD2D3J24EfuPthAHffFz6SiEhyhNqTBPKBUWZ2H1ANfNPdX23siWY2BZhS/+lhM3sz5LbDugjYH3MGSEaOJGSAZORIQgYIn+PfogrS0p2xJM1sFdC1kS/dU//6TsBw4GPAYjPr7e5+6pPdfSGwsH6d69z9ijDBw0pChqTkSEKGpORIQoYk5ZAmlKS7X3O6r5nZ7cDT9aX4RzOrpe4n4N+iiygiEp+w70kuBa4GMLN8oA3JOFQREYlE2Pckfwb8rP79xSPA5MYOtRuxMOR2o5CEDJCMHEnIAMnIkYQMkJwcLZ41rdNERFom3XEjIhJAJSkiEiDWkkzKLY1m9k0zczO7KKbtzzazt8xso5n9xsxyM7jtT9f/P3jbzL6dqe2etP1LzazMzDbXfx9MzXSGU/Jkm9kGM/vfmLafa2ZL6r8fNpvZiDhyyL/EVpKn3NI4EPi/MeW4FPgU8Jc4tl/vd8Dl7l4AbAXuysRGzSwbeAD4DDAA+LyZDcjEtk9SA/y3u/en7nrbO2LIcLKpwOYYtz8PeNbd+wGDY84ixLsnmZRbGucCM4DYzmC5+0p3r6n/9BWgR4Y2/XHgbXff4e5HgEXU/eDKGHevcPfX6j8+RF0pdM9khuPMrAcwDng4pu13AD4JPALg7kfc/WAcWeRf4izJ47c0rjWzP5jZxzIdwMxKgN3u/kamtx3gK8D/y9C2ugM7T/p8FzEVFICZ9QSKgLUxRbifuh+YtTFtvzd1N2L8vP6Q/2EzaxdTFqkX9jrJQFHd0ngWM9wNXBvl9pqTw92fqX/OPdQdfj6ZiUyANbIslj1qM2sP/Bq4093fj2H71wH73H29mRVnevv1WgFDgK+7+1ozmwd8G7g3pjzCWS7JJNzSeLoMZjYI6AW8YWZQd4j7mpl93N33RpkhKMdJeSYD1wFjov5BEWAXcOlJn/cA9mRo2yeYWWvqCvJJd38609uvNxIoMbN/B3KADmb2C3f/YgYz7AJ2ufvxPekl1JWkxCjOw+1Yb2l0903u3sXde7p7T+q+QYecjYI8EzP7NPAtoMTd/5nBTb8KXGZmvcysDTAJKM3g9rG6n1CPAJvdfU4mt30yd7/L3XvUfy9MAp7LcEFS/72308z61i8aA/w5kxkk1VndkzyD5t7SeD5aALQFfle/V/uKu992tjfq7jVm9jVgBZAN/Mzd/3S2t3uKkcB/ApvM7PX6ZXe7+28znCMpvg48Wf9Dawfw5ZjztHi6LVFEJIDuuBERCaCSFBEJoJIUEQmgkhQRCaCSFBEJoJIUEQmgkhQRCfD/ASfVeSpsRiIYAAAAAElFTkSuQmCC\n", | |
"text/plain": "<Figure size 432x288 with 1 Axes>" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "plt.plot(4,2,'r+')\naxis = plt.gca()\nylim = axis.get_ylim()\nprint(ylim)\naxis.set_ylim([ylim[0],5.333])\nplt.show()", | |
"execution_count": 20, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "(1.89, 2.1100000000000003)\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQZ0lEQVR4nO3df4zkdX3H8efLuwvY+gOUTUu4g9VqE9Eg6JbSkvoDjaLSo62Y0AYFi7nUYsVoY6ImCCT9wzRRYk0kpyQeqAGK2pxEmqJCo02B7MEB4mm9IgYKKSsoSlWSw3f/mC+wzM3cztzO3Ox9fD6SyX7m+/3M7Ou+993Xfvc7v1JVSJIOfs+YdQBJ0mRY6JLUCAtdkhphoUtSIyx0SWrE+ll94yOOOKLm5+dn9e0l6aC0Y8eOH1fV3KB1Myv0+fl5FhcXZ/XtJemglORHw9Z5ykWSGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1IiRCj3JPUnuTLIzyV6fSpGeTybZneSOJK+YfFRJ0r6M84lFr62qHw9Z9ybgxd3lD4FPd18lSQfIpE65nA5cXj03AYclOXJC9y1JGsGohV7AvyXZkWTLgPVHAfcuu35ft+xpkmxJsphkcWlpafy0kqShRi30k6vqFfROrZyX5FV96zPgNrXXgqqtVbVQVQtzcwM/tFqStJ9GKvSqur/7+iDwFeDEvin3AZuWXd8I3D+JgJKk0axY6El+O8mznxgDbwC+0zdtO/CO7tkuJwGPVNUDE08rSRpqlGe5/A7wlSRPzP9iVf1rkr8BqKpLga8BbwZ2A78A3jmduJKkYVYs9Kq6G3j5gOWXLhsXcN5ko0mSxuErRSWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqxMiFnmRdktuSXDtg3TlJlpLs7C7vmmxMSdJK1o8x93xgF/CcIeuvqqr3rD6SJGl/jHSEnmQj8Bbgs9ONI0naX6OecrkE+CDw633MeWuSO5Jck2TToAlJtiRZTLK4tLQ0blZJ0j6sWOhJTgMerKod+5j2VWC+qo4Dvg5sGzSpqrZW1UJVLczNze1XYEnSYKMcoZ8MbE5yD3AlcEqSzy+fUFUPVdVj3dXPAK+caEpJ0opWLPSq+lBVbayqeeBM4JtVddbyOUmOXHZ1M70HTyVJB9A4z3J5miQXA4tVtR14b5LNwB7gYeCcycSTJI0qVTWTb7ywsFCLi4sz+d6SdLBKsqOqFgat85WiktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpESMXepJ1SW5Lcu2AdYckuSrJ7iQ3J5mfZEhJ0srGOUI/H9g1ZN25wE+q6kXAJ4CPrTaYJGk8IxV6ko3AW4DPDplyOrCtG18DvC5JVh9PkjSqUY/QLwE+CPx6yPqjgHsBqmoP8Ajw/FWnkySNbMVCT3Ia8GBV7djXtAHLasB9bUmymGRxaWlpjJiSpJWMcoR+MrA5yT3AlcApST7fN+c+YBNAkvXAc4GH+++oqrZW1UJVLczNza0quCTp6VYs9Kr6UFVtrKp54Ezgm1V1Vt+07cDZ3fiMbs5eR+iSpOlZv783THIxsFhV24HLgCuS7KZ3ZH7mhPJJkkY0VqFX1Y3Ajd34gmXLfwW8bZLBJEnj8ZWiktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDVixUJPcmiSW5LcnuSuJBcNmHNOkqUkO7vLu6YTV5I0zPoR5jwGnFJVjybZAHw7yXVVdVPfvKuq6j2TjyhJGsWKhV5VBTzaXd3QXWqaoSRJ4xvpHHqSdUl2Ag8C11fVzQOmvTXJHUmuSbJpyP1sSbKYZHFpaWkVsSVJ/UYq9Kp6vKqOBzYCJyZ5Wd+UrwLzVXUc8HVg25D72VpVC1W1MDc3t5rckqQ+Yz3Lpap+CtwInNq3/KGqeqy7+hnglRNJJ0ka2SjPcplLclg3fibweuB7fXOOXHZ1M7BrkiElSSsb5VkuRwLbkqyj9wvg6qq6NsnFwGJVbQfem2QzsAd4GDhnWoElSYOl9ySWA29hYaEWFxdn8r0l6WCVZEdVLQxa5ytFJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWrEioWe5NAktyS5PcldSS4aMOeQJFcl2Z3k5iTz0wgrSRpulCP0x4BTqurlwPHAqUlO6ptzLvCTqnoR8AngY5ONKUlayYqFXj2Pdlc3dJfqm3Y6sK0bXwO8LkkmllKStKKRzqEnWZdkJ/AgcH1V3dw35SjgXoCq2gM8Ajx/wP1sSbKYZHFpaWl1ySVJTzNSoVfV41V1PLARODHJy/qmDDoa7z+Kp6q2VtVCVS3Mzc2Nn1aSNNRYz3Kpqp8CNwKn9q26D9gEkGQ98Fzg4QnkkySNaJRnucwlOawbPxN4PfC9vmnbgbO78RnAN6tqryN0SdL0rB9hzpHAtiTr6P0CuLqqrk1yMbBYVduBy4Arkuymd2R+5tQSS5IGWrHQq+oO4IQByy9YNv4V8LbJRpMkjcNXikpSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEasWOhJNiW5IcmuJHclOX/AnNckeSTJzu5ywXTiSpKGWT/CnD3AB6rq1iTPBnYkub6qvts371tVddrkI0qSRrHiEXpVPVBVt3bjnwO7gKOmHUySNJ6xzqEnmQdOAG4esPqPktye5LokLx1y+y1JFpMsLi0tjR1WkjTcyIWe5FnAl4D3VdXP+lbfChxTVS8H/gn4l0H3UVVbq2qhqhbm5ub2N7MkaYCRCj3JBnpl/oWq+nL/+qr6WVU92o2/BmxIcsREk0qS9mmUZ7kEuAzYVVUfHzLnd7t5JDmxu9+HJhlUkrRvozzL5WTg7cCdSXZ2yz4MHA1QVZcCZwDvTrIH+CVwZlXVFPJKkoZYsdCr6ttAVpjzKeBTkwolSRqfrxSVpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqRErFnqSTUluSLIryV1Jzh8wJ0k+mWR3kjuSvGI6caUD5MILZ51AGtsoR+h7gA9U1UuAk4DzkhzbN+dNwIu7yxbg0xNNKR1oF1006wTS2FYs9Kp6oKpu7cY/B3YBR/VNOx24vHpuAg5LcuTE00qShhrrHHqSeeAE4Oa+VUcB9y67fh97lz5JtiRZTLK4tLQ0XlJp2i68EJLeBZ4ae/pFB4mRCz3Js4AvAe+rqp/1rx5wk9prQdXWqlqoqoW5ubnxkkrTduGFUNW7wFNjC10HiZEKPckGemX+har68oAp9wGbll3fCNy/+niSpFGN8iyXAJcBu6rq40OmbQfe0T3b5STgkap6YII5pQProx+ddQJpbOtHmHMy8HbgziQ7u2UfBo4GqKpLga8BbwZ2A78A3jn5qNIB5GkWHYRWLPSq+jaDz5Evn1PAeZMKJUkan68UlaRGpGqvJ6McmG+cLAE/2s+bHwH8eIJxJmWt5oK1m81c4zHXeFrMdUxVDXya4MwKfTWSLFbVwqxz9FuruWDtZjPXeMw1nt+0XJ5ykaRGWOiS1IiDtdC3zjrAEGs1F6zdbOYaj7nG8xuV66A8hy5J2tvBeoQuSepjoUtSI9ZUoSc5NMktSW7vPh1pr08ZSHJ09wlKt3WfjvTmZes+1H1q0veTvHEt5Eoyn+SXSXZ2l0sPcK5jknyjy3Rjko3L1p2d5Afd5ew1lOvxZdtr+6RyLbv/dd3/07UD1h2S5KpuP7q5e8voJ9ZNZf9aTa5p7l8j5npVkluT7ElyRt+6qexfE8g1y/3r/Um+2+3330hyzLJ1q99eVbVmLvTeYuBZ3XgDvfddP6lvzlbg3d34WOCeZePbgUOAFwD/DaxbA7nmge/McHv9M3B2Nz4FuKIbPw+4u/t6eDc+fNa5uuuPTnk/ez/wReDaAev+Fri0G58JXDXt/WuVuaa2f42Yax44DrgcOGPZ8qntX6vJtQb2r9cCv9WN373s/3Ei22tNHaFXz6Pd1Q3dpf9R2wKe042fy1Nv03s6cGVVPVZVP6T3RmEnroFcUzNirmOBb3TjG+htJ4A3AtdX1cNV9RPgeuDUNZBrqrq/BN4CfHbIlNOBbd34GuB1ScIU969V5pqqlXJV1T1VdQfw675VU9u/VplrqkbIdUNV/aK7ehO9txqHCW2vNVXo8OSfKzuBB+n9A/s/HelC4Kwk99F7l8e/65aP9KlJM8gF8ILuT7B/T/Ink8o0Yq7bgbd24z8Hnp3k+cx+ew3LBXBoep9sdVOSP5tUps4lwAcZ/oP+5Hapqj3AI8DUt9cqcsEU968Rcg0z6+21L7Pcv5Y7F7iuG09ke625Qq+qx6vqeHq/uU5M8rK+KX8JfK6qNtJ7y94rkjyDET81aQa5HgCOrqoT6P4US/IcJmSEXH8PvDrJbcCrgf+h98Hfs95ew3JBb3stAH8FXJLk9yaRKclpwINVtWNf0wYsq30sn3Wuqe1fI+YaevMByw7k9tqXWe5fT8w9C1gA/vGJRQOmjb291lyhP6GqfgrcyN5/dpwLXN3N+U/gUHpvdHNAPjVp3Fzdn+gPdct30Dv3+vsHKldV3V9Vf9H9wH+kW/YIM95e+8hFVd3ffb27u+0JE4pzMrA5yT3AlcApST7fN+fJ7ZJkPb3TZw8z3e2137mmvH+NkmuYWW+voWa8f5Hk9fT2+c1V9Vi3eDLba5oPDox7AeaAw7rxM4FvAaf1zbkOOKcbv6T7Rwd4KU9/0OpuJveg6GpyzT2RA3ghvSPR5x3AXEcAz+jG/wBcXE89CPNDeg/AHN6N10Kuw4FDls35AXDsFPa11zD4QavzePqDj1d346ntX6vMNbX9a5Rcy9Z/jr0fFJ3K/rXKXLPev06g90v3xX3LJ7K9JvqPmMBGOA64DbgD+A5wQbf8Ynq/zaD3YNp/dD9cO4E3LLv9R7qN9X3gTWshF73zxHd1y28F/vQA5zqj22n/i94DNYcsu/1f03twbzfwzrWQC/hj4M5ue90JnDulfe3JH7i+XIfSewbObuAW4IXT3r9Wk2ua+9eIuf6A3tHl/wEPAXdNe/9aTa41sH99Hfhfeh2xE9g+ye3lS/8lqRFr9hy6JGk8FrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqxP8D3zaGnE9BxrUAAAAASUVORK5CYII=\n", | |
"text/plain": "<Figure size 432x288 with 1 Axes>" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import sympy as sym\ndef plotFunction(f,xVals):\n for currX in xVals:\n plt.plot(currX,f.subs({x:currX}),'ko') #'ko'\n plt.title('f(x) = ' + '$'+ sym.latex(f) + '$')\n plt.grid()\n plt.show() \nx = sym.symbols('x')\nf = x**2 - 3*x\nplotFunction(f,range(-10,12))\n\n ", | |
"execution_count": 136, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEMCAYAAAA/Jfb8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAX2ElEQVR4nO3df5DkdX3n8edrQbw0qwcEdo5jmW5i1iSoCeVOET1Tl9mBRPAMS7xwweryNhGq40UNSa7qhJqqw6pkLv64i3gmmmoXzjXbYeW8WGwIJsK6E86qA7MbibIiYYPOsFnixgCJ4+Q0mPf9Md/Z693t6Zn+ds98v/3p16Oqa/r77e+3v28+/ekX3/3094ciAjMzS8umogswM7PBc7ibmSXI4W5mliCHu5lZghzuZmYJcribmSXI4W5mliCHu1kOkl4r6f9I+hNJd0t6UdE1mbVzuJvlMwdMRcSPA08BOwuux+wUDncrnKQfkPQFSd+U9EvZvN+Q9MtrXP/zkl6xvlWeKiKOR8Q/ZJMvAP+0kds3W418+QErmqQ7gb+PiF/Jpi8CHgW+vy1Au63/74CfjYh/u76Vdtz2ZcAngB+LiO/0+V57gauAc4G/Bt4XEbv7r9JGkffcrQyqwJG26Z8D7l9LsGf2AzskXTzowrqR9FJgD/CWfoM98xtALSJeClwH/Lqk7QN4XxtBDncrlKTPAjuA35K0IOnlwLXAn2Svv0zSs5JenU3/S0nfkDS5/B4R8X+Bw8BPDri290n6VNv0+yUdkPQiSWcDdwPvjognBrG9iDgSEd9ensweL1tLPYPYvqXF4W6Fiogp4H8D74iIzRHxF8CrgCey1/8SeBfQklQB/gfwsYiYPe2tHgd+pNM2JN0n6fkVHvd1Ke+9LP2L4ApJbwOuAd4UEf8IvBn4UeA/S5qV9LN52+C0Wj8saRH4CvAMcP8a6zE7xdlFF2DWwXnAN5cnIuKjkn4KeISlvdnrOqzzTaDjsExEvDFPERHxt5LuAD4O/HOWxtX/Lnvtd4HfzfO+q2zzFyW9E3gtMAl8u+21FesxO5333K2MngNectq8jwKvBD7UNnTR7iXA8+tQyxdY+pfEbRHxdC8rZnv0scLjcyutFxHfjYjPAVuB/zCoemy0ONytjL4IvHx5QtJm4A7gTuDdki7osM4PAX/e6c0kfTobz+/0+PRKRUh6FfARln40fWuv/xERMRkRWuHxY2t4i7M5dcy9r3pstDjcrYzuB368bfqDwOGIuBn4Q+B32heW9GJgO/BApzeLiGuz8fxOj2s7rSPpEuAPgLcBvwi8qv1H3EGTtEXSjZI2SzpL0utZGtf/bBH12PBzuFsZfRx4g6TvkbSTpR8O35a99qvAqyXV25a/DpiNiOOD2Hh2iOP9wG9GxP6IWATeD8wM4v1XECwNwRxjaVjqvwK/HBH3FlSPDTmfxGSlJOm/ACci4o41LPsIcFNEPLb+lZkNB4e7mVmCPCxjZpYgh7uZWYIc7mZmCXK4m5klqBSXH7jwwgujVqvlWvdb3/oW55577mALSozbqDu3z+rcRt0V1T6HDx/+RkRc1Om1UoR7rVbj0KFDudadnZ1lcnJysAUlxm3UndtndW6j7opqH0lzK73mYRkzswQ53M3MEuRwNzNLkMPdzCxBDnczswQNbbi3Wi1qtRpTU1PUajVarVbRJZmZlUYpDoXsVavVotFosLi4CMDc3ByNRgOAer3ebVUzs5EwlHvu09PTJ4N92eLiItPT0wVVZGZWLkMZ7vPz8z3NNzMbNUMZ7uPj4z3NNzMbNUMZ7jMzM1QqlVPmVSoVZmZ81zEzMxjScK/X6zSbTarVKpKoVqs0m03/mGpmlhnKo2VgKeDr9bovaGRm1sFQ7rmbmVl3DnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53M3MErRquEu6S9IJSY+1zXu/pK9I+qKkT0k6r+212yQdlfSEpNevV+FmZraytey5fwy45rR5DwCvjIgfBv4CuA1A0uXAjcArsnU+LOmsgVVrZmZrsmq4R8RDwLOnzftMRLyQTT4MbM2e7wT2RcS3I+KrwFHgygHWa2ZmazCIyw+8FfhE9vwSlsJ+2bFs3hkkNYAGwNjYGLOzs7k2vrCwkHvdUeE26s7tszq3UXdlbJ++wl3SNPACsHyPO3VYLDqtGxFNoAkwMTERea8P42vLrM5t1J3bZ3Vuo+7K2D65w13SLuCNwFURsRzgx4BL2xbbChzPX56ZmeWR61BISdcA7wKui4j2+93tB26U9GJJlwHbgM/3X6aZmfVi1T13SXcDk8CFko4Bt7N0dMyLgQckATwcEW+LiCOS7gG+zNJwzdsj4rvrVbyZmXW2arhHxJs7zL6zy/IzgG+JZGZWIJ+hamaWIIe7mVmCHO5mZglyuJuZJcjhbmaWIIe7mVmCHO5mZglyuJuZJcjhbmaWoJEM91arRa1WY9OmTdRqNVqt1uormZkNkUFcz32otFotGo0Gi4tL1zubm5uj0WgAUK/XiyzNzGxgRm7PfXp6+mSwL1tcXGR6erqgiszMBm/kwn1+fr6n+WZmw2jkwn18fLyn+WZmw2jkwn1mZoZKpXLKvEqlwsyMr1JsZukYuXCv1+s0m02q1SqSqFarNJtN/5hqZkkZuaNlYCngHeZmlrKR23M3MxsFDnczswQ53M3MEuRwNzNL0KrhLukuSSckPdY27wJJD0h6Mvt7fjZfkv67pKOSvijp1etZvJmZdbaWPfePAdecNu9W4EBEbAMOZNMA1wLbskcD+MhgyjQzs16sGu4R8RDw7GmzdwJ7sud7gOvb5n88ljwMnCfp4kEVa2Zma5P3OPexiHgGICKekbQlm38J8HTbcseyec+c/gaSGizt3TM2Nsbs7GyuQhYWFnKvOyrcRt25fVbnNuqujO0z6JOY1GFedFowIppAE2BiYiImJydzbXB2dpa8644Kt1F3bp/VuY26K2P75D1a5uvLwy3Z3xPZ/GPApW3LbQWO5y/PzMzyyBvu+4Fd2fNdwL1t8/99dtTMa4C/Wx6+MTOzjbPqsIyku4FJ4EJJx4DbgfcA90i6CZgHbsgWvx94A3AUWAR+fh1qNjOzVawa7hHx5hVeuqrDsgG8vd+izMysPz5D1cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ73HrRaLWq1Gps2baJWq9FqtYouycyG1HrnyaAv+ZusVqtFo9FgcXERgLm5ORqNBgD1er3I0sxsyGxEnnjPfY2mp6dPfhDLFhcXmZ6eLqgiMxtWG5EnDvc1mp+f72m+mdlKNiJPHO5rND4+3tN8M7OVbESeONzXaGZmhkqlcsq8SqXCzMxMQRWZ2bDaiDxxuK9RvV6n2WxSrVaRRLVapdls+sdUM+vZRuSJj5bpQb1ed5ib2UCsd554z93MLEEOdzOzBDnczcwS5HA3M0tQX+Eu6VckHZH0mKS7Jf0zSZdJekTSk5I+IemcQRVrZmZrkzvcJV0C/BIwERGvBM4CbgTeC3wgIrYBzwE3DaJQMzNbu36HZc4GvkfS2UAFeAaYAj6Zvb4HuL7PbZiZWY8UEflXlm4BZoB/AD4D3AI8HBHfn71+KfDpbM/+9HUbQANgbGxs+759+3LVsLCwwObNm/P9B4wIt1F3bp/VuY26K6p9duzYcTgiJjq9lvskJknnAzuBy4Dngf8JXNth0Y7/94iIJtAEmJiYiMnJyVx1zM7OknfdUeE26s7tszq3UXdlbJ9+hmWuBr4aEX8TEf8I/D7wr4DzsmEagK3A8T5rNDOzHvUT7vPAayRVJAm4CvgycBD4mWyZXcC9/ZVoZma9yh3uEfEISz+c/hnwpey9msC7gF+VdBT4XuDOAdRpZmY96OvCYRFxO3D7abOfAq7s533NzKw/PkPVzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53DdIq9WiVquxadMmarUarVar6JLMrE/L3+upqanSfa99g+wN0Gq1aDQaLC4uAjA3N0ej0QDwDbfNhlTZv9fec98A09PTJzvAssXFRaanpwuqyMz6VfbvtcN9A8zPz/c038zKr+zfa4f7BhgfH+9pvpmVX9m/1w73DTAzM0OlUjllXqVSYWZmpqCKzKxfZf9eO9w3QL1ep9lsUq1WkUS1WqXZbJbiRxczy6fs32sfLbNB6vV6aT50MxuM5e91andiMjOzknK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpagvsJd0nmSPinpK5Iel/RaSRdIekDSk9nf8wdVrJmZrU2/e+4fBP4oIn4Q+BHgceBW4EBEbAMOZNNmZraBcoe7pJcC/xq4EyAivhMRzwM7gT3ZYnuA6/st0szMeqOIyLeidAXQBL7M0l77YeAW4K8i4ry25Z6LiDOGZiQ1gAbA2NjY9n379uWqY2Fhgc2bN+dad1S4jbpz+6zObdRdUe2zY8eOwxEx0em1fsJ9AngYeF1EPCLpg8DfA+9cS7i3m5iYiEOHDuWqo4zXdCgbt1F3bp/VuY26K6p9JK0Y7v2MuR8DjkXEI9n0J4FXA1+XdHG24YuBE31sw8zMcsgd7hHx18DTkn4gm3UVS0M0+4Fd2bxdwL19VWhmZj3r95K/7wRaks4BngJ+nqX/Ydwj6SZgHrihz22YmVmP+gr3iHgU6DTec1U/72tmZv3xGaol12q1qNVqbNq0iVqtRqvVKroks+Sk+D3znZhKrNVq0Wg0WFxcBGBubo5GowHguzqZDUiq3zPvuZfY9PT0yQ63bHFxkenp6YIqMktPqt8zh3uJzc/P9zTfzHqX6vfM4V5i4+PjPc03s96l+j1zuJfYzMwMlUrllHmVSoWZmZmCKjJLT6rfM4d7idXrdZrNJtVqFUlUq1WazeZQ/8hjVjapfs98tEzJ1ev1oe9kZmWX4vfMe+5mZglyuJuZJcjhbmaWIIe7mVmCHO5mZglyuJuZJcjhbmaWIIe7mVmCHO5mZglyuJuZJcjhbmaWIIe7mVmCHO5mZgnqO9wlnSXpC5Luy6Yvk/SIpCclfULSOf2XaXks3/R3amoqmZv+mq0kxZtc92MQe+63AI+3Tb8X+EBEbAOeA24awDasR8s3/Z2bmyMiTt70d9Q7vKXJ/f1MfYW7pK3AvwF2Z9MCpoBPZovsAa7vZxuWT6o3/TXrxP39TP3erOMO4D8BL8mmvxd4PiJeyKaPAZd0WlFSA2gAjI2NMTs7m6uAhYWF3OumrNtNf91ep3IfWl3Z26jo/l7K9omIXA/gjcCHs+eTwH3ARcDRtmUuBb602ntt37498jp48GDudVNWrVYDOONRrVaLLq103IdWV/Y2Krq/F9U+wKFYIVf7GZZ5HXCdpK8B+1gajrkDOE/S8r8ItgLH+9iG5ZTqTX/NOnF/P1PucI+I2yJia0TUgBuBz0ZEHTgI/Ey22C7g3r6rtJ6letNfs07c38+0HjfIfhewT9KvA18A7lyHbdgaLN/0d3Z2lsnJyaLLMVtXKd7kuh8DCfeImAVms+dPAVcO4n3NzCwfn6FqZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7udwXe0sSK5/w3GelxbxobY8h1tlm98sHxHG8DX7bB15/43ON5zt1P4jjZWJPe/wXG42ym63dHGbL25/w2Ow91OMT4+3tN8s0Fy/xsch7udwne0sSK5/w2Ow91O4TvaWJHc/wbHR8vYGXxHGyuS+99geM/dzCxBDnczswQ53M3MEuRwNzNLUO5wl3SppIOSHpd0RNIt2fwLJD0g6cns7/mDK9fMzNainz33F4D/GBE/BLwGeLuky4FbgQMRsQ04kE2bmdkGyh3uEfFMRPxZ9vybwOPAJcBOYE+22B7g+n6LNDOz3igi+n8TqQY8BLwSmI+I89peey4izhiakdQAGgBjY2Pb9+3bl2vbCwsLbN68Ode6o2Ij2+jBBx9k9+7dnDhxgi1btnDzzTdz9dVXb8i283IfWl2vbTSM/aAfRfWhHTt2HI6IiY4vRkRfD2AzcBh4Uzb9/GmvP7fae2zfvj3yOnjwYO51R8VGtdHevXujUqkEcPJRqVRi7969G7L9vNyHVtdLGw1rP+hHUX0IOBQr5GpfR8tIehHwv4BWRPx+Nvvrki7OXr8YONHPNmx4+HKtBu4HZdHP0TIC7gQej4jfbHtpP7Are74LuDd/eTZMfLlWA/eDsuhnz/11wFuAKUmPZo83AO8BfkLSk8BPZNM2Any5VgP3g7Lo52iZz0WEIuKHI+KK7HF/RPxtRFwVEduyv88OsmArL1+u1cD9oCx8hqoNjC/XauB+UBa+5K8NlC/XauB+UAbeczczS5DD3cwsQQ53M7MEOdzNzBLkcLdSaLVa1Go1Nm3aRK1Wo9VqFV2S8f8/l6mpKX8uQ8ZHy1jhWq0WjUbj5Cnrc3NzNBoNAB9xUSB/LsPNe+5WOF+LpJz8uQw3h7sVztciKSd/LsPN4W6F87VIysmfy3BzuFvhfC2ScvLnMtwc7lY4X4uknPy5DDcfLWOl4GuRlNPy5zI7O8vk5GTR5VgPvOduZpYgh7sNPZ8A1Z3bZzR5WMaGmk+06c7tM7q8525DzSfadOf2GV0OdxtqPtGmO7fP6HK421DziTbduX1Gl8PdhppPtOnO7TO61i3cJV0j6QlJRyXdul7bsdHWz4k2w3Y52zxHvfhEpBEWEQN/AGcBfwl8H3AO8OfA5Sstv3379sjr4MGDudcdFW6jM+3duzcqlUoAJx+VSiX27t1bdGkdFV2v+1B3RbUPcChWyNX12nO/EjgaEU9FxHeAfcDOddqWWc+G7SiSYavXirdex7lfAjzdNn0M+NH2BSQ1gAbA2NgYs7OzuTa0sLCQe91R4TY6U7ejSNbSVg8++CC7d+/mxIkTbNmyhZtvvpmrr7563dbrt95+uQ91V8r2WWmXvp8HcAOwu236LcCHVlrewzLry210pmq1esoQx/KjWq2uum7eIZJ+hlb6qXcQ3Ie6G6VhmWPApW3TW4Hj67Qts571cxRJ3iGSfoZWfNSL9Wq9wv1PgW2SLpN0DnAjsH+dtmXWs36OIsl7YlA/JxT5qBfr1bqMuUfEC5LeAfwxS0fO3BURR9ZjW2Z55b2c7fj4OHNzcx3nr8d6y3xZZOvFuh3nHhH3R8TLI+JlEeF/O1oy8g6ReGjFNpLPUDXrUd4hEg+t2EbyJX/Ncsg7ROKhFdso3nM3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQli5PUHAR0t8AZ57dsTYXAt8YYDkpcht15/ZZnduou6LapxoRF3V6oRTh3g9JhyJioug6ysxt1J3bZ3Vuo+7K2D4eljEzS5DD3cwsQSmEe7PoAoaA26g7t8/q3Ebdla59hn7M3czMzpTCnruZmZ3G4W5mlqChDXdJN0g6IumfJE2c9tptko5KekLS64uqsUwkvVvSX0l6NHu8oeiaykDSNVk/OSrp1qLrKRtJX5P0pazPHCq6njKQdJekE5Iea5t3gaQHJD2Z/T2/yBphiMMdeAx4E/BQ+0xJl7N0W79XANcAH5Z01saXV0ofiIgrssf9RRdTtKxf/DZwLXA58Oas/9ipdmR9plTHcRfoYyxlS7tbgQMRsQ04kE0XamjDPSIej4gnOry0E9gXEd+OiK8CR4ErN7Y6GxJXAkcj4qmI+A6wj6X+Y7aiiHgIePa02TuBPdnzPcD1G1pUB0Mb7l1cAjzdNn0sm2fwDklfzP5ZWfg/G0vAfWV1AXxG0mFJjaKLKbGxiHgGIPu7peB6yn0nJkkPAv+iw0vTEXHvSqt1mDcSx3t2ay/gI8CvsdQWvwb8N+CtG1ddKY1sX+nB6yLiuKQtwAOSvpLtuVrJlTrcI+LqHKsdAy5tm94KHB9MReW21vaS9FHgvnUuZxiMbF9Zq4g4nv09IelTLA1lOdzP9HVJF0fEM5IuBk4UXVCKwzL7gRslvVjSZcA24PMF11S4rMMt+2mWfpAedX8KbJN0maRzWPohfn/BNZWGpHMlvWT5OfCTuN+sZD+wK3u+C1hpZGHDlHrPvRtJPw18CLgI+ENJj0bE6yPiiKR7gC8DLwBvj4jvFllrSbxP0hUsDTt8DfiFYsspXkS8IOkdwB8DZwF3RcSRgssqkzHgU5JgKSt+LyL+qNiSiifpbmASuFDSMeB24D3APZJuAuaBG4qrcIkvP2BmlqAUh2XMzEaew93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEOdzOzBP0/fk60G8juZcIAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "from IPython.display import display,Math\ndisplay(Math(sym.latex(f)))", | |
"execution_count": 137, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Math object>", | |
"text/latex": "$\\displaystyle x^{2} - 3 x$" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "p1 = [-3,-1]\np2 = [4,4]\nplt.plot([p1[0],p2[0]],[p1[1],p2[1]], color=[.2,.3,.8], linewidth=3.4)\nplt.axis('square')\nplt.show()", | |
"execution_count": 138, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP0AAAD4CAYAAAAn+OBPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAM+0lEQVR4nO3df+xddX3H8ee7pcosMNR2g7WwsmyZMoKDNGyuCTBhhmqj2bJfOM3UmMZEF8hQB+MPlrBkW9xIiYBbU91QQKNAt4UhlSVjxD/oaKVxQGFhXZEvZfJtDBYXpa1974/vBdtv29vv93s+955zz+f5SAjfe7+n7/O5Ia+ee173ck5kJpLqsajtBUgaL0MvVcbQS5Ux9FJlDL1UmZPa2OmyZcty1apVbexaqsL27dv3ZubyY/2uldCvWrWKbdu2tbFrqQoR8ezxfufbe6kyhl6qjKGXKmPopcoYeqkyhl6qjKGXKmPopcoUCX1EnB4Rd0fEUxGxMyLeXmKupPJKfSPvZuCBzPztiHgd8IZCcyUV1jj0EXEacDHwQYDM3A/sbzpX0miUeHv/c8A08PcR8VhEbIqIpbM3ioj1EbEtIrZNT08X2K2khSgR+pOAC4HPZuYFwP8B187eKDM3ZubqzFy9fPkx/+cfSWNQIvRTwFRmbh08vpuZvwQkdVDj0Gfm/wLPRcQvDp66DHiy6VxJo1Gqvf8j4M5Bc78L+FChuZIKKxL6zNwBrC4xS9Jo+Y08qTKGXqqMoZcqY+ilyhh6qTKGXqqMoZcqY+ilyhh6qTKGXqqMoZcqY+ilyhh6qTKGXqqMoZcqY+ilyhh6qTKGXqqMoZcqU+QaeRGxG3gZ+BFwMDO9Xp7UUaWuhgvw65m5t+A8SSPg23upMqVCn8DXI2J7RKw/1gbey07qhlKhX5OZFwJrgY9FxMWzN/BedlI3FAl9Zu4Z/PtFYDNwUYm5ksprHPqIWBoRp776M/BO4PGmcyWNRon2/qeBzRHx6ry7MvOBAnMljUDj0GfmLuBtBdYiaQz8yE6qjKGXKmPopcoYeqkyhl6qjKGXKmPopcoYeqkyhl6qjKGXKmPopcoYeqkyhl6qjKGXKmPopcoYeqkyhl6qjKGXKmPopcoUC31ELI6IxyLivlIzJZVX8kh/FbCz4DxJhzlw4BCfuX2K//72DxrNKRL6iFgJvBvYVGKepCPtnvohH/zkU9x+z3e4/tP/wyv7Dy14Vqkj/QbgU8DCVyLpKJnJvQ9M8wdXP8nTu2aO8M88+wNu+cLzC57Z+Lr3EbEOeDEzt0fEpUO2Ww+sBzj77LOb7lbqvZf2HeTPb3mWhx556Yjnf+anXsfla9644Lkl7nCzBnhPRLwLOBk4LSLuyMz3H75RZm4ENgKsXr06C+xX6q2tO/bxZxt2M/3dA0c8v/aSN/EnHz2bU5YuXvDsEne4uQ64DmBwpP/E7MBLmpsDBw5x2x17+OLm7xzx/NI3LOLaj57N2kvf3HgfJY70kgrYPfVDrv/rXa+du7/q/Lcs5cY/PocVZ7y+yH6Khj4zHwIeKjlT6rvMZPOWvfzNpud4Zf+Pz3wXLYKP/N6ZfPh3z+SkxVFsfx7ppRYNK+tuvOYc3vbWU4rv09BLLRllWTeMoZfGbBxl3TCGXhqjcZV1wxh6aQzGXdYNY+ilEWujrBvG0Esj1FZZN4yhl0ag7bJuGEMvFdaFsm4YQy8V0qWybhhDLxXQtbJuGEMvNdTFsm4YQy8tUJfLumEMvbQAXS/rhjH00jxkJvdu2ctNHS/rhjH00hxNUlk3jKGX5mDSyrphDL00xKSWdcMYeuk4JrmsG8bQS7P0oawbpsTNLk4GHgZeP5h3d2be0HSu1Ia+lHXDlDjSvwK8IzO/HxFLgG9ExNcy85ECs6Wx6VNZN0yJm10k8P3BwyWDf7yDjSZGH8u6YYqc00fEYmA78PPArZm59RjbeC87dU5fy7phioQ+M38E/HJEnA5sjojzMvPxWdt4Lzt1Rt/LumFK3+HmpYh4CLgCePwEm0utqKGsG6ZEe78cODAI/E8AlwN/1Xhl0gjUUtYNU+JIfyZw++C8fhHwlcy8r8BcqZjayrphSrT33wIuKLAWaSRqLOuG8Rt56q2ay7phDL16qfaybhhDr97ZumMfN2zYzd6Ky7phDL16w7Jubgy9esGybu4MvSaaZd38GXpNLMu6hTH0mkiWdQtn6DVRLOuaM/SaGJZ1ZRh6dZ5lXVmGXp1mWVeeoVdnWdaNhqFX51jWjZahV6dY1o2eoVcnWNaNj6FX6yzrxsvQq1WWdeNn6NWK/QcO8VnLulaUuBruWcAXgDOAQ8DGzLy56Vz1l2Vdu0oc6Q8C12TmNyPiVGB7RDyYmU8WmK0esazrhhJXw30BeGHw88sRsRNYARh6vcayrjuKntNHxCpmLoftvez0Gsu6bikW+og4BbgHuDoz983+vfeyq49lXTeVumvtEmYCf2dm3ltipiabZV13lWjvA/gcsDMzb2q+JE0yy7ruK3GkXwN8APjPiNgxeO5PM/P+ArM1QSzrJkOJ9v4bgH91V86ybnL4jTw1Ylk3eQy9FsyybjIZes2bZd1kM/SaF8u6yWfoNWeWdf1g6HVClnX9Yug1lGVd/xh6HZNlXX8Zeh3lpX0HufEzu/n3rd874nnLun4w9DqCZV3/GXoBlnU1MfSyrKuMoa+YZV2dDH2lLOvqZegrZFlXN0NfEcs6gaGvhmWdXmXoe86yTrMZ+h6zrNOxlLoE9ueBdcCLmXleiZlqxrJOx1PqSP8PwC3M3MhSLbKs04kUCX1mPjy4pZVaZFmnuRjbOb33shsdyzrNx9hC773sRsOyTvNlez/BLOu0EIZ+Au0/cIjbvriHO/7Rsk7zV+ojuy8BlwLLImIKuCEzP1dito5kWaemSrX3V5aYo+OzrFMpvr2fAJZ1KsnQd5xlnUoz9B1lWadRMfQdZFmnUTL0HWJZp3Ew9B1hWadxMfQdYFmncTL0LbKsUxsMfUss69QWQz9mlnVqm6EfI8s6dYGhHxPLOnWFoR8xyzp1jaEfIcs6dZGhHwHLOnWZoS/Msk5dZ+gLsqzTJDD0BVjWaZIY+oYs6zRpSl0Y8wrgZmAxsCkz/7LE3C6zrNOkahz6iFgM3Ar8BjAFPBoR/5yZTzad3VWWdZpkJY70FwHPZOYugIj4MvBeoJeht6zTpCsR+hXAc4c9ngJ+pcDcTrGsU1+UCP2xTlyPulfdJN/A0rJOfVIi9FPAWYc9Xgnsmb3RJN7A0rJOfVQi9I8CvxAR5wDPA78PvK/A3FZZ1qmvGoc+Mw9GxMeBLcx8ZPf5zHyi8cpaZFmnPit1L7v7gftLzGqTZZ1q4DfyBizrVIvqQ29Zp9pUHXrLOtWo2tBb1qlW1YXesk61qyr0lnVSJaG3rJN+rPeht6yTjtTr0FvWSUfrZegt66Tj613oLeuk4XoTess6aW56EXrLOmnuJj70lnXS/Exs6C3rpIWZyNBb1kkLN1Ght6yTmpuY0FvWSWVMROgt66RyOh16yzqpvEVN/nBE/E5EPBERhyJidalFwUxZ96FPPnVU4M9/y1Lu2nCugZcWqOmR/nHgt4C/K7AWwLJOGrVGoc/MnQAR5UL48H98j7+47dtHPGdZJ5XT6O39fETE+ojYFhHbpqenj7vdxRf9JL924WmvPV57yZu46+ZzDbxUyAmP9BHxr8AZx/jV9Zn5T3Pd0VzvZRcR3HDVKj5y7dOsv/JMz92lwk4Y+sy8fBwLOdyb37iEr972S567SyMwtrf382XgpdFo+pHdb0bEFPB24F8iYkuZZUkalabt/WZgc6G1SBqDzr69lzQakXncIn10O42YBp4d+45PbBmwt+1FjFjfX2PfXx/M7TX+bGYuP9YvWgl9V0XEtsws+nXirun7a+z764Pmr9G391JlDL1UGUN/pI1tL2AM+v4a+/76oOFr9JxeqoxHeqkyhl6qjKGfJSI+HRFPRcS3ImJzRJze9ppKiIgrIuLpiHgmIq5tez2lRcRZEfFvEbFzcDWnq9pe0yhExOKIeCwi7lvoDEN/tAeB8zLzfOC/gOtaXk9jEbEYuBVYC5wLXBkR57a7quIOAtdk5luBXwU+1sPXCHAVsLPJAEM/S2Z+PTMPDh4+Aqxscz2FXAQ8k5m7MnM/8GXgvS2vqajMfCEzvzn4+WVmgrGi3VWVFRErgXcDm5rMMfTDfRj4WtuLKGAF8Nxhj6foWSAOFxGrgAuAre2upLgNwKeAQ02GdPoS2KMyl6sBRcT1zLxlvHOcaxuRY12coJef1UbEKcA9wNWZua/t9ZQSEeuAFzNze0Rc2mRWlaE/0dWAIuIPgXXAZdmPLzJMAWcd9nglsKeltYxMRCxhJvB3Zua9ba+nsDXAeyLiXcDJwGkRcUdmvn++g/xyziwRcQVwE3BJZh7/Cp4TJCJOYqaUvAx4HngUeF9mPtHqwgqKmUsy3w58NzOvbns9ozQ40n8iM9ct5M97Tn+0W4BTgQcjYkdE/G3bC2pqUEx+HNjCTMH1lT4FfmAN8AHgHYP/bjsGR0XN4pFeqoxHeqkyhl6qjKGXKmPopcoYeqkyhl6qjKGXKvP/SDqucCSbTCcAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = 3\ny = 5\nplt.plot(x,y,'ko')\nplt.plot([0,x],[0,y],'k')\nplt.axis('square')\nplt.axis([-6,6,-6,6])\nplt.grid()\nplt.plot([-6,6],[0,0], 'k')\nplt.plot([0,0],[-6,6], 'k')\nplt.show()", | |
"execution_count": 139, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAD8CAYAAACYVXqwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAO6UlEQVR4nO3dbWzd5X3G8e+VkCxiLcokjFBIwIlWw1iLVUYpEdqclbaiBQVp2gsqWkErZK0aERNBKSEaEkxoY53aILVoioC+qaUuorBVEWuLhT1pSDASGspDUoQQIaZFBAmHemF5cH574WPkBD+c+H+f87/Pua+PdKQc++/7XDrxuXL759uxIgIzK9OSugOYWX1cAGYFcwGYFcwFYFYwF4BZwVwAZgVLUgCSVkp6TNJ+SfskrU+xrpm11lmJ1nkQ+HlE/LWk5cDZidY1sxZS1YNAks4BXgTWhU8VmXWUFDuAdcAh4EeS+oE9wO0R8b8zL5I0CAwCrFix4s8uvPDCBA+dxsmTJ1myJJ9xSG55Dh48SETgv7O55Zbntddeey8ieha8MCIq3YArgBPA5xv3HwT+Yb6P6evri5yMjIzUHeEUueUZGBiI/v7+umOcIrfnKLc8wO5o4vWborLGgLGIeK5x/zHg8gTrmlmLVS6AiHgHOCjp4sabrgFerbqumbVequ8CbAKGGt8BeAP4ZqJ1zayFkhRAROxlahZgZh0kn7GlmbWdC8CsYC4As4K5AMwK5gIwK5gLwKxgLgCzgrkAzArmAjArmAvAijQ0NERvby9Lliyht7eXoaGhuiPVItXPAph1jKGhIQYHBzly5AgABw4cYHBwEICbbrqpzmht5x2AFWfbtm0fvfinHTlyhG3bttWUqD4uACvOW2+9dUZv72YuACvOXP+1WU7/5Vm7uACsOHfcccfH3nb22Wdz//3315CmXi4AK84zzzzDsmXLWLVqFZK46KKL2LFjR3EDQPB3Aawww8PD7Ny5k3vvvZd77rmn7ji18w7AinHs2DE2bdrEunXr2LJlS91xsuAdgBVj+/bt7N+/n127drFixYq642TBOwArwtjYGPfddx8bN27kuuuuqztONlwAVoTNmzczOTnJ9u3b646SFReAdb3pwd/WrVtZu3Zt3XGy4gKwrubB3/w8BLSu5sHf/LwDsK7lwd/CXADWtTz4W5gLwLqSB3/NSVYAkpZK+pWkXanWNFsMD/6al3IIeDuwDzgn4ZpmZ8yDv+Yl2QFIWg1cBzycYj2zxfLg78yk+hJgO7AFOJloPbNF8eDvzFT+EkDS9cC7EbFH0oZ5rhsEBgF6enoYHR2t+tDJTExMOM88xsfHmZyczCrTbM/Rnj172LlzJ7fccgsHDhzgwIEDtebpCBFR6Qb8IzAGvAm8AxwBfjzfx/T19UVORkZG6o5witzyDAwMRH9/f90xTnH6c3T06NG45JJLYt26dfHhhx/WnqduwO5o4vVbeQcQEVuBrQCNHcCdEfH1quuanQkP/hbH5wCs43nwt3hJfxYgIkaB0ZRrmi3Eg7/F8w7AOppP/FXjArCO5RN/1fnHga1jefBXnXcA1pEOHTrkwV8CLgDrSA899JAHfwm4AKzjDA8PMzo66sFfAi4A6yjTg79Vq1Z58JeAC8A6yvTg77bbbvPgLwEXgHWMmSf+1q9fX3ecruACsI7hE3/puQCsI/jEX2u4ACx7PvHXOj4JaNnzib/W8Q7AsuYf9W0tF4BlzYO/1nIBWLY8+Gs9F4BlyYO/9vAQ0LLkwV97eAdg2fHgr31cAJYdD/7axwVgWfHgr71cAJYND/7az0NAy4YHf+3nHYBlwYO/ergALAse/NXDBWC18+CvPi4Aq5UHf/XyENBq5cFfvSrvACStkTQiaZ+kVyTdniKYdT8P/uqXYgdwAtgcES9I+iSwR9JTEfFqgrWti3nwV7/KO4CI+F1EvND48++BfcAFVde17ubBXx6SzgAk9QKfBZ6b5X2DwCBAT08Po6OjKR+6komJCeeZx/j4OJOTk8kyHT9+nFtvvZVVq1Zx1VVXLWrd3J6j3PI0LSKS3IBPAHuAv1ro2r6+vsjJyMhI3RFOkVuegYGB6O/vT7beAw88EEDs2rVr0Wvk9hzllgfYHU28bpN8G1DSMuCnwFBEPJ5iTetOHvzlJcV3AQQ8AuyLiO9Vj2TdzIO/vKTYAVwNfAP4gqS9jdtXE6xrXcaDv/xUHgJGxH8DSpDFuphP/OXJJwGtLXziL0/+WQBrOQ/+8uUCsJbz4C9fLgBrKQ/+8uYCsJbx4C9/HgJay3jwlz/vAKwlPPjrDC4AawkP/jqDC8CS8+Cvc7gALCkP/jqLh4CWlAd/ncU7AEvGg7/O4wKwZDz46zwuAEvCg7/O5AKwyjz461weAlplHvx1Lu8ArBIP/jqbC8Aq8eCvs7kAbNE8+Ot8LgBbFA/+uoOHgLYoHvx1B+8A7Ix58Nc9XAB2xjz46x4uADsjHvx1FxeANc2Dv+7jIaA1zYO/7uMdgDXl+PHjHvx1oVS/HvxaSb+R9Lqku1KsaXl5++23PfjrQil+PfhS4IfAV4BLga9JurTqupaP999/n8OHD3vw14VSzACuBF6PiDcAJP0EuAF4da4POHjwIBs2bEjw0GmMj4+zcuXKumN8JKc8EcHLL7+MJIaHh3n66afrjgTk9RxBfnmalaIALgAOzrg/Bnz+9IskDQKDAMuWLWN8fDzBQ6cxOTnpPHM4duwYEcHy5cv54IMP6o7zkZyeI8gvT7NSFIBmeVt87A0RO4AdABdffHHs3bs3wUOnMTo6mtWOJLc8AwMDHD58GP+dzS23PNJsL8uPSzEEHAPWzLi/GvhtgnUtE81+MlnnSVEAzwOfkrRW0nLgRuBnCdY1sxar/CVARJyQdBvwC2Ap8GhEvFI5mZm1XJKTgBHxJPBkirXMrH18EtCsYC4As4K5AMwK5gIwK5gLwKxgLgCzgrkAzArmAjArmAvArGAuALOCuQDMCuYCMCuYC8CsYC4As4K5AMwK5gIwK5gLwKxgLgCzgrkAzArmAjArmAvArGAuALOCuQDMCuYCMCuYC8CsYC4As4K5AMwKVqkAJH1X0n5Jv5b0hKSVqYKZWetV3QE8BXw6Ii4DXgO2Vo9kZu1SqQAi4pcRcaJx91lgdfVIZtYuSX49eMO3gH+b652SBoFBgJ6eHkZHRxM+dDUTExPOM4/x8XEmJyezypTbc5RbnqZFxLw3YBh4eZbbDTOu2QY8AWih9SKCvr6+yMnIyEjdEU6RW56BgYHo7++vO8YpcnuOcssD7I4mXosL7gAi4ovzvV/SzcD1wDWNBzazDlHpSwBJ1wLfAQYi4kiaSGbWLlW/C/AD4JPAU5L2SvrXBJnMrE0q7QAi4o9TBTGz9vNJQLOCuQDMCuYCMCuYC8CsYC4As4K5AMwK5gIwK5gLwKxgLgCzgrkAzArmAjArmAvArGAuALOCuQDMCuYCMCuYC8CsYC4As4K5AMwK5gIwK5gLwKxgLgCzgrkAzArmAjArmAvArGAuALOCuQDMCuYCMCtYkgKQdKekkHRuivXMrD0qF4CkNcCXgLeqxzGzdkqxA/g+sAWIBGuZWRtVKgBJG4G3I+LFRHnMrI3OWugCScPA+bO8axtwN/DlZh5I0iAwCNDT08Po6GjzKVtsYmLCeeYxPj7O5ORkVplye45yy9O0iFjUDfgM8C7wZuN2gqk5wPkLfWxfX1/kZGRkpO4Ip8gtz8DAQPT399cd4xS5PUe55QF2RxOv4wV3APMUx0vAedP3Jb0JXBER7y12TTNrL58DMCvYoncAp4uI3lRrmVl7eAdgVjAXgFnBXABmBXMBmBXMBWBWMBeAWcFcAGYFcwGYFcwFYFYwF4BZwVwAZgVzAZgVzAVgVjAXgFnBXABmBXMBmBXMBWBWMBeAWcFcAGYFcwGYFcwFYFYwF4BZwVwAZgVzAZgVzAVgVjAXgFnBXABmBXMBmBWscgFI2iTpN5JekfTPKUKZWXtU+u3Akv4SuAG4LCKOSjovTSwza4eqO4BvA/8UEUcBIuLd6pHMrF0q7QCAPuDPJd0P/B9wZ0Q8P9uFkgaBwcbdo5JervjYKZ0LvFd3iBlyywNwrqScMuX2HOWW5+JmLlqwACQNA+fP8q5tjY//I+Aq4HPATknrIiJOvzgidgA7GmvujogrmgnYDs6zsNwyOc/8JO1u5roFCyAivjjPg3wbeLzxgv8fSSeZasJDzQY1s/pUnQH8O/AFAEl9wHLy2gaZ2TyqzgAeBR5tfD1/DLh5tu3/LHZUfNzUnGdhuWVynvk1lUfNvV7NrBv5JKBZwVwAZgWrtQByPEYs6U5JIencmnN8V9J+Sb+W9ISklTXluLbxd/S6pLvqyDAjyxpJI5L2NT5nbq8zzzRJSyX9StKuurMASFop6bHG588+Sevnura2AjjtGPGfAv9SV5ZpktYAXwLeqjsL8BTw6Yi4DHgN2NruAJKWAj8EvgJcCnxN0qXtzjHDCWBzRPwJU2dP/rbmPNNuB/bVHWKGB4GfR8QlQD/zZKtzB5DjMeLvA1uA2iejEfHLiDjRuPsssLqGGFcCr0fEGxFxDPgJU6Vdi4j4XUS80Pjz75n6xL6grjwAklYD1wEP15ljmqRzgL8AHgGIiGMRMT7X9XUWwPQx4uck/Zekz9WYBUkbgbcj4sU6c8zhW8B/1vC4FwAHZ9wfo+YX3DRJvcBngefqTcJ2pv7ROFlzjmnrmDqI96PGlyUPS/rDuS6ueg5gXqmOEbcpz93Al1v12GeaJyL+o3HNNqa2vkPtzNagWd5W++5I0ieAnwJ/FxEf1JjjeuDdiNgjaUNdOU5zFnA5sCkinpP0IHAX8PdzXdwyuR0jniuPpM8Aa4EXJcHUdvsFSVdGxDvtzjMj183A9cA1rSzGeYwBa2bcXw38toYcH5G0jKkX/1BEPF5nFuBqYKOkrwIrgHMk/Tgivl5jpjFgLCKmd0aPMVUAs6rzS4BsjhFHxEsRcV5E9EZEL1NP4uWtfPEvRNK1wHeAjRFxpKYYzwOfkrRW0nLgRuBnNWVBU+38CLAvIr5XV45pEbE1IlY3PmduBJ6u+cVP43P2oKTpnwa8Bnh1rutbugNYwGKPEZfiB8AfAE81diXPRsTftDNARJyQdBvwC2Ap8GhEvNLODKe5GvgG8JKkvY233R0RT9aYKUebgKFGab8BfHOuC30U2KxgPgloVjAXgFnBXABmBXMBmBXMBWBWMBeAWcFcAGYF+39oPvs3i5EXvgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x = sym.symbols('x')\nplotFunction(abs(x)**(1/2),range(-20,20))", | |
"execution_count": 135, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEMCAYAAADtdfykAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAVhUlEQVR4nO3de2wlZ33G8edJCJSNUwJNMGlCjsNVhKQt8YpSkdD1KSKXBlJaIYFOKRUgi1JaEEVAalXdggwCWpReEHS5lFAsLNRCm6aJwsV2IFUJ3SUkJCwpCXgDTSDciWO6Be2vf5zxxuscn8scz5l3znw/0tGey4z35/e88+zsvO/MOCIEAEjXcWUXAADojqAGgMQR1ACQOIIaABJHUANA4ghqAEgcQQ0AiSOogSHZnrf9Wdv/ZHvXls+mbH/H9kr2OLWsOlFdBDUwBNvnSHp8RFwg6VOSXtphsesjYk/2+M5oK8Q4IKgxUrafbPsm2/fZ/uPsvbfafk2f63/e9lMLqGuv7b05lr1A0rXZ82slnd9hlWdme9xvse2hi0XtENQYtddLWomIkyLib7JDAb8n6e/7XP8vJb2psOoG90hJP8qe/0jSo7Z8fo+kJ0h6lqRHS/rt0ZWGcUFQY9Qakm7b9Pr3JV0TET/pc/2rJM3YPm2nC8vpB5IekT1/hKTvb/4wIg5HxP3RvqjOxyT98ojrwxggqDEytpckzUj6O9trtp8k6WJJ12efP972922fl73+Rdvftb1n42dExP9KOiDpOQXX+nbbH9/0+h22P237hC2L3iDpwuz5hZL+Y8vP+flNLy+QdEcR9WK8PaTsAlAfEdG0vSLpwxHxPkmyfa6k27PP77T9BkkLtqcl/YOkD0bEypYfdVDb7JnavlqdjxNL0g0RcWmf5b5N0p22f0XSMyRdJOn8iPjp5sPMEfEl24dsf1bSvWofxpHtx0j6A0n7s+PZ65K+LunP+vz7gaMIapTtZEn3bbyIiPfafq6kGyWFpOd1WOc+SR0PfQwQxF1FxPdsXyHpQ2of0jg/In60zbKXd3jvW5L+PHv5bztRE+qLQx8o2w8knbTlvfdKOkfS30bE4Q7rnCTph0UXJukmSedKujwivjGCvw/oiKBG2W6R9KSNF7YnJF0h6f2S9treOotCkp4i6eZOP8z2tdnx706Pazuts83POVfSuyVdqc5zo4GRIahRtmsk/fqm138t6UBEvFzSv0t6z+aFbT9M0rSkT3b6YRFxcURMbPO4uJ+CbJ+u9uGKV0h6paRzNw9oAqNGUKNsH5J0ie2H275M7UG7V2SfvVbSebZbm5Z/ntrzsO8uophslsY1kt4ZEVdFxLqkd0iaL+LvA/ph7pmIstl+i6R7I+KKPpa9UdLLIuLWHa5hryRFxN6dXBbYCcz6QOki4k8HWPZXi6wFSBFBDbStFLQsMDQOfQBA4hhMBIDEEdQAkLhCjlGfcsopMTU1lWvd+++/XyeeeOLOFrRDqC0fasuH2vKpam0HDhz4bkR0vgNQROz4Y3p6OvJaXl7OvW7RqC0fasuH2vKpam2S9sc2mcqhDwBIHEENAIkjqAEgcQQ1ACSOoAaAxCUT1AsLC5qamlKz2dTU1JQWFhbKLgkAkpDEtT4WFhY0Ozur9fV1SdKhQ4c0OzsrSWq1Wt1WBYCxl8Qe9dzc3NGQ3rC+vq65ubmSKgKAdCQR1HfddddA7wNAnSQR1GeeeeZA7wNAnSQR1PPz89q1a9cx7+3atUvz8w/c/WhjsPG4445jsBFAUorOpyQGEzcGDOfm5nTXXXfpzDPP1Pz8/NH3GWwEkKpR5FMSe9RS+xdaXV3V0tKSVldXj/kFGWwEkKpR5FMyQd0Ng40AUjWKfKpEUDPYCCBVo8inSgR1r8FGBhoBFKlbxvQzGWJYlQjqVqulffv2qdFoyLYajYb27dunVqt19ED+oUOHFBFHD+QT1gB2Qq+M6ZZPO6USQS09MNh45MiRYwYbGWgEUKR+Mma7fNoplQnq7TDQCKBIKWRM5YOagUYARUohYyof1KM4kA+gvlLImMoHdT8H8pkVAqCX7XJiFIOFvSRxCvmwWq3Wto3G6ecAeumVE90yZhQqv0fdC7NCAPSSek6MfVCnMGILIG2p50TfQW37eNs32b66yIJ2WgojtgDSlnpODLJH/WpJB4sqpChc6xqAVP5p4MPoK6htnyHpNyW9r9hydl6vEVtOQQfGXwqngQ+j3z3qKyS9XtKRAmspTLfTO1MfRAAwvBROAx+GI6L7Avalki6JiFfa3iPpdRFxaYflZiXNStLk5OT04uJiroLW1tY0MTGRa908ms2mOrWBbS0tLR3z3qhrGwS15UNt+VSttkG28yJ1a7eZmZkDEbG744cR0fUh6a2SvilpVdK3JK1L+nC3daanpyOv5eXl3Ovm0Wg0QtKDHo1Go/TaBkFt+VBbPlWrbZDtfNS1bZC0P7bJ1J6HPiLi8og4IyKmJL1Q0lJE/G6//4KkLvVBBADDq/p2PvbzqHsZ5BT0ZrPJrBAgUd2209QHC3sZ6BTyiFiRtFJIJSXiFHSg2vrZTss+DXwYtd+j7oVZIUD6xn07Jah7SP3UUgDjv50S1D2kfmopgPHfTgnqHqo+WgzUwbhvpwR1D9yYAEhDt+2s6rM6ehmLGwcUbWO0eGVlRXv27DnmM2aFAMUbZFZHp+206tijHtK4jzYDKaj7dkZQD2ncR5uBFNR9OyOohzTuo81ACuq+nRHUQxr30WYgBXXfzgjqIfVzYwJmhAC91XlWRy/M+tgB211DgBkhQH/G/Vodw2KPukB1H6kG+sW20h1BXaC6j1QD/WJb6Y6gLlDdR6qBfrGtdEdQF6juI9VAv9hWuiOoC8R1QoBjbdff6z6roxdmfRSMu8cAbb36e51ndfTCHnWJGOlGndDf8yOoS8RIN+qE/p4fQV0iRrpRJ/T3/AjqEjHSjTqhv+dHUJeIWSEYN1yvoxjM+igZs0IwLrheR3HYo04Yo+SoEvprcQjqhDFKjiqhvxaHoE4Yo+SoEvprcQjqhDFKjiqhvxaHoE4Yo+SoEvprcQjqxLVaLa2ururIkSNaXV19UKffmA7VbDaZvofC9epvvfor8mF6XoUxfQ+jRH8rD3vUFcZ0KIwS/a08BHWFMR0Ko0R/Kw9BXWFMh8Io0d/KQ1BXGNOhMEr0t/IQ1BXGdCiMEv2tPD2D2vbP2f687Ztt32b7L0ZRGPqzMR1qaWmp6/Q9rr6HfvTqL736G4rRz/S8w5KaEbFm+wRJN9i+NiI+V3BtGBLTqTAI+ku6eu5RR9ta9vKE7BGFVoUdwXQqDIL+ki5H9M5c28dLOiDpCZLeFRFv6LDMrKRZSZqcnJxeXFzMVdDa2pomJiZyrVu0qtXWbDbV6fu1raWlpVGVVrl2S8Woaxukv9Bu+XSrbWZm5kBE7O74YUT0/ZB0sqRlSed0W256ejryWl5ezr1u0apWW6PRCLX/93PMo9FolF5bKqjtAYP0F9otn261Sdof22TqQLM+IuKHklYkXTTIeigH06kwCPpLuvqZ9XGq7ZOz5w+X9GxJXym6MAyP6VQYBP0lXf3M+jhN0pXZcerjJH00Iq4utizsFO5Rh0HQX9LUz6yPWyLiaRHxSxFxTkS8aRSFoXjMsa4fvvNq4jKnNcWc2frhO68uTiGvKebM1g/feXUR1DXFJSvrh++8ugjqmuKSlfXDd15dBHVNMWe2fvjOq4ugrinmzNYP33l1MeujxpgzWz9859XEHjW2xZzbauJ7Gz/sUaMj5txWE9/beGKPGh0x57aa+N7GE0GNjphzW018b+OJoEZHzLmtJr638URQoyPm3FYT39t4IqjREXNuq4nvbTwx6wPbYs5tNfG9jR/2qAEgcQQ1cuPEinLQ7vXDoQ/kwokV5aDd64k9auTCiRXloN3riaBGLpxYUQ7avZ4IauTCiRXloN3riaBGLpxYUQ7avZ4IauTCiRXloN3riVkfyI0TK8pBu9cPe9QAkDiCGoXZODGj2WxyYsYAaDdsxaEPFIITM/Kh3dAJe9QoBCdm5EO7oROCGoXgxIx8aDd0QlCjEJyYkQ/thk4IahSCEzPyod3QCUGNQnBiRj60Gzph1gcKs3FixsrKivbs2VN2OZVBu2Er9qgBIHEENQAkrmdQ236s7WXbB23fZvvVoygMANDWzx71zyT9SUQ8RdIzJP2h7bOLLQt1UNd7/9X190Z+PQcTI+IeSfdkz++zfVDS6ZK+XHBtGGN1PVW6rr83hjPQMWrbU5KeJunGIopBfdT1VOm6/t4YjiOivwXtCUnXS5qPiI91+HxW0qwkTU5OTi8uLuYqaG1tTRMTE7nWLRq15dOptmazqU59z7aWlpZGVdrI222Q37tq32kqqlrbzMzMgYjY3fHDiOj5kHSCpOskvbaf5aenpyOv5eXl3OsWjdry6VRbo9EISQ96NBqN0msr0iC/d9W+01RUtTZJ+2ObTO1n1oclvV/SwYh450D/fADbqOup0nX9vTGcfo5RP1PSiyU1bX8xe1xScF0Yc3U9VbquvzeG08+sjxskeQS1oGbqeu+/uv7eyI8zEwEgcQQ1ACSOoAaAxBHUSFKVT7Oucu1IE9ejRnKqfJp1lWtHutijRnKqfJp1lWtHughqJKfKd+Kucu1IF0GN5FT5TtxVrh3pIqiRnCqfZl3l2pEughrJqfJp1lWuHeli1geSVOXTrKtcO9LEHjUAJI6gBoDEEdQAkDiCGgASR1ADQOIIagBIHEGNSirzCnVcHQ+jxjxqVE6ZV6jj6ngoA3vUqJwyr1DH1fFQBoIalVPmFeq4Oh7KQFCjcsq8Qh1Xx0MZCGpUTplXqOPqeCgDQY3KKfMKdVwdD2Vg1gcqqcwr1HF1PIwae9QAkDiCGgASR1ADQOIIagBIHEENAIkjqAEgcQQ1ACSOoAaAxBHUAJA4ghoAEtczqG1/wPa9tm8dRUEAgGP1s0f9QUkXFVwHsKOGvV0Wt9tCSnpelCkiPmN7qvhSgJ0x7O2yuN0WUsMxaoydYW+Xxe22kBpHRO+F2nvUV0fEOV2WmZU0K0mTk5PTi4uLuQpaW1vTxMRErnWLRm35jLq2ZrOpTv3atpaWlo55r1Ntg6xfJL7TfKpa28zMzIGI2N3xw4jo+ZA0JenWfpaNCE1PT0dey8vLudctGrXlM+raGo1GSHrQo9Fo9FXbIOsXie80n6rWJml/bJOpHPrA2Bn2dlncbgup6Wd63kck/aekJ9v+pu2XFV8WkN+wt8vidltITT+zPl40ikKAnTTs7bK43RZSwqEPAEgcQQ0AiSOoASBxBDUAJI6gBoDEEdQAkDiCGgASR1ADQOIIagBIHEENAIkjqAEgcQQ1ACSOoAaAxBHUAJA4ghoAEkdQA0DiCGoASBxBDQCJI6gBIHEENQAkjqAGgMQR1ACQOIIaABJHUANA4ghqAEgcQQ0AiSOoASBxBDUAJI6gBoDEEdQAkDiCGgASR1ADQOIIagBIHEENAIkjqAEgcX0Fte2LbN9u+w7bbyy6KADAA3oGte3jJb1L0sWSzpb0IttnF10YUKSFhQVNTU2p2WxqampKCwsLZZcEbOshfSzzdEl3RMTXJMn2oqTLJH25yMKAoiwsLGh2dlbr6+uSpEOHDml2dlaS1Gq1yiwN6KifQx+nS/rGptffzN4DKmlubu5oSG9YX1/X3NxcSRUB3Tkiui9gv0DShRHx8uz1iyU9PSL+aMtys5JmJWlycnJ6cXExV0Fra2uamJjItW7RqC2f1GprNpvq1O9ta2lpqYSKOkut3Tajtny61TYzM3MgInZ3/DAiuj4k/Zqk6za9vlzS5d3WmZ6ejryWl5dzr1s0assntdoajUZIetCj0WiUXdoxUmu3zagtn261Sdof22RqP4c+/kvSE22fZfuhkl4o6apB/hUBUjI/P69du3Yd896uXbs0Pz9fUkVAdz2DOiJ+JulVkq6TdFDSRyPitqILA4rSarW0b98+NRoN2Vaj0dC+ffsYSESy+pn1oYi4RtI1BdcCjEyr1VKr1dLKyor27NlTdjlAV5yZCACJI6gBIHEENQAkjqAGgMQR1ACQuJ5nJub6ofZ3JB3Kufopkr67g+XsJGrLh9ryobZ8qlpbIyJO7fRBIUE9DNv7Y7vTKEtGbflQWz7Uls841sahDwBIHEENAIlLMaj3lV1AF9SWD7XlQ235jF1tyR2jBgAcK8U9agDAJkkEte132P6K7Vtsf9z2yZs+uzy7qe7tti8sobYX2L7N9hHbuze9P2X7J7a/mD3ek0pt2WeltttWtvfa/p9N7XVJyfUkfcNm26u2v5S11f6Sa/mA7Xtt37rpvUfZ/qTtr2Z/PjKh2krva7Yfa3vZ9sFsG3119n6+dtvuQtWjfEh6jqSHZM/fJult2fOzJd0s6WGSzpJ0p6TjR1zbUyQ9WdKKpN2b3p+SdGvJ7bZdbaW3W4da90p6Xdl9Lavl+KxNHifpoVlbnV12XVtqXJV0Stl1ZLU8S9J5m/u7pLdLemP2/I0b22witZXe1ySdJum87PlJkv472y5ztVsSe9QR8YloX/dakj4n6Yzs+WWSFiPicER8XdIdat9sd5S1HYyI20f5d/arS22lt1vijt6wOSL+T9LGDZvRQUR8RtL3t7x9maQrs+dXSvqtkRaV2aa20kXEPRHxhez5fWpfy/905Wy3JIJ6i5dKujZ7nvqNdc+yfZPt621fUHYxm6Tabq/KDm99oKz/KmdSbZ/NQtInbB/I7keamsmIuEdqh5KkR5dcz1ap9DXZnpL0NEk3Kme79XXjgJ1g+1OSHtPho7mI+NdsmTlJP5O0sLFah+V3fJpKP7V1cI+kMyPie7anJf2L7adGxI8TqG0k7fagv7RLrZLeLenNWR1vlvRXav+jXIZS2mdAz4yIu20/WtInbX8l23tEb8n0NdsTkv5Z0msi4sd2p67X28iCOiKe3e1z2y+RdKmk34jsAI7aezqP3bTYGZLuHnVt26xzWNLh7PkB23dKepKkHR34yVObRtRuW/Vbq+33Srq64HK6KaV9BhERd2d/3mv742ofrkkpqL9t+7SIuMf2aZLuLbugDRHx7Y3nZfY12yeoHdILEfGx7O1c7ZbEoQ/bF0l6g6TnRcT6po+ukvRC2w+zfZakJ0r6fBk1bmX7VNvHZ88fp3ZtXyu3qqOSa7esU254vqRbt1t2BJK+YbPtE22ftPFc7cH2Mturk6skvSR7/hJJ2/3vbuRS6Gtu7zq/X9LBiHjnpo/ytVuZI6ObRkjvUPuY4Rezx3s2fTan9gj97ZIuLqG256u9B3ZY0rclXZe9/zuSblN7xsAXJD03ldpSaLcOtf6jpC9JuiXrrKeVXM8lao/E36n2YaRS22dLbY/L+tXNWR8rtT5JH1H7UN9Ps/72Mkm/IOnTkr6a/fmohGorva9JOl/tQy+3bMq1S/K2G2cmAkDikjj0AQDYHkENAIkjqAEgcQQ1ACSOoAaAxBHUAJA4ghoAEkdQA0Di/h/DakyLEnCWMgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Plot functions as y = mx + b (slope intercept form)" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\nimport matplotlib.ticker as ticker\ndef plotFunctionGraph(slopeIntercepts,xValues):\n fig, ax = plt.subplots()\n for axis in [ax.xaxis, ax.yaxis]:\n # this locator puts ticks at regular intervals\n loc = ticker.MultipleLocator(base=2.0) \n axis.set_major_locator(loc)\n allYs = []\n for f in slopeIntercepts:\n y = f['m'] * np.array(xValues) + f['b']\n allYs.extend(y)\n plt.plot(xValues,y,label='y = %sx + %s' %(f['m'],f['b']))\n plt.axis('square')\n plt.grid()\n limits = [max(x + allYs)+1,min(x + allYs)-1]\n plt.xlim(limits)\n plt.ylim(limits)\n\n axis = plt.gca()\n plt.plot(axis.get_xlim(),[0,0],'k--')\n plt.plot([0,0],axis.get_ylim(),'k--')\n plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True)\n plt.show()\n \nSIs = [{'m':2,'b':1},{'m':-.3,'b':.1}]\nplotFunctionGraph(SIs, range(-5,6))\n\n ", | |
"execution_count": 111, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3iU1bn38e8dzmwQLAfBghuqgEUEFFS0rwYMVlDAjVWsVSu17irdVdMttaJit5fWWkW3FBWl4EagKgiCARUFNFLlZECQcyCiEAnnRkVANLPeP2YSc5icZp4nc/p9rmsuZuZ55l4rM8PKnTVr1m3OOUREJDmlxboDIiLiHw3yIiJJTIO8iEgS0yAvIpLENMiLiCQxDfIiIkksqkHezK42s41mFjCzvuWOjTGz7Wa21cwuja6bIiISifpRPn4DcCXwXOk7zaw78HPgDOBkYLGZdXXOFUXZnoiI1EJUmbxzbrNzbmuYQ1cALzvnvnHO7QC2A+dG05aIiNRetJl8ZX4IrCh1Oz90XwVm9hvgNwCNGzfuc8opp3jWiUAgQFqadx87xHO8eO7brl27cM4Rr69tPD93fsTLzc094Jxr41lAiW/OuSovwGKC0zLlL1eUOicb6Fvq9tPA9aVuTwF+Vl1bXbt2dV569913UyZePPctPT3d9erVy7N4zqXOc+dHPCDHVfN/UZfkuVSbyTvnBkbwuyMf6FjqdgdgdwRxREQkCn5N12QBL5rZEwQ/eO0CrPKpLYlz9913H+vWrYt1N0RSUlSDvJkNByYAbYDXzWytc+5S59xGM5sFbAK+A/7LaWVNyho4cCD16/uVT4hIVaJdXTPXOdfBOdfIOXeSc+7SUsf+7Jw71TnXzTn3ZvRdlUS1du1atm/fHutuiKQkfeNVfJeZmclTTz0V626IpCQN8iIiSUyDvIhIEtMgL1IDOZ8e4rn38jj2rdYPSGLRIC9SA+Pe3sqU93fEuhsitaZ1beK7hx9+mDVr1sS6GxFbnneQFZ8c4k9Du9O4Qb1Yd0ekVjTIi+8uuOACjh8/HutuRGz8klzaNm/Eted6t/eOSF3RdI34btmyZWzYsCHW3YhIcRY/qv+pyuIlIWmQF9/dc889TJ48OdbdiIiyeEl0GuRFKqEsXpKBBnmRSiiLl2Tg2yBvZr3NbIWZrTWzHDNTZShJGMriJVn4mck/CjzgnOsN3B+6LZIQlMVLsvBzCaUDTghdb4GKhqSsJ598kpycnFh3o8a0Ll6SiTnn/Als9mPgLcAI/sVwgXPuszDnldR4bdOmTZ9Zs2Z51ofDhw/TrFmzlIgXz32L93jlYz2y6ih7vnY8elETGtazmPbNj3gDBgxY7Zzr61lAiW/R1A6kivqvwN8I1XUFRgCLq4unGq/xEcvreIsWLXLjxo3zLJ5z/j13y7YfcP/+xwXu+fc/8SSeF1TjVZdoLlFN17gq6r+a2TTgjtDNV4DEXCgtUXvooYcoLCzkzjvvjHVXqqW5eEk2fn7wuhtID12/GNjmY1siUdOKGklGfn7w+p/AeDOrDxwjNO8uEq+UxUsy8m2Qd869D/TxK76Il7SiRpKVvvEqgrJ4SV7aalh899xzz7Fy5cpYd6NSmw8WKYuXpKVBXnzXrVs3CgoKYt2NSr2Wd1xZvCQtTdeI7+bPn8+yZcti3Y2wVnxykC2HAlpRI0lLg7z47vHHH8fLbzJ76cnFubRsZMriJWlpkJeUVbyi5vLODZTFS9LSnLykrOIVNekdNcBL8lImLymp9LdbI9mETCRRaJCXlKR18ZIqNF0jvps+fTrLly+PdTdK6NutkkqUyYvvOnbsSNu2bWPdjRLK4iWV+DrIm9ltZrbVzDaamcr/paiZM2fyzjvvxLobgHaalNTjZyHvAQSLh/R0zp0BjPOrLYlvEydOJCsrK9bdAJTFS+rxM5MfBTzinPsGwDm3z8e2RKqlLF5SkZ81XtcCrwGDCO4nP9o592GY81TjNc5ieR0vMzOToqIiJkyY4Ek8iKx/ldVujefnzo94qvGaYqKpHUjVNV43EKzzasC5wA5Cv1Qqu6jGa3zE8jpeenq669Wrl2fxnKt9/6qq3RrPz50f8VCN15S6+FnjdRTwauhNtcrMAkBrYH80bYpEQnPxkqr8XCc/j2Bt12wz6wo0BA742J7EqdmzZ/PBBx/ErH2ti5dU5ucg/zzwvJltAI4DN4ayekkxrVu3pkWLFjFrX1m8pDI/a7weB673K74kjqlTp7Jlyxb69+9f520ri5dUp2+8iu+mTp3KwoULY9K2snhJdRrkJWlpXbyIBnlJYsriRTTIS5Ja8YmyeBHQIC9J6snFyuJFQPvJSx144403WLp0aZ21pxU1It9TJi++a9q0KY0bN66z9jQXL/I9DfLiu2eeeYZ58+bVSVtaUSNSlqZrxHezZs2isLCwTtpSFi9SljJ5SRrK4kUq0iAvSUNZvEhFvg/yZjbazJyZtfa7LUldyuJFwvO7kHdH4BJgp5/tiCiLFwnP7w9e/xe4i2AZQElR2dnZZGdn+xZf6+JFKudnjddhQIZz7g4z+xTo65yrUDRENV6Tv8ar3/Eqq90aD32Lx3iq8ZpioqkdSNU1XlcCLULnfQq0ri6earzGRyyv4z322GPu1ltv9Syec9/3r6rarbWN5ZV4j4dqvKbUxZcar2Z2JtAZWGdmAB2ANWZ2rnNuTzRtSuJZsGCBb+vkNRcvUjVf5uSdc+uBtsW3q5quEYmU5uJFqqd18pKwlMWLVK9OBnnnXCdl8eKlzQeLtC5epAaUyYvvmjRpQqNGjTyN+VrecWXxIjWgDcrEd2+++aan6+SX5x1ky6EAfxqqLF6kOsrkJeGMX5JLy0amLF6kBjTIi+8efPBBpk2b5kms4hU1l3VuoCxepAY0XSO+W7JkiWfr5McvyaVN80b076gBXqQmlMlLwijZaTL91Ii2LxBJRRrkJWEUZ/G/OE9z8SI1pUFeEkLpLF5z8SI1pzl58V2rVq0IBAJRxVAWLxIZDfLiuzlz5kS1Tr44i79/iPaoEakt36ZrzOwxM9tiZh+b2Vwza+lXW5LclMWLRM7POflFQA/nXE8gFxjjY1sSx8aMGcPf//73iB6ruXiR6Pg2XeOce7vUzRXAVX61JfFt+fLlEa+TVxYvEh3fyv+VacRsPjDTOTcjzDGV/4uzWF7Hy8zMpKioiAkTJtTqcZsPFvHXD4/xi9Mb8tNODXzrXzw/d37EU/m/FBNNWSmqKP9X6px7gbmEfqFUdVH5v/iI5XW89PR016tXr1o/7prnlrm+Dy1yR49/V+FYqjx3fsRD5f9S6uJL+b9iZnYjMIRgQW///2SQpKEVNSLe8G1O3swGAX8E0p1zR/xqR+Jfhw4daNCgQfUnlqK5eBFv+LlO/imgEbAoVMx7hXPuVh/bkzg1Y8aMWq2TVxYv4h0/V9ec5lfslFG4C/Lega6XQvN2se5NnVEWL+IdfeM1nm17G17/7+D1k8+CroOh2yBo1xMscXZhzMzMJD8/n/79+1d7rrJ4EW9pkI9nfW+CU/rB1jchdyFk/wWyH4bmJwez+26DofNF0KBJrHtapbVr19Z4nbyyeBFvaZCPZ2Zw0hnBy0Wj4fB+2PZWcMD/eBas/j+o3wROHUB71xm+Oj2hp3WUxYt4T4N8ImnWBs66Pnj57hv49J+wdSHkLqTbF2/A408n9LSOsngR72mQT1T1G8FpA4OXyx7jw9df4JwTDiTstI6yeBF/aJBPBmZ83awTXDSy1LTO25D7Jqx/pcy0Dl0vha6D6nRap2vXruzevbvKc8YvyaWtsngRz2mQT0bN2sBZ1wUv5aZ12PpG8Jw6nNaZNGlSlevki7P4Pw1VFi/iNQ3yya7ctA77NsXdap3iLP7ac5XFi3hNg3wqCbtaJ/y0jperdX7zm9+we/fusOvklcXHh9WrV3dIS0t7OxAInA4kzqf14tLS0rYEAoGf9unTJz/cCRrkU1kV0zpertbJzc2tdJ28svj4kJaW9vZJJ53UpV27dpaW5mctIfFSIBCwgoKCbjt27Pho2LBhP8nKysotf45eTQkqnta5fBxkrufDvuPh4rGQVj84rfPcRfBEd5ifCblvwbdHo26ypOpTf1V9irVAIHB6u3bt6muATyxpaWm0b98+rXHjxq2BO4cNG9a2/Dm+Z/Kh3SjHA/WAyc65R/xuU6JU09U6P+ofzPAjXK2jLD6uKINPUGlpaYQ2gawPnAzsK3Pcz8bNrB7wNDAY6A5ca2bd/WxTfFA8rXPNDLjrE7h+TvALWXs3wPw74PFuMKk/ZP8Vdq+FGpQOUBYvfnviiSfo3r07PXv2JCMjg88++8y3tl555RXOOOMM0tLSyMnJ8a2dGqgwpvudyZ8LbHfOfQJgZi8DVwCbwp28a9euCh/OjRgxgt/+9rccOXKEyy67rMJjRo4cyciRIzlw4ABXXVW2jGxhYSFjxozhmmuuYdeuXdxwww0VHn/nnXcydOhQtm7dyi233FLh+H333cfAgQNZu3YtmZmZtGzZsszxhx9+mAsuuIBly5Zxzz33VHj8k08+Se/evVm8eDEPPfRQhf7NnDmTbt26MX/+fB5//PEKj58+fTodO3Zk5syZTJw4scLx2bNn07p1axYuXMj//M//VDj+xhtv0LRpU5555hnClVYsXto4btw4FixYUKZv7du358033wTgwQcfZMmSJWUe26pVN+Y8MxO2vsmYR55i+aZ7gXuhXkNo+gM6dO7KjDmv07t3b15//fUyr+2mgi/hhPZc+2AWEPxwNje37HRi7969efLJJwG4/vrryc///nOlwsJCBg8ezF/+8hcAfvazn3Hw4MEyj8/IyGDs2LEADB48mKNHy04xDRkyhNGjRwOE/VA40vdeYWEhLVu2ZNSoUZ6897Zv3x72tY3mvZcKzjrrLHJycmjatCkTJ07krrvuYubMmbWOM3XqVD799NOwr0GxHj168Oqrr4Z9HWPN70H+h8CuUrfzgfNKn1C6xmuDBg0qfECXm5tLdnY2x44dC/vh3ZYtW8jOzuaLL76ocLyoqIiNGzeSnZ3Nvn37wj5+/fr1NG/enJ07d4Y9vm7dOurXr8/27dspKiqqcM6aNWs4fvw4GzZsCPv4nJwcCgsLWbduXdj+rVy5koKCAtavXx/28cuXLycvL4+NGzeGPf7BBx/QokWLSp+fpUuX0rhx40o//Cwe5PPy8socLyoq4tChQyXHd+zYUeHxgUCA7M37gb7sPPEnfNFiHQ2+/YoG335F/cP74NN9FP3lFO47tRcHOjVn094DBNLqc+Rbx5dHA/y4vWPFB/8EYPfu3RXi5+fnl7S/d+/eCv3buXNnyfH9+/fz5Zdflnn8jh07So4fOnSIb775pszxvLw8srOzOXz4cNjnJtL3XvH7xKv33pEjR8Iej+a9F2/Gjh1L69atueOOOwC49957Oemkk7j99tsjjjlgwICS6/369WPGjGCJ6blz5/L000+zaNEi9uzZQ3p6OkuXLqVdu8hXkv34xz+O+LF+87WQt5ldDVzqnLs5dPsG4Fzn3G3hzu/WrZvbunWrZ+1nZ2fXaHvbZIgXd30rXq2T+1Zwxc4XO4P3n3wWs77qwfyjPfn7XTfRuGFkeUZSP3c+xzOzCoW8V69e7fr06QPAA/M3smn3l2EfG6nuJ5/An4aeUenxTz/9lCuvvJI1a9YQCATo0qULq1atolWrVmXOu/DCC/nqq68qPH7cuHEMHFh5NdLf/e53tGvXjvvuuw8I/mXYr18/Fi5cyHXXXce1115b6WNrkskX69+/P+PGjaNv37qtk7569WoeeOCB54Gns7Ky1pQ+5ncmnw90LHW7A1D199slOZT6Etb1LxZw8PNmvPnAz/jq4wVc9eUMRpiDCf+bMHvriL86depEq1at+Oijj9i7dy9nnXVWhQEe4J///GetY8+YMYOcnBzee++9kvsmTJhAjx496NevX9gB/uDBg2RkZADBvwKPHz/OvHnzgOAU6plnnlnrfsSK34P8h0AXM+sMfA78HPiFz21KnMnPz6ew8ChcNJr/3PIT/tVgNwsGHaFB3luertYRb1SVcfvp5ptvZurUqezZs4ebbrop7Dm1zeQXL17Mn//8Z9577z0aNWpUcv/nn39OWloae/fuJRAIUH5lUatWrVi7di1Qu0w+Hvk6yDvnvjOz3wFvEVxC+bxzbqOfbUr8+v7brWfToG9n6HtDaFrn/dC+OguDyzQhobdMlsgMHz6c+++/n2+//ZYXX3wx7Dm1yeQ/+ugjbrnlFhYuXEjbtt8vH//uu+/41a9+xYsvvsi0adN44oknSj6AT0a+r5N3zr0BvOF3OxL/wq6Lr98ITssIXgY/Gn5vnRN++P3umZrWSVoNGzZkwIABtGzZknr1ol9W+4c//IHDhw9z9dVXA3DKKaeQlZXFww8/zIUXXsiFF15I7969Oeecc7j88suj+vB07ty53Hbbbezfv5/LL7+c3r1789Zbb0X9M3hB2xpInTjyrat+j5qq9tb5eBbkPA8NmsKP+idFJSwpKxAIsGLFCl555RVP4i1evDjs/ffff3/J9ebNm7Nly5Yq44wcObLatoYPH87w4cNr1b+6okFefHf++eczc0Ve7b/dWmFvne+ndb7fW+fsYIavaZ2EtmnTJoYMGcLw4cPp0qVLrLuTVDTIi++G3Tyal9yK6L7dWm5aJ2wlrJJpncHQ+UJN6ySQ7t2788knn8S6G0lJg7z4bvySXFo2Mu/2qKlqb51y0zp0HRQc+DWtIylKg7z4anneQeY/PpqOzdNo/EDFrQE8UcW0TiwqYYnEEw3y4qvxS3Kpd/wwjb6to0E1ktU6IklMg7z4pnhd/Mktm2DuWN13oIardXqc0AOaf6ZpHUlK2kBafFO8Lr7tCY2qP7kuVNgy+VU463qaHf4U5t9edsvkgnU12jJZEsfq1as588wzOe2007j99tsJt2/Xa6+9Rs+ePenduzd9+/bl/fff960/hw4d4pJLLqFLly5ccskl/Otf/wp73qBBg2jZsiVDhgyJqB0N8uKL0vvFp8Xj/HfxtM5lj7Gi3yQYtcz3SlgSW6NGjWLSpEls27aNbdu2sXDhwgrnZGRksG7dOtauXcvzzz/PzTffHFFbU6dOrXYbhEceeYSMjAy2bdtGRkYGjzwSvp7SH/7wB6ZPnx5RP0CDvPik9LdbMzIyOPvss2PdpcoVT+tcNBpuXgyjt8EVz0CHPsFpnRdHwKM/gpeuhW8Ox7q3SWns2LGMHz++5Pa9997L3/72N8/iFxQU8OWXX3L++edjZvzyl78s2XCstGbNmhVXWeLrr78uuT537lwGDhyIc46CggK6du3Knj17ourTa6+9xo033gjAjTfeGLY/EPzF07x584jb0Zy8eO77PWqC324dO3Zsyb7uCaGyAuf7t0DDf4t17/z35t2wZ723MdudCYMrr/z561//miuvvJI77riDQCDAyy+/zKpVqyqcF+lWw59//jkdOnQoud2hQwc+//zzsOfOnTuXMWPGsG/fPl5//XUg+I3WOXPm8PTTT7Nw4UIeeOCBqPafh2CNhPbt2wPQvn179u3bV80jIuPrIG9mHYFpQDsgAExyzo2v+lGS6JKqdmupLZPFP35uNQyEnX+3SqYRi7coWLp0KWPHji3ZHiFRtyf2O5P/DrjTObfGzJoDq81skXMubPk/SXzls3gIlt47dOgQK1eujHHvpEaqyLj95OVWw0VFRRQXQRk2bBijRo0qUz4yPz+fk08+ucr+XHTRReTl5XHgwAFat27t+fbEJ510EgUFBbRv356CgoIyO2V6ye+thguAgtD1r8xsM8GSgBrkk1S4LP7o0aMVSu+JlOflVsP16tUrGXCLNW/enBUrVnDeeecxbdo0brutYoG67du3c+qpp2JmJeUVW7Vq5cv2xMOGDeOFF17g7rvv5oUXXuCKK66IKl5l6mxO3sw6AWcBK8vdX1LjtU2bNp7O3R4+fDhl4sVD3zYfLGLFJ8e47vSGJbVbIVjYuqioKOb9q4tYiRAvXnm91XB5EydOZOTIkRw9epTBgwczePBgAJ599lkAbr31VubMmcO0adNo0KABTZo0YebMmZiZL9sT33333YwYMYIpU6ZwyimnlOy+mZOTw7PPPsvkyZOB4F8vW7Zs4fDhw3To0IEpU6Zw6aWX1rwh55zvF6AZsBq4sqrzunbt6rz07rvvpky8eOjbNc8tc+c8tMgdPf5dmfvT09Ndr169POpZULI9d3UZD8hx5f7v5eTkeNpGJIqKilyvXr1cbm5urLuScHJyctzQoUOnDB069GxX7rX1fQmlmTUA5gD/cM696nd7Ehul18VHvNOkpKxNmzZx2mmnkZGRoa2GPeb36hoDpgCbnXNP+NmWxFZVK2qGDBlCXl5eDHoliUJbDfvH70z+J8ANwMVmtjZ08WkrQomV6rL40aNHc80118SgZyLi9+qa94E4/E67eCmp1sWnLhcIBKz8skCJf4FAIOz3AIrpFZWo1GQuvn///mRmZtZxz6Q20tLSthQUFAQCgUCsuyK1EAgEKCgoCBw7duxA6K4Ko722NZCoKItPDoFA4KefffbZqoKCgvaVfRNU4o9zjmPHjh164YUXZgFNgP3lz9EgLxEL9+1WSUx9+vTJHzZsWBfgv4DTCZMRStwyoAHw96ysrPzyBzXIS8SUxSeXrKysr4FHhw0b1gjQb+3E8k1WVlZRuAMa5CUixVn8/UOUxSebrKws7UGRRDTIS0SKs/hfnFd9Fj9ixAhyc3ProFciUp4Geam12s7F//a3v02JvVdE4pGWUEqt1XYu/siRIxw7FoNC3iKiTF5qJ5IVNZdddhmFhYUMGjTI596JSHnK5KVWtKJGJLFokJca006TIomnLrYarmdmH5nZAr/bEn8pixdJPHWRyd8BbK6DdsRHyuJFEpOvg7yZdQAuByb72Y74L5osfuTIkfrQVSRGrKotKqMObjYb+AvQHBjtnBsS5pzSNV77zJo1y7P2Dx8+TLNmzVIinp9923ywiL9+GKzdekmnBnHXv3iKlQjxBgwYsNo519ezgBLfytcD9OoCDAGeCV3vDyyo7jGq8RofscrHq6x2a03t37/fzZs3z6OeBSXKcxeP8QhT41WX5L34uU7+J8CwUCWoxsAJZjbDOXe9j22Kx7zYafKqq66isLCQK664wuPeiUh1fJuTd86Ncc51cM51An4OvKMBPvFoRY1IYtM6eamUVtSIJL462dbAOZcNZNdFW+IdZfEiiU+ZvIS1+WCRsniRJKANyiSs1/KOe5bFjxo1io0bN3rQKxGpLWXyUsHyvINsORTwLIu/5ppruPjiiz3omYjUlgZ5qWD8klxaNjLP5uJ37drFvn37PIklIrWj6Ropo3hFzXWnN/RsLv6GG26gsLCQESNGeBJPRGpOg7yUUbyiJr2jPmwVSQaarpESpdfFN6xnse6OiHhAg7yU0Lp4keSjQV4AfbtVJFlpTl4Af7P4O++8k/Xr13seV0Sq5/sgb2YtCRYN6QE44Cbn3HK/25Wa82KnyaoMHTqU5s2bex5XRKpXF5n8eGChc+4qM2sINK2DNqUW/J6L37p1Kzt37vQltohUze/yfycAFwFTAJxzx51zhX62KbVTF3Pxt9xyC0888YQvsUWkan6X/+sNTAI2Ab2A1cAdzrmvS52j8n8xjPXIqqPs+drx6EVNyiyb9LJvmZmZFBUVMWHCBE/iQXw8d4kaT+X/UoyfZaeAvsB3wHmh2+OBBys7X+X/6jbWsu0H3L//cYF7/v1PPIlXmfT0dNerVy/P4jkX++cukeOh8n8pdfF7CWU+kO+cWxm6PRs42+c2pYa0Ll4k+fk6yDvn9gC7zKxb6K4MglM3EmNaFy+SGupidc1twD9CK2s+AX5VB21KNeoyi7/vvvtYt26d7+2ISEW+D/LOubUE5+YlTvi9Lr68gQMHUr++vncnEgva1iAF1fVc/Nq1a9m+fXudtCUiZWmQTzGxmIvPzMzkqaeeqpO2RKQsDfIpRitqRFKLBvkUohU1IqlHg3wKGb8klzbK4kVSigb5FFGSxacrixdJJVrXliKKs/hfnFf3WfzDDz/MmjVr6rxdEdEgnxKKs/j7h9TNuvjyLrjgAo4fP17n7YqIpmtSQiyzeIBly5axYcOGmLQtkuo0yCe5eJiLv+eee5g8eXJM2hZJdRrkk1yss3gRiS3fB3kz+72ZbTSzDWb2kpk19rtNCYqHLF5EYsvv8n8/BG4H+jrnegD1gJ/72aZ8T1m8iNTFdE19oImZ1SdYxHt3HbSZ8pTFiwj4XOMVwMzuAP4MHAXeds5dV+64arz6EOuRVUcp+NrxWLnarbHo2/bt2zly5Ag9e/b0JB6oxms0VOM1xfhZWxA4EXgHaAM0AOYB11d2vmq8ehOruHbrlH9WrN0aSTwvxHO8eO6bH/FQjdeUuvg9XTMQ2OGc2++c+xZ4FbjA5zZTXrzNxS9evJjVq1fHuhsiKcnvQX4n0M/MmpqZEazxutnnNlNaPM7FP/TQQ0yfPj3W3RBJSX4X8l4JzAbWAOtD7U3ys81UF29ZvIjEVl3UeP0T8Ce/25HY71EjIvFH33hNIsriRaQ8DfJJYvPBoribixeR2NNWw0nitbzjcZvFP/fcc6xcuTLW3RBJScrkk8DyvINsORSI2yy+W7dunHJK/P3yEUkFGuSTwPglubRoZHGZxQPMnz+fZcuWxbobIilJg3yCK15Rc3nnBnGZxQM8/vjjeLldhYjUnObkE1zxipr+HeNzgBeR2FImn8BKf7s1kk3IRCT5aZBPYFoXLyLV0SCfoOJxjxoRiT+ak09QiZTFT58+neXLl8e6GyIpyZNM3syeN7N9Zrah1H0/MLNFZrYt9O+JXrQliZfFd+zYkbZt28a6GyIpyavpmqnAoHL33Q0scc51AZaEbosHEimLB5g5cybvvPNOrLshkpI8GeSdc0uBQ+XuvgJ4IXT9BeA/vGgr1SVaFg8wceJEsrKyYt0NkZTkWY1XM+sELHDO9QjdLnTOtSx1/F/OuQpTNqrxWrt4ldVujYe+VSYzM5OioiImTJjgSekwdlsAAAclSURBVDxQjddoqMZrivGqjiDQCdhQ6nZhueP/qi6GarxWrararbHuW1XS09Ndr169PIvnnGq8RgPVeE2pi59LKPeaWXuA0L/7fGwrJSTaXLyIxJ6fg3wWcGPo+o3Aaz62lfQScS5eRGLPk3XyZvYS0B9obWb5BMv9PQLMMrNfEyzofbUXbaWqRM7iZ8+ezQcffBDrboikJE8GeefctZUcyvAifqpL9NqtrVu3pkWLFrHuhkhK0rYGCSCRs3iAqVOnsnDhwlh3QyQlaZCPc8kwF69BXiR2NMjHuUTP4kUktjTIx7FkyOJFJLY0yMexemlGetc2yuJFJGLaajiOndv5B5zb+dxYd0NEEpgGefHdG2+8wdKlS2PdDZGUpOka8V3Tpk1p3LhxrLshkpI0yIvvnnnmGebNmxfrboikJE3XiO9mzZpFYWFhrLshkpKUyYuIJDE/a7w+ZmZbzOxjM5trZi2riiEiIt7zs8brIqCHc64nkAuM8agtERGpId9qvDrn3nbOfRe6uQLo4EVbIiJSc3X1wetNwMxwB0rXeAW+KT3l44HWwIEUiRfPfYNgrYF47V/cP3cex+vmYSyJc74P8mZ2L/Ad8I9wx51zk4BJoXNznIcFhlMpXjz3Ld7jxXPf/IrnVSyJf74O8mZ2IzAEyHDOOT/bEhGRinwb5M1sEPBHIN05d8SvdkREpHJeLaF8CVgOdDOz/FBd16eA5sAiM1trZs/WINQkL/qTovHiuW/xHi+e+5YI8SSOmWZRRESSl77xKiKSxDTIi4gksZgN8l5vhVBJvB+Y2SIz2xb698QI+/p7M9toZhvM7CUzi2rfXDNraWazQz/rZjM7P5p4oZj1zOwjM1sQZZyOZvZuqF8bzeyOKOMNMrOtZrbdzO6OJla5uL5sm2Fmo83MmVlrD2LdFvrZN5rZo1HG6m1mK0Kfb+WYWa2qyZjZ1aF+BMysb7ljY0Kvz1YzuzSafkoccs7F5AJcBJwNbCh130+B+qHrfwX+GmW8R4G7Q9fvrk28UjF+COwAmoRuzwJGRvmzvwDcHLreEGjpwfP538CLwIIo47QHzg5db05wS4ruEcaqB+QBPwr9nOsijRUmdsTvlSpidgTeAj4DWkcZawCwGGgUut02ynhvA4ND1y8Dsmv5+B8T/BJUNtC31P3dQ69LI6Bz6PWq58VrpEt8XGKWyTuPt0IIFw+4guCASujf/4ist9QHmphZfaApsDvCOJjZCQR/IU0BcM4dd85FtQ+vmXUALgcmRxMn1J8C59ya0PWvgM0Ef9FF4lxgu3PuE+fcceBlgq9J1KJ5r1Thf4G7AC9WI4wCHnHOfQPgnNsXZTwHnBC63oJavgedc5udc1vDHLoCeNk5941zbgewneDrJkkinufkbwLejDLGSc65AggOXkDb2gZwzn0OjAN2AgXAF865t6Po04+A/cD/haZXJpvZv0URD+BJgoNTIMo4ZZhZJ+AsYGWEIX4I7Cp1O5/If2FUJer3ipkNAz53zq3zpkt0BS40s5Vm9p6ZnRNlvEzgMTPbRfD96NWGf3X1GkmMxGXRkOq2QqjjvpxIMNvpDBQCr5jZ9c65GRGGrE9wWuk259xKMxtPcCppbIT9GwLsc86tNrP+EfYpXNxmwBwg0zn3ZaRhwtxX4yzZzBYD7cIcutc591ronBq/V6qKB9xDcAqoxqqJVx84EegHnAPMMrMfOecq/fmriZcB/N45N8fMRhD8S3BgTR9f/HyFazbMfVpXnUTibpD3eCuEvWbW3jlXYGbtgUj+ZB4I7HDO7Q/171XgAiDSQT4fyHfOFWfHswkO8pH6CTDMzC4DGgMnmNkM59z1kQY0swYEB/h/OOdejaJv+QTnuYt1oBbTDM65gVUdr+17pbJ4ZnYmwV/i68ysuJ9rzOxc59yeSPpnZqOAV0P9WmVmAYIbje2PMN40oPhD8FcIMzVX3fNViaheI4l/cTVdU2orhGHOm60QsoAbQ9dvBCrLZqqyE+hnZk0tOAJkEJynjkho0NhlZsU7AWYAm6KIN8Y518E51wn4OfBOlAO8EcwSNzvnnog0TsiHQBcz62xmDUP9y4oyJuDte8U5t94519Y51yn0POYT/PC50gG+BuYBF4f62pXgB8/R7CS5G0gPXb8Y2BZFrNKygJ+bWSMz6wx0AVZ5FFviQaw+8QVeIjjH/S3B/1S/Jvihzy5gbejybJTxWgFLCP6HWAL8IMK+PgBsATYA0wmtmIjiZ+8N5AAfExwMTvToOe1P9Ktr/h/BP9c/LvU6XBZFvMsIrtDJIzht4NX7J+L3Sg1if0r0q2saEvxrbwOwBrjYg9dlNcGVMCuBPrV8/PDQ/4tvgL3AW6WO3Rt6fbYSWsGjS/JctK2BiEgSi6vpGhER8ZYGeRGRJKZBXkQkiWmQFxFJYhrkRUSSmAZ5EZEkpkFeRCSJ/X9aJj6AB/wnvwAAAABJRU5ErkJggg==\n", | |
"text/plain": "<Figure size 432x288 with 1 Axes>" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "test = []\ntest += [1,2,3]\ntest\n", | |
"execution_count": 96, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "[1, 2, 3]" | |
}, | |
"execution_count": 96, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Plot rational functions" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "sym.symbols('x')\ndef plotFunctionWithLine(f,xVals):\n y = np.zeros(len(xVals))\n for i in range(0,len(xVals)):\n y[i] = f.subs({x:xVals[i]})\n plt.plot(xVals,y,'s-')\n plt.title('f(x) = ' + '$' + sym.latex(f) + '$')\n plt.grid()\n plt.show() \n \nf = 2- x**2\nplotFunctionWithLine(f,range(-3,4))", | |
"execution_count": 131, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEMCAYAAADZDD24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU9b3/8dc3GwkkhCUQAglkYZMdAihrwLoAWmlVcEMpLoDVX9V7e93ae9tbly56W3dFq4AKRVvcxbZQISA7CQGUPSFhJ+wkgezf3x8JFjFhyUxy5sy8n4/HPGpmOfP5dsg7k5Nz3mOstYiIiHsFOT2AiIh4RkEuIuJyCnIREZdTkIuIuJyCXETE5RTkIiIupyAXEXE5BbmIDzHGDDLGLDfGpBtj/mKMCXV6JvF9CnIR35IHXG6tTQNygLEOzyMuoCAXxxljuhhj1hpjCowxP6u+7rfGmAcv8PGrjDHd63fKhmGt3WutPVX9ZTlQ6eQ84g5Gp+iL04wxbwInrLUPVX/dCsgCOp4Raud6/HjgJmvtDV6cqRHwCnAF0ALYDjxurf3CW89xnudPAt4DhlprSxviOcW99I5cfEEH4Jszvv4JMO9CQrzaJ8BIY0ycF2cKAXYBaUA08N/A+8aYRC8+R42MMU2BmcDtCnG5EApycZQx5ktgJPCSMabQGNMZGA2kV9+eYow5YozpV/11W2PMIWPMiNPbsNYWAxnAVd6ay1pbZK39tbU211pbaa39DNgBpHq6bWPMH4wxH57x9TPGmH8ZY0KNMSHAX4BfW2u3ePpcEhgU5OIoa+3lwBLgfmttpLV2K9AT2FJ9ezbwCDDLGNMYmA7MsNYuOmtTm4DeNT2HMeYzY8yxWi6fXcicxphYoDPf/c2hrn5P1W8QfYwxU4FRwPXW2jLgFuBS4H+MMYuMMTd54fnEz4U4PYBIDZoBBae/sNa+YYz5IbASsMB1NTymAKhx14q19lpPhqk+BHAWMNNau9mTbVXPc9gY8xzwNlW7bYZaa49X3/YO8I6nzyGBRe/IxRcdBaLOuu4NoAfworW2pIbHRAHHvD2IMSaIqmAtBe6v5T6LjDG2lstXtWx6LVW/eTxmrd3l7bklsCjIxRetp2o3BgDGmEjgOeBN4NfGmBY1POYSYF1NGzPGfFG9/72mS61HoRhjTPVzxgI3VO/6+B5r7QhrranlMrSG7fYEXqXqD5p31vb8IhdKQS6+aB5VR4uc9jyQYa29G/gceO3MO1cfKpgKzK9pY9ba0dX732u6jD7HHK9S9QPihxdxBM05GWPaAZ8CU4GfAj3P/MOtSF0oyMUXvQ2MMcZEGGPGUvXHwKnVt/0H0M8Yc9sZ978OWGSt3eutAYwxHYApQB9g/xnv4G87z0PPtc2mVP2Q+qO19hNr7UngGeAprwwtAUsnBIlPMsY8DeRba5+7gPuuBO6y1n5d/5OJ+B4FuYiIy2nXioiIyynIRURcTkEuIuJyCnIREZdz5BT9mJgYm5iYWKfHFhUV0aRJE+8O5BCtxff4yzpAa/FVnqwlIyPjkLW21dnXOxLkiYmJrFmzpk6PXbRoESNGjPDuQA7RWnyPv6wDtBZf5clajDF5NV2vXSsiIi6nIBcRcTkFuYiIyynIRURcTkEuIuJyHh+1YoxJoKqtrg1QCbxurX3e0+2KNJT+T87nUOEZn3H8988BiIkMY80vr3RoKpEL543DD8uB/7TWZhpjooAMY8x8a+1GL2xbpN59J8Qv4HoRX+PxrhVr7T5rbWb1fxdQ9SG47TzdroiIXBiv1tgaYxKBxUAPa+2Js26bDEwGiI2NTZ0zZ06dnqOwsJDIyEjPBvURWovzyistd//zZK23zxjl3rMJ3fqa1ERrqTJy5MgMa23/s6/3WpBXf65iOvCUtfaDc923f//+Vmd2ai1OOlxYwl9W7eSdFXkcOFHTZzlX6ZPQjElDEhnTM47QYHcdG+C21+RctJYqxpgag9wrp+gbY0KBucCs84W4iJM27TvB9KU7+ChrL6XllQztGHPOID92spQH5mTx9LxN3H5ZB24Z2J6WkY0acGKR8/PGUSunP2l8k7X2j56PJOJdFZWWBZsOMH3pDlbkHCE8NIgbU+P5yeBEOsdGff+olWoxkWF8+Z8jWLQ1n+lLc3n2n1t54cvt/KhPW34yOIlubZs6sBqR7/PGO/IhwO3ABmNMVvV1j1tr53lh2yJ1dvxUGe+v3sXM5bnsPnqKttHhPDq6KzcPSKBZ47Bv73fmIYY1/dp7eddYLu8ay7YDBUxflssHmbt5f81uLk1qwaQhSVzZLZbgINNAqxL5Po+D3Fr7FaB/xeIzsg8WMmNpLnMzd3OytIKBiS14fMwlXNUtlhAP9nN3io3i6R/35OGru/De6l28vTyPqe9mEN88gomDEhk/IIHoiFAvrkTkwjhSYyvibZWVlsXbDjJ9aS7pWw8SFhzED3u3ZdKQRHq0i/bqczVrHMaUtBTuGprE/I0HmL40l6fmbeKP87dyQ2o7fjI4iY6t/eMIC3EHBbm4WlFJOXMzdzNjWS45B4toFdWIh67ozK2XtqdVVP3+UTIkOIjRPeMY3TOOr/ccZ8ayXN5fvZt3V+xkeOdWTBqSSFqnVgRpt4vUMwW5uNKuIyeZuSyX99bsoqC4nN7x0Tx3Ux/G9IwjLKThDxPs0S6aZ8f15tHRXZm9suqwxknTV5Mc04SJgxO5MTWeJo307Sb1Q/+yxDWstSzPOcz0pbks2HSAIGMY3aMNk4Yk0a99M6oOoHJWTGQjfvaDTkxNS2Hehn1MX7qDX33yDc/+YwvjByQwcVAi7Vs2dnpM8TMKcvF5xWUVfJy1h+lLc9m8v4DmjUO5Ny2F2wd1IC46wunxahQWEsSP+rbjR33bkbnzKNOX5jJzWS5vLd3BFZfEMmlIIoOSW/rEDx9xPwW5+Kz9x4t5Z0Uus1fu5OjJMrq2ieL3N/RkbJ92hIcGOz3eBevXvjn92jdn/5hLvl3P/I0H6NomiklDEl23HvE9CnLxKdZaMnceY8ayXL7YsI8Ka/3mHWyb6HD+6+qu/L/LO337G8Yjczfwuy82c8vA9j79G4b4NgW5+ITS8spv9ymv232cqEYhTByc6Jf7lMNDg7lpQHvG909gRc4Rpi/dwavp2UxbnONz+/zFHRTk4qhDhSXMXrmTd1fkkV9QQnJME34ztjs39PP/ozyMMQxKacmglJbfOQrns/X76B0fzaQhSY4dhSPu4t/fKeKzTh93/UnWXkorKhneuRW/vzFwj7tOaNGYX17bjYeu7Fx1XPzSXB58L4un5m1iwqUduO2y9sSorEtqoSCXBlNeUfntmZCrco8QERrMTQMSmDg4UWdCVmvSKIQ7BiUy4dIO356p+qcFW3l54fZ6O1NV3E9BLvXu+Mky5qzeydvL89hz7BTxzSP4xZhL1E1yDkFBhhFdWjOiS2u25xcyc1lVd8zczN0MTGzBpCGJXOlhd4z4DwW51JvTbYEfZu7hVFkFlyW34L+v7aa2wIvUsXUkT/yoBz+/ugt/XbOLGctyuXdWJu2aRXD7oA7fa3OUwKMglzqr7dPnm4aH0DuhGUu2Hao6MUb93V4RHRHK3cOSmTQk6dt+9d99sZnnFmzl+n7xTBqcyC1vrKjxNYmJDPtOXa/4FwW51FltnzJ/oricrQcK+PlVnfWJOvUgOMhwdfc2XN29DRv3nmDGsh38LWM3s1furPUxtb1W4h8U5FIvvnrkctd9xqUbdWvblD/c2JtHRnVlzupdPPOPLU6PJA7Qd5rUC4V4w2oZ2Yj7RnZ0egxxiL7bRERcTkEudZJzsNDpEUSkmoJcLtrJ0nLufTez1g9qjYnUoXBOqe3/+4hQfav7M/2xUy6KtZZffvg1W/MLmHnnQIZ3bgXU/Onz0vDOPMTw9Gvy60++YcayXD5fv49resU5OJ3UF/2Ylosye9VOPli7hwd+0OnbEBff9viYS+jbvhkP/20d2dol5pcU5HLB1u8+xv9+spHhnVvxs8s7OT2OXKCwkCBevrUfjUKDuffdDE6Wljs9kniZglwuyLGTpdz7biYxkWE8d1OfgGwodLO2zSJ4/uY+bMsv5Bcffo211umRxIsU5HJelZWWh97LIr+gmFcmpNKiif6Y6UbDOrXioSs68+HaPcw6x1mg4j4KcjmvlxduZ+GWg/zPtd3ok9DM6XHEA/eP7MiILq34zacbWbfrmNPjiJcoyOWcvtp2iD8u2MrYPm2ZcFkHp8cRDwUFGf40vg+tohrx01mZHC1SB4s/UJBLrfYdP8XP5qylY6tIfnt9T32GpJ9o3iSMV27rx8GCEh56P4vKSu0vdzsFudSotLyS+2ZlUlJWwasTUmkcplMO/EnvhGb89w+7sWjLQV5auN3pccRDCnKp0W+/2ETmzmP8/sZe+hg2PzXh0vb8qE9b/rRgK0u2HXR6HPGAgly+57P1e5m+NJefDE7k2l5tnR5H6okxhqev70mn1pE8MCeLvcdOOT2S1JGCXL5je34hj/xtPf3aN+PxMZc4PY7Us8ZhIbw6IZWSsgrum51JaXml0yNJHSjI5VsnS8v56awMGoUG8/Jt/QgL0T+PQJDSKpI/3NibtTuP8fS8TU6PI3Wg71QBqsqwHv9gA9vyC3n+5j7ERUc4PZI0oGt6xXHnkCRmLMvl03V7nR5HLpKCXAB4d+VOPsray0NXdGZYJ5VhBaLHxnQltUNzHp27nu35KtdyE68EuTFmlDFmizFmuzHmUW9sUxrOul3HeOLTjYzo0or79XFhASs0uKpcK7y6XKuoROVabuFxkBtjgoGXgdFAN+AWY0w3T7crDeNoUSk/nZVJq6hG/Gm8yrACXZvocF64pS/ZBwt57IMNKtdyCW+8Ix8IbLfW5lhrS4E5wFgvbFfqWWWl5cH3sjhYUMKrE/rRXGVYAgzpGMN/XNmZT9bt5Z0VeU6PIxfAePoT1xhzIzDKWnt39de3A5daa+8/636TgckAsbGxqXPmzKnT8xUWFhIZ6R8nqDi9lo+3l/Lh9jLu6BbG5e1DPdqW02vxFn9ZB3i2lkpreT6zhK8PVfD4peGkNAv28nQXR69LlZEjR2ZYa/t/7wZrrUcXYBzw5zO+vh148VyPSU1NtXW1cOHCOj/W1zi5lvQt+Tbx0c/sg3PW2srKSo+35y+vi7+sw1rP13K0qMQO+d2/7KCnF9jDhSXeGaqO9LpUAdbYGjLVG7tWdgMJZ3wdD+j4JR+299gpHpizlk6tI3nqxz1UhiU1ata4qlzrUGEpD76XRYXKtXyWN4J8NdDJGJNkjAkDbgY+8cJ2pR6Ullfy01mZlFVYlWHJefWKb8avruvG4q0HefHLbU6PI7XwOMitteXA/cA/gE3A+9babzzdrtSPp+dtImvXMf5wYy9SWvnHPkepX7cObM/1fdvx/L+2kb5V5Vq+yCvHkVtr51lrO1trU6y1T3ljm+J9n6zby4xludw5JIkxPeOcHkdcwhjDUz/uSZfYKB6cs5Y9KtfyOTqzM0Bszy/g0bnrSe3QnMfGdHV6HHGZiLBgXrmtH2UVlvtmqVzL1yjIA0BRSTlT380kIjSYl2/tR2iwXna5eMmtInl2XC+ydh3jqc83Oj2OnEHf0X7OWstjH2wg52AhL9zSlzbR4U6PJC42qkccdw9NYubyPD5RuZbPUJD7uXdWVH3D/ceVnRnSMcbpccQPPDK6KwMSq8q1th0ocHocQUHu19buPMoTn23k8q6t+ekIlWGJd4QGB/HSrf1oHBbM1HczKFS5luMU5H7qSFEp983KJLZpuMqwxOtim1aVa+04VMSjc9erXMthCnI/VFFpeWDOWg4VlvLqbalEN/asR0WkJoNTYvjPq7rw2fp9zFyW6/Q4AU1B7ode+Nc2lmw7xK+v607P+GinxxE/dm9aCj/o2pqn5m0ic+dRp8cJWApyP7NoSz4vfLmN6/u145aBCed/gIgHgoIMfxzfhzbR4dw3K5PDhSVOjxSQFOR+ZM+xUzz4XhZdYqN46kc9VYYlDSK6cSiv3pbK4SKVazlFQe4nSsor+OmsTMorLK/c1o+IMGf7oyWw9GgXzW+u686SbYd4/l8q12poCnI/8dTnm1i36xjPjutFssqwxAE3DUjgxtR4XvxyG4u25Ds9TkBRkPuBj7P28PbyPO4emsSoHirDEmcYY3hibI+qcq33sth99KTTIwUMBbnLbTtQwKNzNzAgsTmPjFYZljgrIiyY1yakUlFdrlVSXuH0SAFBQe5ihSXlTH03gyaNgnlJZVjiIxJjmvDMuN6s232cJz/b5PQ4AUHf+S5lreXRuevZcaiIF27pS2xTlWGJ7xjVow2Thyfzzoo8Ps7a4/Q4fk9B7lIzl+Xy2fp9/PzqLgxOURmW+J6Hr+7CwMQWPDp3A1tVrlWvFOQulJF3lCc/38QVl7Rm6vAUp8cRqVFIcBAv3dqXJo1CVK5VzxTkLnO4sIT7Z2cS1yyc/xunMizxba2bhvPiLX3JPVTEI39TuVZ9UZC7SFUZVhaHi1SGJe4xKKUlD4/qyucb9jF9aa7T4/glBbmLPL9gK19tP8RvrutOj3YqwxL3mDI8mSu7xfL0vE1k5B1xehy/oyB3iYVb8nnhy+3cmBrPTQNUhiXuYozh2XG9adc8gvtmreWQyrW8SkHuAruPnuSh97Lo2iaKJ8b2UBmWuFJ0RCiv3NaPoydLeWDOWpVreZGC3MedLsOqqLC8NiFVZVjiat3bRvPE2B4s3X6Y5xZsdXocv6Eg93FPfLaR9buP88y43iTGNHF6HBGPjR+QwPj+8bz45XYWbla5ljcoyH3YR2v38O6KnUwensyoHm2cHkfEa34ztgfd4pry4HtZ7Dqici1PKch91NYDBTz2wQYGJrbg4au7OD2OiFeFhwbz6oR+VFrLfbNVruUpBbkP+ncZVggv3dqXEJVhiR/q0LIJ/zeuN+t3H+c3n250ehxXU0L4GGstj/xtPXmHT/LSrX1prTIs8WNXdW/DlLRkZq3cyQeZu50ex7UU5D7mraW5fL5hH/91dRcuS27p9Dgi9e6/rurCpUktePzDDWzef8LpcVxJQe5D1uQe4bfzNnFlt1imDE92ehyRBhESHMSLt/YlKjyUe9/NpKC4zOmRXEdB7iMOFZZw3+xM2jWP4NlxvXXSjwSU1lHhvHxrP3YeOcnDKte6aApyH1BVhrWWYyfLeOW2fkRHqAxLAs/ApBY8MqoLX3y9nze/2uH0OK6iIPcBf5q/laXbD/PE2B50b6syLAlc9wxL5urusfzui82syVW51oVSkDvsy80HeGnhdsb3j2e8yrAkwBljeGZcb+KbR3Df7EyVa12gEE8ebIx5BvghUApkA5Ostce8MZi/6v/kfA4Vlp5xzRoAvtSpyiIANA0P5ZXbUhnzwhL6P7ng3zf8/XMAYiLDWPPLKx2azjd5+o58PtDDWtsL2Ao85vlI/u27IX7+60UCUbe2TWu9Td8r3+dRkFtr/2mtPf1BfCuAeM9HEhGRi+HRrpWz3Am8V9uNxpjJwGSA2NhYFi1aVKcnKSwsrPNjfZ2b1+Uvr4u/rAP8ay1nc/O66uN1OW+QG2MWADVV7/3CWvtx9X1+AZQDs2rbjrX2deB1gP79+9sRI0bUZV4WLVpEXR/rE6r389XEzety/etSzV/WAX6wFn2vXLDzBrm19opz3W6MmQhcC/zA6ih+EZEG59E+cmPMKOAR4DprrUqFL0DjWj7hJyYyrIEnEfFttX1P6Hvl+zzdR/4S0AiYX31K+Qpr7VSPp/JTJ0vLCQsJYkjHGN64o7/7f/UVqUdnHmL4xYKFPPxVKcM7t+LlW/s5OJVv8ijIrbUdvTVIIHh/9S6OnSxjapoKsUQuRkSIYcJlHZiWnk3e4SI6tNTHHp5JZ3Y2kLKKSt5YsoP+HZqT2qGF0+OIuM6kwYmEBAXxxpIcp0fxOQryBjJvwz72HDvF1LQUp0cRcaXWTcO5vl87/rpmt07dP4uCvAFYa3ktPYeOrSO5vGtrp8cRca17hidTWlHJ28tynR7FpyjIG8CSbYfYtO8Ek4cnExSknnGRukppFclV3WKZuTyPopLy8z8gQCjIG8Br6dnENm3E2D5tnR5FxPWmpKVw/FQZ763e5fQoPkNBXs/W7z7GsuzD3DU0iUYhNR9DLiIXrl/75gxMbMGbX+2grKLS6XF8goK8nk1bnENUoxBuGdje6VFE/MbUEcnsOXaKz9fvc3oUn6Agr0d5h4v4YsM+brusA1Hh+vg2EW8Z0bk1nWMjeS09W5/viYK8Xr2xJIeQoCDuHJLo9CgifiUoyDB5eAqb9xeQvvWg0+M4TkFeTw4VlvDXNbu5vl87WjcNd3ocEb9zXe+2xEWHMy1dJwgpyOvJ28tyKa2o5J7hOh1fpD6EhQRx19AkluccZt2uwP6ESQV5PSgqKWfm8jyuvCSWlFaRTo8j4rduHtieqPAQpi3OdnoURynI68F7q3dx/FQZU3Q6vki9imwUwu2XdeCLr/eTe6jI6XEcoyD3srKKSt78agcDE1uQ2qG50+OI+L2fDEkkNDiwy7QU5F72+fqqcqwpqqoVaRCto8K5oV88f83YzcGCwCzTUpB7UVU5VjadWkcysovKsUQayj3DkiirqGRmgJZpKci9KH3rQTbvL1A5lkgDS24VydXd2vD28tyALNNSkHvRtPQc2jQNZ2yfdk6PIhJwpqQlc6K4nDkBWKalIPeSdbuOsTynqhwrLET/t4o0tL7tm3NpUgveXJITcGVaShwvmbY4m6jwEG4emOD0KCIBa2paCnuPF/Ppur1Oj9KgFORekHuoiC++3s8ElWOJOGpEl1Z0iY1iWnpOQJVpKci94I0lOYQGBTFJ5VgijjLGMHl4MlsOFLAogMq0FOQeOlhQwl8zdnNDajtaR6kcS8Rp1/VpS9vocKalB85p+wpyD81clktZRSV3D9MJQCK+IDQ4iDuHJrEi5whZAVKmpSD3QFFJOW8vz+WqbirHEvElNw9sT9PwkIB5V64g98Cc1bs4UVzOVJVjifiUyEYh3D6oA3//Zj87AqBMS0FeR2UVlby5JIeBSS3o217lWCK+5ieDkwKmTEtBXkefrtvL3uPFTFU5lohPahXViBtT4/lbxm7yC4qdHqdeKcjrwFrLtPQcOsdGMqKzyrFEfNU9w5IDokxLQV4Hi7YeZMuBAqYMT1E5logPS4ppwqjubXhneR6FflympSCvg2np2cRFh/PD3m2dHkVEzmNqWkpVmdaqnU6PUm8U5Bcpa9cxVuQcUTmWiEv0TmjGZcktePOrHZSW+2eZlpLoIk1Lz6ZpeAg3D2zv9CgicoGmpKWwz4/LtBTkF2HHoSL+/s1+bh/UgchGIU6PIyIXaETnVnRtE8W0xdl+WaalIL8IbyzJITQ4iImDE50eRUQugjGGKWnJbD1QyKIt/lem5ZUgN8b83BhjjTEx3tieL8ovKOZvGbu5oV+8yrFEXOjaXlVlWq/64Wn7Hge5MSYBuBLw3z8J8+9yrHuGJTk9iojUQWhwEHcNS2bVjiNk7jzq9Dhe5Y135H8CHgb8b8dTtcKSct5Znseo7m1IVjmWiGvdPCCB6IhQXk/3r9P2jSc7/o0x1wE/sNY+YIzJBfpbaw/Vct/JwGSA2NjY1Dlz5tTpOQsLC4mMbNgw/UduGX/ZXMp/XxZOSrNgr23XibXUF39Zi7+sA7SW2szdVspn2WX8dlgEbZo0/J8JPVnLyJEjM6y1/b93g7X2nBdgAfB1DZexwEoguvp+uUDM+bZnrSU1NdXW1cKFC+v82LooKauwlz29wI5/bZnXt93Qa6lP/rIWf1mHtVpLbQ4WFNtOv5hnH527zmvbvBierAVYY2vI1PP+OLLWXmGt7XH2BcgBkoB11e/G44FMY0ybOv2o8VGfrtvLvuPFTB2hqloRfxAT2YhxqfHMzdjjN2Vadf69wlq7wVrb2lqbaK1NBHYD/ay1+702ncOstUxbnE2X2ChGdG7l9Dgi4iX3DEumvLKSGUtznR7FK3Qc+Tks3JLP1gOFTElLxhiVY4n4i8SYJozuEcc7K/IoKC5zehyPeS3Iq9+Z1/iHTrd6LT2HtirHEvFLk4cnU1BczpxVu5wexWN6R16LzJ1HWbXjCHcNSyY0WP83ifib3gnNGJTc0i/KtJRQtXg9PYfoiFBuHpDg9CgiUk+mpCWz/0Qxn7i8TEtBXoPsg4X8Y+N+br+sA01UjiXit9JOl2mlZ1NZ6d5zGhXkNfizyrFEAoIxhqlpKWzLL2Thlnynx6kzBflZ8guKmZuxh3Gp8bSKauT0OCJSz67pFUe7ZhFMc/Fp+wrys8xYmktZZSX3DEt2ehQRaQChwUHcNTSJVblHyMhzZ5mWgvwMBcVlvLMij9E92pAY08TpcUSkgdw8MIFmjUOZ5tKKWwX5Geas2kVBcTlThut0fJFA0jgshDsu68D8TQfYnl/o9DgXTUFerbS8kje/2sGg5Jb0Tmjm9Dgi0sDuGJxIWHAQf17ivn3lCvJqn6zby/4TxUxJ075xkUAUE9mIcf3j+SBzD/kn3FWmpSAHKist09Kz6domijSVY4kErNNlWm+5rExLQU5VOda2fJVjiQS6Di2bMLpnHLNcVqalIAempefQrlkE1/ZSOZZIoJsyPJmCknL+sso9H0Mc8EGekXeUVblHuGtoksqxRIRe8c0YnOKuMq2AT65p6dlER4Ryk8qxRKTa1LQUDpwo4aOsPU6PckECOsi35xcyf9MB7hikciwR+bdhnWK4JK4pry/OcUWZVkAH+Z+X5BCmciwROUtVmVYy2/ML+XKz75dpBWyQ558o5oPMPYzrH09MpMqxROS7rulZXaa12PdP2w/YIH9raS7llZXcPVQnAInI94UEB3HPsCRW5x4lI++I0+OcU0AGeUFxGbNW5DG6R5zKsUSkVuMHVJVpvebjFbcBGeR/WbWTgpJynY4vIufUOCyEOwYlMn+jb5dpBVyQny7HGpzSkl7xKscSkXObOKgD4aFBvLHYd9+VB1yQf5S1hwMnSpiSpqpaETm/lpGNGN8/gQ/X7uGAj5ZpBVSQV1ZaXl+cwyVxTRneKcbpcXbb7iIAAAlkSURBVETEJe4eerpMa4fTo9QooIL8y835bM8vZKrKsUTkIrRv2ZgxPeOYvWInJ3ywTCuggnza4mzaNYtgTM84p0cREZeZMjylqkxrpe+VaQVMkGfkHWF17lHuHqZyLBG5eD3joxnSsapMq6S8wulxviNgEu219ByaNVY5lojU3dS0FPILSvh47V6nR/mOgAjy7fmFzN94gDsGJdI4TOVYIlI3QzvG0C2uKdMWZ/tUmVZABPnri7NpFBLExEEdnB5FRFzMGMOUtGSyDxaxYNMBp8f5lt8H+YETxXy4dg/j+yfQUuVYIuKha3rGEd88gmk+dIKQ3wf5W0t3UFFpuWeYTscXEc9VlWklk5F3lDW5vlGm5ddBfqK4jNkrdjKmZxztWzZ2ehwR8RPj+sfT3IfKtPw6yGevrC7HGq7T8UXEe06XaS3YdIBtBwqcHsd/g7ykvIK3vtrBkI4t6Rkf7fQ4IuJnJg5OJDw0iNd9YF+5x0FujPl/xpgtxphvjDF/8MZQ3vDx2r3kF5To3biI1IsWTcK4qX8CH2XtYf9xZ8u0PApyY8xIYCzQy1rbHXjWK1N5qLLSMm1xNt3imjJM5VgiUk/uHpZMRaVlusNlWp6+I78X+J21tgTAWusTn1K6YNMBsg8WMUXlWCJSjxJaNOaaXm2ZtXInx085V6ZlrK372UnGmCzgY2AUUAz83Fq7upb7TgYmA8TGxqbOmTOnTs9ZWFhIZGTkOe/z5IpTHCux/H5YBMFBvhvkF7IWt/CXtfjLOkBraSh5Jyr41bJixnUO5ZrksPPe35O1jBw5MsNa2/97N1hrz3kBFgBf13AZW/2/LwAGGAjsoPqHw7kuqamptq4WLlx4zttX7zhsOzzymZ2xdEedn6OhnG8tbuIva/GXdVirtTSkCX9eYfs/Od8Wl5Wf976erAVYY2vI1PPuWrHWXmGt7VHD5WNgN/BB9XOsAioBR3dKv5aeQ/PGoYzrH+/kGCISQKYMT+FgQQkfrd3jyPN7uo/8I+ByAGNMZyAMOOTpUHW17UABCzapHEtEGtaQji3p3rYp0xbnOFKm5WmQvwUkG2O+BuYAE6vf/jvi9cU5hIcGMXFwolMjiEgAqirTSiHnYBHzHSjT8ijIrbWl1toJ1bta+llrv/TWYBdr//FiPsraw039E2jR5Px/cBAR8aYxPdqQ0CKC19Kzaej3s35zZuf06nKsu1WOJSIOOF2mtXbnMdbkHW3Q5/aLID9+qoxZK3dyTa+2JLRQOZaIOGNcakJVmdai7AZ9Xr8I8tkrd1JYUs6U4Xo3LiLOiQgLZuLgRP61OZ+tDVim5fogLymv4K2lOxjWKYYe7VSOJSLOmjgokYjQ4AYt03J9kH+0dg8HVY4lIj6ieZMwbhqQwMdZe9h3/FSDPKerg7yqHCuH7m2bMqRjS6fHEREB4K6hSVRaeOurhinTcnWQz990gJyDRUxJS1E5loj4jIQWjbmmZxyzG6hMy7VBbq3ltfRsElpEMKZHG6fHERH5jilpyRSVVjBrZV69P5drg3xN3lHW7jzGPcOSCQl27TJExE91bxvNsE4xTF+aS3FZRb0+l2sT8LVF2VXlWKkJTo8iIlKjqWlVZVof1nOZliuDfOuBAv61OZ+JgxOJCAt2ehwRkRoNTmlJj3ZNeWNxDhX1WKblyiB/fXEOEaHBTByU6PQoIiK1MsYwNS2FnENFzN9Yf2VargvyI8WVfJy1h5sGJNBc5Vgi4uNGdW9D+xaN67VMyxWl3f2fnM+hwtLvXDdjWS6frd/Lml9e6dBUIiLnFxIcxJGiEnYeOUnSY/Oqrvz75wDERIZ5JcNc8Y787BA/3/UiIr6ksKTmo1a8lWGuCHIREamdglxExOUU5CIiLqcgFxFxOVcEeUxkzYcZ1na9iIgvqe8Mc8Xhh2cenrNo0SJGjBjh3DAiIhepvjPMFe/IRUSkdgpyERGXU5CLiLicglxExOUU5CIiLmfqq43rnE9qzEGgrp9/FAMc8uI4TtJafI+/rAO0Fl/lyVo6WGtbnX2lI0HuCWPMGmttf6fn8Aatxff4yzpAa/FV9bEW7VoREXE5BbmIiMu5Mchfd3oAL9JafI+/rAO0Fl/l9bW4bh+5iIh8lxvfkYuIyBkU5CIiLufKIDfGPGGMWW+MyTLG/NMY09bpmerKGPOMMWZz9Xo+NMY0c3qmujDGjDPGfGOMqTTGuPIwMWPMKGPMFmPMdmPMo07PU1fGmLeMMfnGmK+dnsUTxpgEY8xCY8ym6n9bDzg9U10ZY8KNMauMMeuq1/K/Xt2+G/eRG2OaWmtPVP/3z4Bu1tqpDo9VJ8aYq4AvrbXlxpjfA1hrH3F4rItmjLkEqASmAT+31q5xeKSLYowJBrYCVwK7gdXALdbajY4OVgfGmOFAIfC2tbaH0/PUlTEmDoiz1mYaY6KADOBHLn1NDNDEWltojAkFvgIesNau8Mb2XfmO/HSIV2sCuO+nUTVr7T+tteXVX64A4p2cp66stZustVucnsMDA4Ht1toca20pMAcY6/BMdWKtXQwccXoOT1lr91lrM6v/uwDYBLRzdqq6sVUKq78Mrb54LbdcGeQAxpinjDG7gNuA/3F6Hi+5E/jC6SECVDtg1xlf78aloeGPjDGJQF9gpbOT1J0xJtgYkwXkA/OttV5bi88GuTFmgTHm6xouYwGstb+w1iYAs4D7nZ323M63lur7/AIop2o9PulC1uFipobrXPubnj8xxkQCc4EHz/pt3FWstRXW2j5U/dY90Bjjtd1ePvtRb9baKy7wrrOBz4Ff1eM4HjnfWowxE4FrgR9YH/6jxUW8Jm60G0g44+t4YK9Ds0i16v3Jc4FZ1toPnJ7HG6y1x4wxi4BRgFf+IO2z78jPxRjT6YwvrwM2OzWLp4wxo4BHgOustSednieArQY6GWOSjDFhwM3AJw7PFNCq/0D4JrDJWvtHp+fxhDGm1ekj0owxEcAVeDG33HrUylygC1VHSeQBU621e5ydqm6MMduBRsDh6qtWuPEIHGPMj4EXgVbAMSDLWnu1s1NdHGPMGOA5IBh4y1r7lMMj1Ykx5i/ACKrqUg8Av7LWvunoUHVgjBkKLAE2UPW9DvC4tXaec1PVjTGmFzCTqn9bQcD71trfeG37bgxyERH5N1fuWhERkX9TkIuIuJyCXETE5RTkIiIupyAXEXE5BbmIiMspyEVEXO7/AwZR01xU+rboAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "f = 2 + sym.sqrt(abs(x))\nplotFunctionWithLine(f,np.linspace(-3,3,9))", | |
"execution_count": 132, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU5dXA8d9JyAIkrIGwBRBFRHYSFsUFXHEpKAq44YIWqXut7+vS1lqXqq/WWqtWUdyoBQKCIiCKSkRBIAmEfV/DvkNCIOt5/5ihHcOETCaT3JnJ+X4+83Fy73NnzuOEkzvPfe55RFUxxhgTviKcDsAYY0zVskRvjDFhzhK9McaEOUv0xhgT5izRG2NMmLNEb4wxYc4SvTHGhDlL9MYYE+ZqOR2AMaFKROoAxwL5mqoqgXw9YwDE7ow1xj8iMhjYpqpLnI7FmNOxoRtj/NfdkrwJBZbojfGDiAhQ4nQcxvjCEr0JCiLSQUSWiEiOiDzk3vaiiDzi4/GLRKRT1Ub5C32BRaVieEZEnvHl4Iq0NaayLNGbYPG/QJqqxqvqGyLSBLgdeNfH418Fnq2y6E7VH5hTje9XJhGJEZGxIrLV/YdyiYhc5XRcJnhYojfBog2w0uPnO4GZqnrcx+OnAQNEpHmgAytDjKoWVMcb+XD2XwvIBi4G6gN/BFJFpG2VB2dCgiV64zgR+R4YALwpIrkicjZwFfCDe/+ZInJQRHq6f24hIvtFpP/J11DVE0AmcEU1xHsGsNGHdv8nIlM9fn5FRL4TkahAxqOqx1T1GVXdoqolqjod2AwkB/J9TOiyRG8cp6qXAD8CD6hqnKquA7oAa937NwKPA5+6565/CHykqmmlXmo10M3be4jIdBE5XMZjelmxiUg9Ebmj1OZrgJk+dO1lXN8yuovIaGAgMERVC3041m8ikgiczS+/IZkazG6YMsGqAZBz8gdVfU9EfgUsBBQY5OWYHMDr0I2qXutnHDcCz4nIvz0SdIKqHijvQFU9ICKvA5/gGlK5QFWP+BmHT9zfFj4FPlbVNVX5XiZ02Bm9CVaHgPhS294DOgP/UNV8L8fEA4cDGYSqfgB8h+viKyLSwB2br5bg+nbypKpm+3qQ5zcQ4AngifK+gYhIBDAOKAAeqECMJsxZojfBahmu4QcARCQOeB0YCzwjIo28HNMRWOrtxUTkK/f4v7fHV+XE8gUw2P38KmCWLx0QkS7AP4GPgZG+HHOSql6rqg1UtQHwEvDSyZ+9fTtxz+sfCyQCN1T18JAJLZboTbCaiWsWyUl/BzJV9R5gBvCOZ2MRicF18XG2txdT1avc4//eHuVNRfwauNL9vIOqri0veBFpCXwJjAbuA7p4XjyuAv/E9YfuVxWYqWRqCEv0Jlh9AlwtIrXdNWUG4kqaAI8CPUXkVo/2g3DNw98Z6EBUNRdYLyJ9cA2LnJaI1MP1h+o1VZ2mqnnAK8ALgY7N/X5tgHuB7sBuj28qt5ZzqKkhrKiZCVoi8hdgr6q+7kPbhcDdqrqiimIZDdwKPKWqP5bR5hkAVX3Gh9fzua0xlWWzbkzQUtWnKtC2T1XGguuGrOeA+VX8PsYEnCV6Y3ygqjtFZJSqFp+mWVoFXrIibY2pFBu6McaYMGcXY40xJsxZojfGmDAXlGP0CQkJ2rZtW7+OPXbsGHXr1g1sQA4Jl76ESz/A+hKMwqUfULm+ZGZm7lfVJt72BWWib9u2LRkZGX4dm5aWRv/+/QMbkEPCpS/h0g+wvgSjcOkHVK4vIrK1rH02dGOMMWHOEr0xxoS5coduRCQWmAvEuNtPVtU/lWrzN1wLRwDUAZq6izEhIsXAcve+barqrbysMcaYKuLLGH0+cImq5rprXf8kIl+p6oKTDVT1tyefi8iDQA+P44+raveARWyMMaZCyh26UZdc949R7sfp7rK6GRgfgNiMMcYEgE+zbkQkEtd6nGcBb6nqwjLatQHOAL732BwrIhlAEa6a2p9XLuRTpTw/m/25HkUFZ80AICEumow/XB7otzPGmICpjvxVoRII7tV1pgIPeqsSKCKPA61U9UGPbS3cdULa4foDcKl7DdDSx44CRgEkJiYmT5gwwee47px1rMx9Hw0M3fm1ubm5xMXFOR1GpYVLP8D6EoxCvR+Byl8DBgzIVNUUb/sqNI9eVQ+LSBqu2uDeysHeBNxf6pid7v9uch/bAzgl0avqGGAMQEpKilZoLqn7L6A3oTy/NlzmB4dLP8D6EoxCvh/VkL/KHaMXkSbuM3lEpDZwGXDKosMi0gFoCPzssa2he+UfRCQB6AesCkjkxhhjfOLLGX1z4GP3OH0EkKqq00XkWSBDVae5290MTNBfjgV1BN4VkRL3sS+pqiV6Y4wB1u/JqZb3KTfRq+oyfjld8uT2p0v9/IyXNvOBLpWIr9LGL9rGTb2ScK2dbIwxzispUT6av4WXZp0yOFIlwuLO2IS4aK/boyKFJ6cs556PM9iXk1/NURljzKl2HTnO7R8s4tnpq7jwrAQa1fWev8rKa/4IyqJmFeU5BcnzwoznX82Br8/lxSFduKJTM4eiNMbUdNOW7uQPU5dTVKK8OKTLKaMNVXVhOSzO6MsSESGMvOAMZjx4Ac3qxzJqXCaPT15Gbn6R06EZY2qQI3mFPDR+CQ+NX8KZTeOY+dCF3Ny7dbUNKYfFGX152ifGM/W+fvz9u3X8M20j8zft52/DupPStpHToRljwty8Dfv5XepS9ufm89gVZzP64jOpFVm959hhfUbvKbpWBP9z5Tmk3nsegjDs3Z955es1FBSVOB2aMSYMnSgs5tkvV3Hr+wupExPJlPvO54FL2ld7kocalOhPSmnbiJkPX8jQ5CTemrOR69+eV21TnIwxNcOKHUf41T9+4oN5m7nz/LbMePBCurZq4Fg8NS7RA8TF1OLlG7syZkQyu4+c4Jp//MQHP22mpMT3chDGGFNacYny1pwNXP/2PI6eKOSTkb15ZlAnakdHOhpXjRijL8sVnZrRo3VDnvhsGc9OX8V3a/bw6tBuNK9f2+nQjDEhZtuBPB5NzSJj6yGu6dKcF67vTIM6gZsiWRk18ozeU5P4GN6/I4WXhnRhybbDXPm3uXyRtcPpsIwxIUJVSU3P5qq/z2XtnhxeH96dN2/pETRJHmr4Gf1JIsJNvVvTt11jfpuaxcMTsvhu9V6eG9yZ+nWinA7PGBOk9ufm8+SU5cxetYfz2jXm1WHdaNkg+EYELNF7aJtQl0n3nsc7P2zk9W/Xs2jzQV4d2o0L2ic4HZoxJsh8u2oPT0xZxtHjRfzhmo6M7HcGERHBWWqlxg/dlFYrMoIHLmnP1Pv6UTcmktvGLuTPX67kRGGx06EZY4LAsfwinpyyjHs+ySAhLoYvH7yAey5sF7RJHuyMvkxdWtVn+oMX8vKsNXw4bws/rd/P34Z3p3PL+k6HZoxxSObWQzyamsW2g3nce3E7Hr38bGJqOTujxhd2Rn8ataMjeWZQJz4Z2ZujJwq5/u15vDVnA8U2DdOYGqWwuIS/frOWoe/Mp6hYmfDrvjx5VceQSPJgid4nF53dhK8fuYgrOjXjla/XMvzdn9l2IM/psIwx1WDD3lyGvD2ff3y/gSE9WzHrkQvp066x02FViCV6HzWoE82bN/fg9eHdWbsnh6v+PpeJ6duoyJq7xpjQUVKifDx/C9e88SPbD+Xxzm09eXVoN+JjQ28mno3RV4CIcF2PlvQ6oxGPpS7l8c+W8+3qvbw4pAsJcTFOh2eMCZDdR07wP5OX8uP6/fTv0IT/u6ErTevFOh2W3+yM3g8tG9Tm03v68IdrOvLDun0MfH0u367a43RYxpgAmLFsF1e+PpeMLYd4/rrOfHhnr5BO8mCJ3m8REcI9F7bjywcuoEl8LPd8ksGTU5ZxzGrdGxOSjhwv5LcTs7j/34tpm1CXGQ9dwG1924TFMqQ2dFNJHZrF8/n95/O32et5d+5G5m88wGvDupPcpqHToRljfDR/434eS13Knpx8HrmsPQ8MOMuRcsJVpdyeiEisiCwSkaUislJE/uylzZ0isk9EstyPezz23SEi692POwLdgWAQUyuSJ646h4mjzqO4RBn6znz++s1aCout1r0xwexEYTHPT1/FLe8tJCYqks9+cz6PXHZ2WCV58O2MPh+4RFVzRSQK+ElEvlLVBaXaTVTVBzw3iEgj4E9ACqBApohMU9VDgQg+2PQ+oxFfPXwhz365in98v4F/pm2kyMuc+4S46F+sc2uMqXopz89mf26B130j+rbhyavPoU50eA5ylPtnS11y3T9GuR++zim8EpitqgfdyX02MNCvSENEfGwUrwztxju39fSa5IEyf9mMMVXndP/unruuc9gmefDxYqyIRIpIFrAXV+Je6KXZDSKyTEQmi0iSe1tLINujzXb3trA3sHNzp0MwxhjAx4uxqloMdBeRBsBUEemsqis8mnwJjFfVfBEZDXwMXAJ4u1zt9TRXREYBowASExNJS0vzvRcecnNz/T62OvkSY6j0pTzh0g+wvgSjQPQjWP4/VNVnUqHvKqp6WETScA2/rPDYfsCj2XvAy+7n24H+HvtaAWllvPYYYAxASkqK9u/f31uzcqWlpeHvsQE3a0aZu3yJMaj6Ugnh0g+wvgQjX/oxZ+1eIL3M/cHy/6GqPhNfZt00cZ/JIyK1gcuANaXaeI5TDAJWu59/DVwhIg1FpCFwhXtbjffvhducDsGYsKeqvP/jJu7+qOwkXxP4ckbfHPhYRCJx/WFIVdXpIvIskKGq04CHRGQQUAQcBO4EUNWDIvIc//1T+qyqHgx0J4JVQly01wtAUZHCU1OXs3b3Uf547blhN5XLmGCQX1TM76euYHLmdgZ2akb6loMcOHbqv8eEuOBZ8q+qlJvoVXUZ0MPL9qc9nj8JPFnG8R8AH1QixpBV1hTK4hLlpa9W896Pm9mwL5e3bukZVOtLGhPq9uXkM/pfmWRuPcRDl7bnkUvbB/XCIFXNTiUdEBkh/P6ac3nlxq6kbz7EdW/NY8Pe3PIPNMaUa+XOIwx+8ydW7jzCm7f04NHLz67RSR4s0TtqaEoS40f1ITe/iOvfmue+YGSM8desFbu48Z8/U6Iw6d7zubZrC6dDCgqW6B2W3KYRXzxwAa0a1eHuj9J5/8dNVuPemApSVd74bj2j/7WYDs3imfZAP7q0smU/T7JEHwRaNqjNZ785jys7NeP5Gav5n8nLyC+yxciN8UV+sfLA+CW8NnsdQ3q0ZMKoviFfVjjQwvee3xBTJ7oWb93Sk9e/W88b361n8/5j3N7OzuyNOZ1dR47zl4Un2JaTxxNXncO9F7ULi7LCgWaJPohERAiPXn42HRLj+d2kLP68RzmryxE6tbCvoMaUtnjbIe4dl0lOXgnv357CpR0TnQ4paNnQTRC6pmtzJo8+H4Ab//kzs1bscjgiY4LLlMXbuWnMAmpHRfLHvrUtyZfDEn2Q6tyyPk+fF8s5zeMZ/a/FvPHdertIa2q84hLlxa9W82jqUnq2bsAX9/ejZbylsfLY/6Eg1iAmgvG/7suQHi15bfY6Hhi/hOMFdpHW1Ew5Jwr59ScZvPvDJm7r25pxd/ehYV270dAXNkYf5GKjIvnrsG50aBbPS7PWsPXAMd67PYXm9Ws7HZox1WbbgTzu/jidTfuP8dzgTow4r63TIYUUO6MPASLCvRefyfu3p7Blfx6D3pzH4m1huUiXMaeYv3E/g976ib05+Ywb2duSvB8s0YeQSzsmMuW+86kdFclNYxYwZfF2p0Mypkr9a8FWbh+7iIS4GL64vx/nn5XgdEghyRJ9iDk7MZ4v7u9Hz9YNeDR1KS9+tZriMpYsNCZUFRaX8MfPV/CHz1dwYfsEptx3Pm0T6jodVsiyRB+CGtaNZtzdfbitb2ve/WETv/4kg5wThU6HZUxAHM4r4I4PFjFuwVZGXdSO9+/oRb3YKKfDCmmW6ENUVGQEz1/XhecGd+KHdfsY8vZ8th445nRYxlTKhr05DH5rHhlbDvHq0G48dXVHImt45clAsEQf4kac15ZxI3uzNyefwW/NY/7G/U6HZIxf5qzZy/VvzedYfjHjR/XlxuRWTocUNizRh4Hzz0rgi/v7kRAXw+1jXV95jQkVqsqYuRsZ+XE6rRvXYdoD/Uhu09DpsMKKJfow0TahLlPuO58L2yfwx89X8MfPV1BYXOJ0WMacVn5RMY9NWsZfZq7hqs7NmDT6PFo0sHtEAs0SfRipFxvF+3f0YtRF7RjnnpZ2yMsamcYEg705J7h5zAI+W7ydRy5rz5s396ROtN3DWRXKTfQiEisii0RkqYisFJE/e2nzqIisEpFlIvKdiLTx2FcsIlnux7RAd8D8UmSE8NTVHXl1aDcytx7iurfnsX5PjtNhGfMLK3Yc4bo357Fq11HevrUnj1xmy/1VJV/O6POBS1S1G9AdGCgifUu1WQKkqGpXYDLwfx77jqtqd/djUECiNuW6MbkV40f15Vh+Mde/PZ85a2yZQhMcZi7fxdB3fgZg8ujzubpLc4cjCn/lJnp1OblydZT7oaXazFHVPPePCwC7XB4Ekts0ZNoD/WjTuA4jP05nzNyNVgHTOKakRHn923Xc9+liOjaP5/MH+tG5pa21UB18GqMXkUgRyQL2ArNVdeFpmt8NfOXxc6yIZIjIAhG5rhKxGj+0aFCbSaPP46rOzfjLzDX8btJSThRaBUxTvfIKinhg/GJe/3Y9N/R0fdtsGm/L/VUXqcgZnog0AKYCD6rqCi/7bwMeAC5W1Xz3thaqulNE2gHfA5eq6kYvx44CRgEkJiYmT5gwwZ/+kJubS1xcnF/HBptA9qVElWkbC/l8QyGRAsVePvZ60fDGJYG/zdw+k+BUVX156PtjHC1jDsDwDtEMbFsroMv92WfiMmDAgExVTfG2r0KJHkBE/gQcU9VXS22/DPgHriTvdUBYRD4Cpqvq5NO9R0pKimZkZFQorpPS0tLo37+/X8cGm6roy8zlu7jv08Vl7t/y0jUBfT+wzyRYVVVf2j4xo8x99vt1epXpi4iUmeh9mXXTxH0mj4jUBi4D1pRq0wN4FxjkmeRFpKGIxLifJwD9gFV+9cIEhF34Mqbm8WXSanPgYxGJxPWHIVVVp4vIs0CGqk4DXgHigEnur2Tb3DNsOgLvikiJ+9iXVNUSvTHGVKNyE72qLgN6eNn+tMfzy8o4dj7QpTIBGmOMqRy7M9YYEzBLsw87HYLxwhJ9DZQQ531BZRHX2pzG+GP9nhzu/HARZd3gWtbvnal6VliiBsr4w+WnbFu3J4dh7/7MbWMXMnn0eTStZ3Ocje+yD+YxYuwiakVGMOex/rRpbKtBBRM7ozeAa4nCD+/sxf7cfEaMXcThPCuGZnyzLyefEWMXkldQxCcje1uSD0KW6M1/9GjdkDEjUti8/xh3fZROXkGR0yGZIHfkeCG3f7CIPUfz+fCuXnRsXs/pkIwXlujNL1zQPoE3bu7O0uzD3Dsuk/wiK5dgvDteUMzdH6WzYW8O74xIJrlNI6dDMmWwRG9OMbBzc14a0pUf1+/ntxOzKC6xQmjmlwqKSvjNp5lkbjvE68N7cPHZTZwOyZyGXYw1Xg3rlcTRE4U8P2M19WKX8+KQLgGtT2JCV3GJ8mhqFmlr9/HikC5c09Xutg52luhNme65sB2H8wp5c84G6teJ4smrOjodknGYqvL0FyuYvmwXT1x1Djf3bu10SMYHlujNaf3uirM5fLyAd3/YRIPa0fym/5lOh2Qc9Ndv1vHpwm2MvvhMRl9svwuhwhK9OS0R4dlBnTl6vIiXZ62hfu0obuljZ3E10XtzN/HmnA3c3DuJxwd2cDocUwGW6E25IiKEvw7rRs6JQn7/+XLq1a7FtV1bOB2WqUap6dm8MHM113RpzvPX2fWaUGOzboxPoiIjePvWZFLaNOS3E7P4Yd0+p0My1WTWil08MWUZF7ZP4G/DuxNpi3iHHEv0xme1oyN5/45etG8az+hxmWRuPeh0SKaK/bR+Pw+Nz6J7UgPeHZFMdC1LGaHIPjVTIfVrR/HxyN4k1ovhrg/TWb3rqNMhmSqyZNshRo3LoF2Tunx4Z2/qRNtIb6iyRG8qrEl8DOPu7kOd6FqMGLuILfuPOR2SCbC1u3O488N0EuJi+GRkb+rXiXI6JFMJluiNX5Ia1WHc3b0pLinhtrEL2X3khNMhmQBxVaJcSEytCP51dx+rZBoGLNEbv7VPjOeju3pz6FgBI8Yu5NAxq3gZ6vbmnOC2sQvJLyph3N19aN24jtMhmQCwRG8qpVtSA967I4WtB/O486N0juVbxctQdSSvkNvHLmJfjqsSZYdm8U6HZALEEr2ptPPPTODNm3uwYscRRo3LsIqXISivoIiRH6ezad8xxoxIoWfrhk6HZAKo3EQvIrEiskhElorIShH5s5c2MSIyUUQ2iMhCEWnrse9J9/a1InJlYMM3weKKTs14+YauzNtwgIfHZ1FUXOJ0SMZHBUUljP7XYpZsO8QbN3fngvYJTodkAsyXM/p84BJV7QZ0BwaKSN9Sbe4GDqnqWcDfgJcBRORc4CagEzAQeFtEIgMVvAkuNya34ulrz2XWyt08NXU5qlbeONgVlyi/Tc1i7rp9vDSkKwM7WyXKcFRuoleXXPePUe5H6X/Bg4GP3c8nA5eK6x7pwcAEVc1X1c3ABqB3QCI3QWnkBWfw0KXtSc3Yzl9mrrZkH8RUlT98voIZy3bx+6s7MqxXktMhmSri0x0Q7rPwTOAs4C1VXViqSUsgG0BVi0TkCNDYvX2BR7vt7m0mjP32svYcySvgvR8306BONJ3sjvmgNHldITM2b+P+AWfy64vaOR2OqUI+JXpVLQa6i0gDYKqIdFbVFR5NvP1T1tNsP4WIjAJGASQmJpKWluZLaKfIzc31+9hgE8p9ubiesq55JK98vZbhZyqQ5nRIARHKn4mnmZsLmLG5kAFJtUiJ3kVa2m6nQ/JbuHwmUHV9qdA9zap6WETScI23eyb67UASsF1EagH1gYMe209qBews47XHAGMAUlJStH///hUJ7T/S0tLw99hgE+p9ufCiEkaPyyR1zV769T6bQd1Cv+JlqH8mABMWbSN17XJ6N4vk/d9cEfJFysLhMzmpqvriy6ybJu4zeUSkNnAZsKZUs2nAHe7nNwLfq2twdhpwk3tWzhlAe2BRoII3wS0qMoK3bu3J2Q0jeHRiFnPW7HU6pBpv5vJdPDV1ORef3YRRXWNCPskb3/gy66Y5MEdElgHpwGxVnS4iz4rIIHebsUBjEdkAPAo8AaCqK4FUYBUwC7jfPQxkaojYqEge7hlLh2bx/ObTTNK3WMVLp/y4fh8PT1hCz9YNeee2ZGpZkq8xyh26UdVlQA8v25/2eH4CGFrG8S8AL1QiRhPi6kQJH4/szbB3fmbkR+lMGNWXTi3qOx1WjZK59RCjPsnkrKbxjL2zF7WjbZZzTWJ3xppqkRAXw7h7+hAXU4s7PljEZqt4WW3W7D7KyI/SSaznrkRZ2ypR1jSW6E21admgNuPu7kOJwm3vL2TXkeNOhxT2th3IY8TYRcRGRTDu7j40iY9xOiTjAEv0plqd1TSOj+/qzZHjhYwYu4iDVvGyyuw5eoJbxy6gsLiEf93dh6RGVomyprJEb6pdl1b1ef+OFLYdzOOuDxeRaxUvA+5wXgG3j13EwdwCPrqrN+0TrRJlTWaJ3jiib7vGvH1LT1bsPMqoTzI4UWiTsQIlr6CIuz5KZ/P+Y7x3ewrdkxo4HZJxmCV645jLzk3k1aFdmb/xAA+NX2IVLwMgv6iYe8dlsjT7MP+4pQfnn2WVKI0leuOw63u04plfncs3q/bwxJTllJRYETR/FZcov52YxY/r9/PyDV25slMzp0MyQcKWdTeOu7PfGRw+Xsjr365ncub2U/YnxEWT8YfLHYgsuKU8P5v9uadezK4bHcnQFKtEaf7LzuhNUHj40vZl7vOWzEzZ/1+OFdj1DvNLluhNUHAtX2CMqQqW6I0xJsxZojfGmDBnid4YY8KcJXoTNBLioiu0vaZrVNf+fxnf2PRKEzQ8p1Cu2X2Uga//yNPXnsvIC85wMKrgdef5bXlt9jp+/N8BVsfGnJad0ZugdE6zenRtVZ/UjGxci5UZTyUlyqTMbM4/s7EleVMuS/QmaA1LSWLN7hyW7zjidChBZ8GmA2QfPM7wXnZjlCmfJXoTtAZ1b0FMrQhSM7KdDiXopGZkUy+2lpU5MD6xRG+CVr3YKK7u0pwvsnZadUsPR44X8tWK3Qzu3pLYKFsS0JSv3EQvIkkiMkdEVovIShF52Eub/xGRLPdjhYgUi0gj974tIrLcvS+jKjphwtewlCRyThQxa8Vup0MJGtOW7iS/qMSGbYzPfDmjLwJ+p6odgb7A/SJyrmcDVX1FVburanfgSeAHVT3o0WSAe39KwCI3NUKfMxrRulEdJqbb8M1JqenZdGxej04t6jkdigkR5SZ6Vd2lqovdz3OA1UDL0xxyMzA+MOGZmi4iQhiW0oqfNx1g6wFbUHzVzqMs33GE4SmtrD6Q8VmFxuhFpC3QA1hYxv46wEDgM4/NCnwjIpkiMsq/ME1NdkNyKyIEryWMa5rUjGyiIyMY3P1051rG/JL4OkdZROKAH4AXVHVKGW2GA7ep6q88trVQ1Z0i0hSYDTyoqnO9HDsKGAWQmJiYPGHChAp3BiA3N5e4uDi/jg024dKXQPTjtYwTbM8t4dWLaxPh4Jmsk59JYYnyyJw8OjWO5L7usZV+Pfv9Cj6V6cuAAQMyyxweV9VyH0AU8DXwaDntpgK3nGb/M8Bj5b1fcnKy+mvOnDl+HxtswqUvgejHjGU7tc3j03XOmj2VD6gSnPxMvly6Q9s8Pl1/WLs3IK9nv1/BpzJ9ATK0jJzqy6wbAcYCq1X1tdO0qw9cDHzhsa2uiMSffA5cAawo90+TMaVc1jGRRnWja/Sc+onp2bRsUJt+tg6sqSBfat30A0YAy0Uky73tKaA1gKq+4952PfCNqnpeMUsEprovGtUC/q2qswIRuKlZomtFcF33loxbsIWDxwrKLOgVrnYcPs5PG/bz4CXtiYywi7CmYvbvPXUAABHxSURBVMpN9Kr6E1Dub5aqfgR8VGrbJqCbn7EZ8wvDeyXxwbzNTF2yg7trWKGzyRnbUYWhya2cDsWEILsz1oSMDs3i6daqPpNqWKGzkwXM+p1lBcyMfyzRm5AyrJer0Nmy7TWn0NnPmw6w/dBxhqXYnbDGP5boTUj5VbcWxEZFMLEGXZS1AmamsizRm5BSLzaKqzs358usnRwvCP9CZ0fyXAXMruthBcyM/yzRm5AzrFcSOflFfLVil9OhVLlpS3dQUFRiwzamUizRm5DT54xGtGlcp0bMqZ+Ykc25zevRuWV9p0MxIcwSvQk5IsKwlCQWbDoY1oXOVu48woodR60csak0S/QmJN3Q01XobFJG+BY6m5SxnehaEQzu3sLpUEyIs0RvQlKz+rFcfHYTJmdup7gk/ObUnygsZuqSHVzZqRkN6tSsu4BN4FmiNyFrWEoSu4+eYO76fU6HEnCzV+3hyPFChqXYnbCm8izRm5B16clCZ2G4+lRqhruA2ZlWwMxUniV6E7Kia0VwfY+WfLt6Dwdy850OJ2C2H8rjpw37uTG5FRFWwMwEgCV6E9KGpSRRWKxMXbLD6VAC5uRKWkNt2MYEiCV6E9I6NIunW1IDUsOk0FlJiTIpYzv9zkygVUMrYGYCwxK9CXnDU5JYtyeXpWFQ6Gz+xgPsOHycYTZ33gSQJXoT8n7Vrbmr0FkYXJRNzcimfu0orjg30elQTBixRG9CXnxsFFd3ac6XS0O70NmRvEJmrdzNdd1bWAEzE1CW6E1YGJ6SRG5+ETOXh26hsy9OFjCzYRsTYJboTVjofUYj2oZ4obOJ6dl0alGPTi2sgJkJLEv0JiyICENTkli4+SBb9odeobMVO46wcqcVMDNVo9xELyJJIjJHRFaLyEoRedhLm/4ickREstyPpz32DRSRtSKyQUSeCHQHjDnpP4XOMkPvrH5SRrargFm3lk6HYsKQL2f0RcDvVLUj0Be4X0TO9dLuR1Xt7n48CyAikcBbwFXAucDNZRxrTKU1qx9L/w5NmZy5naLiEqfD8dmJwmI+z9rJwE7NqF8nyulwTBgqN9Gr6i5VXex+ngOsBnw97egNbFDVTapaAEwABvsbrDHlGZbSij1H80Oq0Nk3/ylgZsM2pmpUaIxeRNoCPYCFXnafJyJLReQrEenk3tYS8PwevR3f/0gYU2GXnJNI47rRpKaHTp361HRXAbPzz2zsdCgmTImvt42LSBzwA/CCqk4pta8eUKKquSJyNfB3VW0vIkOBK1X1Hne7EUBvVX3Qy+uPAkYBJCYmJk+YMMGvDuXm5hIXF+fXscEmXPpS3f0Yvyafb7cW8bf+dagXE9iiYIHuy768Ev537nEGnxXFdWdVb915+/0KPpXpy4ABAzJVNcXrTlUt9wFEAV8Dj/rYfguQAJwHfO2x/UngyfKOT05OVn/NmTPH72ODTbj0pbr7sXb3UW3z+HR9b+7GgL92oPvy2jdrte0T0zX74LGAvq4v7Pcr+FSmL0CGlpFTfZl1I8BYYLWqvlZGm2budohIb1xDQgeAdKC9iJwhItHATcA0H/9AGeOXsxPj6Z7UgInpwV3orKREmZy5nQvOsgJmpmr5MkbfDxgBXOIxffJqERktIqPdbW4EVojIUuAN4Cb3H5ki4AFc3wZWA6mqurIK+mHMLwzvlcT6vblkZR92OpQyzdu431XAzC7CmipWq7wGqvoTcNqBTlV9E3izjH0zgZl+RWeMn67t2pxnv1xFakY2PVo3dDocr1IzttOgThRXdLICZqZq2Z2xJiz9t9DZLvIKipwO5xSH8wr4euVuruvekphaVsDMVC1L9CZsDe91stDZbqdDOcUXWTtdBcxs2MZUA0v0Jmz1atuQMxLqBuXi4RPTs+ncsh7ntqjndCimBrBEb8KWq9BZKxZtOcimfblOh/MfK3YcYdWuowy3s3lTTSzRm7D230JnwXOnbKq7gNkgK2BmqoklehPWEuvFMqBDUz4LkkJnJwqL+XzJDq7qbAXMTPWxRG/C3tCUJPbm5PPDOucLnX29cjdHTxTZRVhTrSzRm7B3acemJMRFB8XqU6kZ2bRqWJvz2lkBM1N9LNGbsBcVGcH1PVry3eq97MvJdyyO7IN5zNtwgKHJSUREBLbYmjGnY4ne1AjDUpIoKlE+X7LDsRgmZW5HBG5MaeVYDKZmskRvaoT2ifH0aN2AiRnOFDorLlEmZ2RzwVkJtGxQu9rf39RsluhNjTE8JYkNe3NZ4kChs3kb9rPzyAlb/Ns4whK9qTGu7daC2lGRjtwpm5qRTYM6UVx+rhUwM9XPEr2pMeJianFN1+Z8uXQnx/Krr9DZoWMFfLNyjxUwM46xRG9qlOG9kjhWUMzM5buq7T0/z9pBQbEVMDPOsURvapSUNg1pl1C32ubUqyoT07Pp0rK+FTAzjrFEb2oUV6GzJNK3HKqWQmcrdhxlze4chtlFWOMgS/SmxrmhZ0siI4TUjKovdJaakU1MrQgGdWtR5e9lTFks0Zsap2m9WAZ0aMJni6u20NmJwmI+z3IXMKttBcyMcyzRmxppaEoS+3LySVtbdYXOvl65mxwrYGaCQLmJXkSSRGSOiKwWkZUi8rCXNreKyDL3Y76IdPPYt0VElotIlohkBLoDxvjjknOqvtDZxPRskhrVpq8VMDMO8+WMvgj4nap2BPoC94vIuaXabAYuVtWuwHPAmFL7B6hqd1VNqXTExgRAVGQEQ3q24vs1VVPoLPtgHvM3WgEzExzKTfSquktVF7uf5wCrgZal2sxX1UPuHxcAVrXJBL1hKa0oKlGmLA78RdlJGdmuAmbJ9k/BOE8qUuBJRNoCc4HOqnq0jDaPAeeo6j3unzcDhwAF3lXV0mf7J48bBYwCSExMTJ4wYYLvvfCQm5tLXFycX8cGm3DpSzD34/kFxzlWqPzlgtqIlH/m7UtfSlR57IfjtIiL4LGU2ECFGnDB/LlURLj0AyrXlwEDBmSWOWqiqj49gDggExhymjYDcJ3xN/bY1sL936bAUuCi8t4rOTlZ/TVnzhy/jw024dKXYO7HhEVbtc3j0zVjywGf2vvSl7S1e7XN49N1+tKdlYyuagXz51IR4dIP1cr1BcjQMnKqT7NuRCQK+Az4VFWnlNGmK/A+MFhVD3j8Idnp/u9eYCrQ25f3NKY6XNO1BXWiI0lND9zwTWpGNg3rRHHZuU0D9prGVIYvs24EGAusVtXXymjTGpgCjFDVdR7b64pI/MnnwBXAikAEbkwgxMXU4pouzZm+LDCFzg4dK2D2yj1c18MKmJng4csZfT9gBHCJe4pklohcLSKjRWS0u83TQGPg7VLTKBOBn0RkKbAImKGqswLdCWMq42ShsxkBKHQ2dYmrgJnVnTfBpFZ5DVT1J+C0V6nUdeH1Hi/bNwHdTj3CmOCR3KYh7ZrUJTU9u1I3N6kqqRnZdG1Vn3OaWQEzEzzszlhT44kIw1KSyNh6iI2VKHS2fMcRVwEzuxPWBBlL9MYAQ/5T6Mz/O2VPFjD7lRUwM0HGEr0xQNP4WAZ0aMpnmTso9KPQ2YnCYr7I2snVXZpbATMTdCzRG+M2LKUV+3P9K3Q2a4WrgNnQFLsT1gQfS/TGuA04pykJcTFM9GPx8Inp2bRuVIe+Z1gBMxN8LNEb4xYVGcENPVsyZ+1e9uac8Pm4bQfy+HnTAYYmt7ICZiYoWaI3xsPQlCSKS5Qpi3f4fMykTHcBMxu2MUHKEr0xHs5qGkdym4akZmSfrNV0WsUlyuTM7VzUvgnN69euhgiNqThL9MaUMjwliU37jpG59VC5bX9cv49dR07YnbAmqFmiN6aUq7s2dxU682FO/aSM7TSsE8WlHa2AmQleluiNKSUuphbXdm3O9GW7yD1NobODxwr4ZtVuru/RygqYmaBmid4YL4b3SiKvoJiZy8oudDZ1yQ4Ki9WGbUzQs0RvjBc9W7sKnU0sY/hGVZmUkU23VvXp0Cy+mqMzpmIs0RvjhYgwPCWJzK2H2LA355T9y7a7C5jZ2bwJAZbojSnD9e5CZ5MyTl19KjUjm9goK2BmQoMlemPK0DQ+lkvOacpni7f/otDZ8YJipmXt5OrOzakXawXMTPCzRG/MaQxLSWJ/bgFz1uz9z7ZZK3eRk1/EUKs7b0KEJXpjTmNAhyY0iY/5xZz6ienZtGlch77tGjkYmTG+s0RvzGnUioxgSM+WzFm7j71HT7A3r4QFmw4yNLkVIlbAzISGchO9iCSJyBwRWS0iK0XkYS9tRETeEJENIrJMRHp67LtDRNa7H3cEugPGVLVh7kJnny3ewY/bi4gQuCHZCpiZ0FHu4uBAEfA7VV0sIvFApojMVtVVHm2uAtq7H32AfwJ9RKQR8CcgBVD3sdNUtfwiIsYEieHv/gzAy7PW/GfbeS9+T0JcNBl/uNypsIzxWbln9Kq6S1UXu5/nAKuBlqWaDQY+UZcFQAMRaQ5cCcxW1YPu5D4bGBjQHhhTxfbnFlRouzHBpkJj9CLSFugBLCy1qyXgeQvhdve2srYbY4ypJr4M3QAgInHAZ8Ajqnq09G4vh+hptnt7/VHAKIDExETS0tJ8De0XcnNz/T422IRLX8KlH96Ecr/C5XMJl35A1fXFp0QvIlG4kvynqjrFS5PtgOek4lbATvf2/qW2p3l7D1UdA4wBSElJ0f79+3trVq60tDT8PTbYhEtfQr4fs2aUuSuU+xXyn4tbuPQDqq4vvsy6EWAssFpVXyuj2TTgdvfsm77AEVXdBXwNXCEiDUWkIXCFe5sxxphq4ssZfT9gBLBcRLLc254CWgOo6jvATOBqYAOQB9zl3ndQRJ4D0t3HPauqBwMXvjFVLyEu2uuF14S4aAeiMabiyk30qvoT3sfaPdsocH8Z+z4APvArOmOCgOcUynAaJjA1h90Za4wxYc4SvTHGhDlL9MYYE+Ys0RtjTJizRG+MMWFOXBNmgouI7AO2+nl4ArA/gOE4KVz6Ei79AOtLMAqXfkDl+tJGVZt42xGUib4yRCRDVVOcjiMQwqUv4dIPsL4Eo3DpB1RdX2zoxhhjwpwlemOMCXPhmOjHOB1AAIVLX8KlH2B9CUbh0g+oor6E3Ri9McaYXwrHM3pjjDEewjLRi8hz7kXKs0TkGxFp4XRM/hCRV0RkjbsvU0WkgdMx+UtEhroXly8RkZCbISEiA0VkrYhsEJEnnI6nMkTkAxHZKyIrnI6lMkQkSUTmiMhq9+/Ww07H5C8RiRWRRSKy1N2XPwf09cNx6EZE6p1cBUtEHgLOVdXRDodVYSJyBfC9qhaJyMsAqvq4w2H5RUQ6AiXAu8BjqprhcEg+E5FIYB1wOa7FdNKBm1V1laOB+UlELgJyca3z3NnpePzlXpe6uaouFpF4IBO4LhQ/F/e6H3VVNde90NNPwMPuNbgrLSzP6EstdViXMpYvDHaq+o2qFrl/XIBrha6QpKqrVXWt03H4qTewQVU3qWoBMAEY7HBMflPVuUDIrwuhqrtUdbH7eQ6wmhBdk1pdct0/RrkfActbYZnoAUTkBRHJBm4FnnY6ngAYCXzldBA1lC1yH+REpC3QA1jobCT+E5FI9+JOe4HZqhqwvoRsoheRb0VkhZfHYABV/b2qJgGfAg84G23ZyuuHu83vgSJcfQlavvQlRPm8yL2pfiISh2tN60dKfZsPKaparKrdcX1z7y0iARtW82lx8GCkqpf52PTfwAzgT1UYjt/K64eI3AFcC1yqQX5BpQKfSajZDiR5/NwK2OlQLMaDezz7M+BTVZ3idDyBoKqHRSQNGAgE5IJ5yJ7Rn46ItPf4cRCwxqlYKkNEBgKPA4NUNc/peGqwdKC9iJwhItHATcA0h2Oq8dwXMMcCq1X1NafjqQwRaXJyVp2I1AYuI4B5K1xn3XwGdMA1y2MrMFpVdzgbVcWJyAYgBjjg3rQgFGcPAYjI9cA/gCbAYSBLVa90NirficjVwOtAJPCBqr7gcEh+E5HxQH9clRL3AH9S1bGOBuUHEbkA+BFYjuvfOsBTqjrTuaj8IyJdgY9x/X5FAKmq+mzAXj8cE70xxpj/CsuhG2OMMf9lid4YY8KcJXpjjAlzluiNMSbMWaI3xpgwZ4neGGPCnCV6Y4wJc5bojTEmzP0/1w978mnGS+MAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Sympy plotting" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import sympy.plotting.plot as symplot\nx = sym.symbols('x')\nf = x**2\np= symplot(f)\n\n#modified version\np = symplot(f,show=False)\np.xlim = [0,50]\np[0].line_color = 'm'\np.title = 'This is a title'\np.show()\nprint(p)\n", | |
"execution_count": 151, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEFCAYAAAAYKqc0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVhUdf//8eeBYRcQZVVAQBARF0QUt0wzl8xby8zlrsS0tLq72/d+3Xe7tu/LbZmhlbarqWmuuae476CAAiIg+w7DnN8fmF8zVNSZObO8H9fFpcycOeflmfHF4Syfo6iqihBCCNvioHUAIYQQxiflLoQQNkjKXQghbJCUuxBC2CApdyGEsEFS7kIIYYOk3IUQwgZJuQshhA3SaR1A2DZFUfyBfkAboBrYD6SoqmrQNJgQNk6RK1SFKSiKMgh4CmgF7ALyAVegA9Ae+AF4S1XVMs1CCmHDpNyFSSiK8gbwgaqqJ5p4TgeMBBxVVf3R7OGEsANS7kIIYYPkgKowKUVR5imK4n3O92GKoqzWMpMQ9kDKXZjaRuAPRVFGKIpyN/Ab8K7GmYSweabcLSP7ewQAGzduZNCgQfj6+rJr1y4CAwO1jiSEJVOMMRPZchcmNW/ePKZMmcLcuXOZPHkyI0aMYM+ePVrHEsLmyZa7MKmbbrqJWbNm4e/vD8C2bduYPn06u3bt0jiZEBbLKFvuUu7C7Orq6nB2dtY6hhCWSnbLCMv18ssvU1RU1ORzzs7OrFmzhiVLlpg5lRD2Q4YfECbRpUsX/vGPf+Dq6kp8fDx+fn7U1NSQlpbG7t27uf7663nmmWe0jimEzZLdMsIk7rjjDubNm8frr7+Ov78/ubm5uLm5ERMTw4ABA3Bzc9M6ohCWyii7ZWTLXZjEjh07OH78OF9//TVr1679y3PV1dUXLfcpU6awZMkS/P392b9/PwBFRUWMHz+ezMxMwsLC+O677/Dx8UFVVR588EGWLVuGu7s7X375JfHx8Sb9twlhDWSfuzCJe+65h+HDh3P48GESEhLOfvXo0YOEhISLvnby5MksX778L4/NnDmTwYMHk5aWxuDBg5k5cyYAv/76K2lpaaSlpTFr1izuvfdek/2bhLAmJtsto28wqA2qiovO0STzF9bh3nvv5ZNPPrns12VmZjJy5MizW+7R0dGsW7eOoKAgcnNzGThwIEeOHGH69OkMHDiQiRMn/m06IaxNdV0Dbs6Oln22zIDX1zL/j78NCCjszJUUe1Py8vLOFnZQUBD5+fkA5OTkEBIScna64OBgcnJympzHrFmzzv4GERsba5RcQhjTtHkpRpuXyco9wNuV5C3HMRjkuKownaZ+81SUpjd8pk2bRkpKCikpKXJAV1ico/nlbEg7bbT5mazcJ/cNI+N0Jb+nFZhqEcKOBAQEkJubC0Bubu7ZK16Dg4PJyso6O112djZt2rTRJKMQVyN583GcdcarZJOV+w2dg/D3dOHLTZmmWoSwI6NGjSI5ORmA5ORkRo8effbxuXPnoqoqW7duxdvbW/a3C6tTWl3PjzuzGdXNeBsmJit3Z50Dt/dux++pBRwrqDDVYoQNmjhxIn369OHIkSMEBwcze/ZsnnrqKVauXElUVBQrV67kqaeeAmDEiBFEREQQGRnJ3Xffzccff6xxeiEu3/cpWVTVNTC5b5jR5mnSi5gKymvpN3MNE3uF8MLozqZajhCXLSEhgZQU4x28EuJKNRhUBr25jgAvF76/py9Yw9gyfp4ujOwWxA87simrqTflooQQwiqtO5LPiaIqkoy41Q5muIjpzr7hVNY18ENKtqkXJYQQVufLzZkEerkyLNa4N7Exebl3CfamRzsfkrdkymmRQghxjqN5jac/3tGnHU6Oxq1jsww/MLlvGMcLq1iXmm+OxQkhhFWYszmTDv4tGN8z5NITXyazlPvwzoEEeLkwR06LFEIIAIor6/hxZzbdQ33wbeFi9PmbpdydHB24o3c7soqqSMsrN8cihRDCos3ffoKaegNT+oebZP5mGxVyYq9Qcktr+EK23oUQdq6+wcDczcfpH+lLdKCnSZZhtnJv3cKFMfHB/LQzm8KKWnMtVgghLM6yfbmcKqthSv8wky3DrOO5T+0fRq3ewNcyWqQQwk6pqsoXGzOI8PVgYAd/ky3HrOUe6e/JwGg/5m7JpKa+wZyLFkIIi7DzRDF7sku5s18YDg5GuRi1SWa/E9Nd/SM4XVHH4j0nzb1oIYTQ3OyNGXi56rilR7BJl2P2cu8X2ZqOgZ7M3pDR5FjcQghhq7KLq1i+/xQTE0NxdzbtLazNXu6KojC1fzhH8srZeNR4A9MLIYSl++aPEyiKQlKfMJMvS5MbZI+Ka4NvCxc+35ChxeKFEMLsymvqmbclk0m929GmpenvBKZJubvoHEnq0zjWu1zUJISwB99uz6K8toGb49uaZXmalDvAbb3b4aJz4ItNsvUuhLBt+gYDczZl0iu8FV2DW5plmZqVeysPZ8bEB/Pjzhy5qEkIYdOW7T9FTkk1066JMNsyNSt3aLyoqU5v4KutclGTEMI2qarKZ+vTifDz4LqOprto6XyalnukvyeDov2Yt1UuahJC2KY/MorYl1PKXf0jTHrR0vk0LXeAqf3DCWnlztK9uVpHEUIIo/tsfTqtPZwZY6YDqX/SvNz7RfpSpzfw0bqjcqcmIYRNOZpfwerD+dzRpx2uTo5mXbbm5a4oCtOvbU96QSWrDuVpHUcIIYzmp53ZeDg7ckfvdmZftublDjCicyDBPm78b3261lGEEMIo8str+HxjBuN6htDaBHdauhSLKHedowN3XxPBjuPFpGQWaR1HCCGu2pxNmegbDGYZaqApFlHuAOMSQvBxd+LT32XrXQhh3cpr6vlq63Fu6BxEmK+HJhksptzdnB1J6hvGqkN5MiSBEMKqzd92gvIaPdOvNd9FS+ezmHIHmNQnDFcnB2bJvnchhJWq1Tcwe2MGfdu3NttQA02xqHJv5eHM+IQQFu7O4VRpjdZxhBDisi3afZK8slruuba9pjksqtwB7romggaDyhwZUEwIYWUMBpX//X6MTkFeXBPlq2kWiyv3kFbu3Ni1DV//cYKymnqt4wghRLOtOpTHsYJKpl8bgaKYb6iBplhcuQNMHxCBj7sTP+/M0TqKsDDvvPMOsbGxdO7cmYkTJ1JTU0NGRgaJiYlERUUxfvx46urqtI4p7NT/1qcT7OPGjV2CtI5imeXeua03Yb4efLDmqAwoJs7Kycnh/fffJyUlhf3799PQ0MCCBQt48sknefjhh0lLS8PHx4fZs2drHVXYoT/SC3F0UJg+oD06R+2rVfsEF3DfwEhOV9TyXUqW1lGEBdHr9VRXV6PX66mqqiIoKIg1a9YwduxYAJKSkli4cKHGKYU9+njdMY7lVzC2R7DWUQALLvfeEa2ID23J/35Pp77BoHUcYQHatm3LY489RmhoKEFBQXh7e9OjRw9atmyJTtd4J/ng4GBycmR3njCv/Tml/J5awJT+4bg5m3eAsAux2HJXFIX7r4skp6SaRbtPah1HWIDi4mIWLVpERkYGJ0+epLKykl9//fVv013oQNasWbNISEggISGBgoICU8cVduTjdUfxdNVxRx/zDxB2IRZb7gCDov3pGOjJx+uO0iDDAdu9VatWER4ejp+fH05OTowZM4bNmzdTUlKCXq8HIDs7mzZt2jT5+mnTppGSkkJKSgp+fn7mjC5s2NH8cn7df4qkPmF4uTppHecsiy53RVH416BI0gsq+e3AKa3jCI2FhoaydetWqqqqUFWV1atX06lTJwYNGsQPP/wAQHJyMqNHj9Y4qbAnn6xLx0XnwJ39wrSO8hcWXe4AI7oEEdbanY/WHUVVZevdniUmJjJ27Fji4+Pp0qULBoOBadOm8dprr/H2228TGRlJYWEhU6dO1TqqsBNZRVUs3J3DxF6hmgzrezGKCQvTaDP+dvsJnvxxH8lTenFtB/l1Wly9hIQEUlJStI4hrNxzC/ezYPsJ1j8xiCBvN2PN1ihXP1n8ljvAzd2DCfJ25aO1R7WOIoQQQOPNOL5NyeKW+GBjFrvRWEW5O+sab+aRklnEjuNyMw8hhPZmb8xA32DQfICwC7GKcgeY0DOE6ABP3lstW+9CCG0VV9ax9nA+U/qFa3YzjkuxmnJ3d9Exuntb1qcWsOtEsdZxhBB2bPbGDNLyKxjXM0TrKBdkNeUOcEfvdvi4O/HBGtl6F0Joo6Sqji83ZzKicxAdAjy1jnNBVlXuHi467romgjWH89mXXap1HCGEHfpiUyYVtXr+PThS6ygXZVXlDjCpTzu8XHW8vyZN6yhCCDtTWl3PnE0ZDI8NpGOgl9ZxLsrqyt3T1Ymp/SNYeTCPAydl610IYT5zNmVQXmP5W+1gheUOMLlfGJ4uOj6Ufe9CCDMpq6nni40ZDOkUQGwbb63jXJJVlru3mxN39gvj1/2nOHKqXOs4Qgg7kLwpk7IaPQ8OjtI6SrNYZbkDTOkfTgsXHR/IvnchhIlV1Or5fGMGgzv607mt5W+1gxWXe0t3Z/59XSR/ZBTJ1rsQwqSSN2dSWl3Pg9dbx1Y7WHG5A4xLCKG6roH3VqdqHUUIYaMqa/V8viGdQdF+dA1uqXWcZrPqcvfxcGZK/3CW7TvFwZNlWscRQtigeVuPE+XvyQNWsq/9T1Zd7gBT+4fj6arj3VWy9S6EMK6ymno+WXcMDxdHuof6aB3nslh9uXu7OXH3NRH8djBPrloVQhjVFxszKK2u55Eh0VpHuWxWX+4Ad/YLw9vNiXdk610IYSQlVXXM3pDB0E4BdAm2jjNkzmUT5e7p6sS0AY1jzsiIkUIIY/hsQzoVdXoeGdpB6yhXxCbKHWBy3zBaeTjzzio5710IcXUKK2qZsymTG7sEWfwYMhdiM+Xu4aLjnmsjWJ9awPbMQq3jCCGs2Ke/H6OmvoGHrrfOrXawoXIHuKN3GH3bt+bNFamY8MbfQggbll9Ww9wtx7kpri2R/i20jnPFbKrc3ZwdGRYbyB8ZRWxIO611HCGEFZq39Th6g2p157Wfz6bKHWBCrxDatnTjjRVHZOtdCHFZsoqq+PT3Y9zV33LvjdpcNlfuLjpHHh7SgX05pSzff0rrOEIIK/LuqjQURWFyvzCto1w1myt3gJu7N+4re/O3IzQYZOtdCHFpqXnl/LQrm6Q+7QjydtM6zlWzyXJ3dFB4bGgHjhVU8vOuHK3jCCGswJsrjtDCWcd9Ay3/LkvNYZPlDjAsNpCuwd68szKVWn2D1nGEEBZs54lifjuYx7QBEfh4OGsdxyhsttwVReHxYdHklFTzzdbjWscRQlgoVVV5fflhfFs0jjJrK2y23AH6R/oyLiGY+duzqKjVax1HCGGBNqSdZmt6EfcPisTDRad1HKOx6XJXFIV/JrYjNa+CWevTtY4jhLAwBoPKGyuO0LalGxMTQ7WOY1Q2Xe4AcSEtubFLEJ9vSCe/vEbrOEIIC/LbwVOU1dTzyJAOuOgctY5jVDZf7gCPDYumTm/g/dUyqJi1KykpYezYsXTs2JGYmBi2bNlCUVERQ4YMISoqiiFDhlBcLCODikur0xt4ddlh3JwcGR3XRus4RmcX5R7u68HEXqHM35ZFekGF1nHEVXjwwQcZPnw4hw8fZs+ePcTExDBz5kwGDx5MWloagwcPZubMmVrHFFbgq63HOVFUxVM3dETnaHtVaHv/ogt4YHAUrjoH3lhxROso4gqVlZWxfv16pk6dCoCzszMtW7Zk0aJFJCUlAZCUlMTChQu1jCmsQGl1Pe+vSaNfZGuu7eCndRyTsJty9/N04e4BEfy6/xQ75YYeVik9PR0/Pz/uvPNOunfvzl133UVlZSV5eXkEBQUBEBQURH5+fpOvnzVrFgkJCSQkJFBQUGDO6MLCfLzuKKXV9Tx9QwyKomgdxyTsptwB7r4mAt8WLryzUoYEtkZ6vZ6dO3dy7733smvXLjw8PC5rF8y0adNISUkhJSUFPz/b3FoTl5ZdXMWcTZncHNeWzm2t7/Z5zWVX5e7houPpEdHsziph5cE8reOIyxQcHExwcDCJiYkAjB07lp07dxIQEEBubi4Aubm5+Pv7axlTWLi3fmu81/Kjw6zvpteXw67KHWB0t7YEeLky49fD1OkNWscRlyEwMJCQkBCOHGk8brJ69Wo6derEqFGjSE5OBiA5OZnRo0drGVNYsP05pfy8K4cp/cJp29L6Bwe7GNu5HKuZdI4OPDsihju/3M5XW4/b1OXG9uCDDz7gtttuo66ujoiICObMmYPBYGDcuHHMnj2b0NBQvv/+e61jCgukqiozfj2Ej7sT9w1qr3Uck7O7cgcYGO3HNVG+vLc6jTHxbWnpbhsDBdmDuLg4UlJS/vb46tWrNUgjrMm61AI2HS3kPyM74eXqpHUck7O73TLQOCzBszfGUF5Tz/urj2odRwhhYvoGA9/8cYKeYT7c3rud1nHMwi7LHaBjoBfje4Yyd0umXNgkhI37ZtsJVh7MY2r/CJx19lF79vGvvIDG8SQcmPnrYa2jCCFMpKSqjrdXptK3fWuGxQZoHcds7Lrc/TxduG9QJL8dzGPLsUKt4wghTODdVWmUVdfzn390stkLlppi1+UOMLV/4ylRb8v9VoWwOal55czbepx/JobSMdBL6zhmZffl7urkyHMjY0jLr+D7lCyt4wghjERVVV5achAPZ0ceGWLbFyw1xe7LHRrvtxoV0ILXVxyhtKpe6zhCCCNYfSifDWmneej6DrSykfuiXg4pdxpPjXx+VCwlVXW8sypV6zhCiKtUq2/g5aUHae/nwR197OPUx/NJuZ8R28abfyaGMm/rcY6cKtc6jhDiKiRvziSzsIrnRnbCyQbHam8O+/xXX8CjQ6LxdNXx/OIDMmqkEFaqoLyW91cf5bqO/gyMtt9B5KTcz+Hj4cyjQ6PZkl7Isn2ntI4jhLgCb/12hJr6Bp69MUbrKJqScj/PP3uFEhPkxStLD1JVp9c6jhDiMuzJKibjdCVT+oXR3q+F1nE0JeV+HkcHhRdGxXKytIZP1x3TOo4QopkaDCrPLTpA+ulK/nVdpNZxNCfl3oRe4a0YHdeGT9enc6KwSus4QohmmL/tBHuzS/l/N8bg7WZ/pz6eT8r9Ap6+IQadg8LLSw9qHUUIcQmnK2p5Y8UR+kS0ZlS3NlrHsQhS7hcQ6O3Kg4OjKKmuZ+3hpm+4LISwDDN/PUxVnZ6Xboq1q/FjLkbK/SIm9wujsKKW/yzeT019g9ZxhBBNSMks4ocd2UztH0Gkv6fWcSyGlPtFuOgcefmmLmQVVfPhGrmphxCWRt9g4P8t3E8bb1ceGCwHUc8l5X4Jfdq3Zkx8W/63/hhH8+XKVSEsSfKW4xw+Vc5//hGLu7Nd3jX0gqTcm+GZETG4O+t49uf9cuWqEBYir6yGd1amMjDaz65uwtFcUu7N4NvChadu6MgfGUX8uDNH6zhCCOCVpYeoazDwwig5iNoUKfdmGp8QQnxoS15ddojiyjqt4whh135PLWBPVgmPD42mXWsPreNYJCn3ZnJwUHjl5i6UVtfz2nK556oQWqmq0/Psz/vQOSpM6mufw/k2h5T7ZYgJ8mJq/3B+3pVNSmaR1nGEsEtv/5ZKdnE1M8Z0xUXnqHUciyXlfpkeuj6K2DbePPnjXjn3XQgz25tdwhebMpjYK5Re4a20jmPRpNwvk7uzjgcGR3GsoJKP1sq570KYi77BwFM/7jt7goO4OCn3KzAw2p8x8W35ZN0xDuWWaR1HCLswe2MGB3PLeGFULN5uTlrHsXhS7lfouRs74e3mxJM/7kXfYNA6jhA27URhFe+sSmVIpwCGdw7UOo5VkHK/Qj4ezrwwOpa92aXM2ZSpdRwhbJaqqry45AA6BwdeGt1ZzmlvJin3q3BjlyCujwngrZVHOF5YqXUcIWzSgu1ZpBwv5vl/dCLQ21XrOFZDyv0qKIrCyzd1xsnBgad/2idDE5hJQ0MD3bt3Z+TIkQBkZGSQmJhIVFQU48ePp65OLjKzFdnFVbyy9BAxgV6MiQ/WOo5VkXK/SoHerjw9IoaKWj3fpWRpHccuvPfee8TE/N/Nj5988kkefvhh0tLS8PHxYfbs2RqmE8aiqipP/bgPg6ry+tiuODjI7pjLIeVuBBN6BuPpouPFXw6SVSS35TOl7Oxsli5dyl133QU0FsCaNWsYO3YsAElJSSxcuFDLiMJIvtl2go1HT/P0iBhCWrlrHcfqSLkbgYODA6+N7YqiKDz+wx4MBtk9YyoPPfQQr7/+Og4OjR/dwsJCWrZsiU7XONxrcHAwOTkyuJu1yyqq4tWlh+gX2ZrbeoVqHccqSbkbSbCPO8+NjGFrehFzt2RqHccmLVmyBH9/f3r06HH2saaOc1zobIpZs2aRkJBAQkICBQUFJsspro7BoPLkj3sBeO0W2R1zpWR0eyMalxDC8v2nmLn8MNdG+xPuK6PVGdOmTZtYvHgxy5Yto6amhrKyMh566CFKSkrQ6/XodDqys7Np06bpGyRPmzaNadOmAZCQkGDO6OIyfL3tBJuPFfLKzZ0J9pHdMVdKttyNSFEUZt7SOJjRo9/tpkF2zxjVjBkzyM7OJjMzkwULFnDdddfx9ddfM2jQIH744QcAkpOTGT16tMZJxZXKKqpixrJD9I/05Z+yO+aqSLkbWYCXKy+MimXniRI+35CudRy78Nprr/H2228TGRlJYWEhU6dO1TqSuAIGg8oLvxzEQVHOHsMSV04x4bnZdrvZqqoq93y1g7WHC1jyQH86BMgd2S1NQkICKSkpWscQ5/hsfTrvr0njpdGdual7W63jaMkoP9Vky90EFKXxxh6927fmwQW7qNXL0MBCXMzBk2W8seIIvSNaMzqu6WMm4vJIuZuIbwsXkvq041BuOW8sP6J1HCEsVk19Aw8u2IW3uxOv3SK7Y4xFyt2EBscEMKlPOz7fmMH6VDn1ToimzPz1MGn5Fbx5azdaeThrHcdmSLmb2DMjYojyb8Gj3++hSG6sLcRfrDuSz5ebM5ncN4xrO/hpHcemSLmbmKuTI+9N6E5pVT1P/LBXBhcT4ozCiloe+34vHQJayJ2VTEDK3Qw6tfHiieHRrDqUx9d/nNA6jhCaU1WVJ3/cR1l1Pe9N6I6rk9zo2tik3M1kSr9wrony5eWlBzmaX651HCE09dUfxymvqeeJ4dHEBHlpHccmSbmbiYODwlu3dsPdWcfbK1OpqZfTI4V9OnCylJeWHMLN2ZEp/cK1jmOzpNzNyN/LlXfHx7Fs3yleXnpQ6zhCmF1FrZ77v9mFj7sTb93aTQYFMyEpdzMb0MGPaQMi+GrrCX7Zc1LrOEKYjaqqPPPTPo4XVvL+hO60buGidSSbJuWugceHRdOjnQ9P/biX9IIKreMIYRbfbs9i8Z6TPHx9BxIjWmsdx+ZJuWvAydGBDyZ2x1nnwH1f75T978LmHT5Vxn8XH6B/pC/3DYrUOo5dkHLXSJuWbrw9Po7Dp8p54ZcDWscRwmQqauv519c78XJz4p3xcTjKfnazkHLX0KBof+4d2J7527JYuEtuDSdsj6qqPP3Tflp5OPPu+G74ecp+dnORctfYo0M60CusFR+vO0rqKTn/XdiWLzZl8suekwyM9qdfpAwvYE5S7hrTOTrw3sQ4auoNTP9qB6XV9VpHEsIo/kgv5NVlhxjaKYD7BrbXOo7dkXK3AEHebrw1rhtZRVU8/O1uDHJ7PmHl8spq+Nc3u2jXyp23xnWTYXw1IOVuIXqGteK/o2JZczifd1elah1HiCtWpzdw71c7qKrT8787euDp6qR1JLsk5W5Bbk8MZVxCMO+vOcqKA6e0jiPEFXnrtyPsPFHCG2O7ESW3mNSMlLsFURSFF0d3pltISx75drcMMCaszjd/nODLzRk8PiyaG7sGaR3Hrkm5WxhXJ0c+vT0eN2dHps3dQWm13OBDWIctxwr5z6L99Gnvyz3XygFUrUm5W6Agbzc+vq0HrT2cefS7PegbDFpHEuKiThRWce/XOwjz9eD9id3lQiULIOVuoXqFt2JMj2BWHcrnxSUygqSwXOU19UxN3g7A55MS8JIDqBZBp3UAcWETe4WScbqSWevTifD1YLKMfS0sTINB5YH5u8g4Xcncqb0I8/XQOpI4Q8rdwj05vCOZpyt5cclBQlu7c13HAK0jCXHWa8sPs/ZIAa/c3Jm+7X21jiPOIbtlLJyjg8K7E+Lo1MaLf3+zi0O5ZVpHEgKAeVsyWXMoj+kDIrgtsZ3WccR5pNytgLuzjs8n9cTT1YmpX24nv6xG60jCzv124BT/XXyAMF8PHh8WrXUc0QQpdysR6O3K50kJFFfV89LSg1TW6rWOJOzUzhPFPLBgF12CW/L+xO7oHKVGLJG8K1akc1tvPr09nmX7TnHPVzuo08spksK8Mk9XcldyCv6ersxOSsDdWQ7bWSopdytzbbQ/M27uwoa00zz+wx4ZZEyYTWFFLUlztqGqKslTeuEr90C1aPJj1wqN6xlCQUUtb6w4QmsPF54bGSOj7gmTqqzV8/RP+zhVWsP8ab0Jl1MeLZ5suVup+wa2585+YXyxKYP/rU/XOo5ZZGVlMWjQIGJiYoiNjeW9994DoKioiCFDhhAVFcWQIUMoLi7WOKltqalv4O65KWxNL+ST2+OJD/XROpJoBil3K6UoCs/d2IlR3dow89fDfJeSpXUkk9PpdLz11lscOnSIrVu38tFHH3Hw4EFmzpzJ4MGDSUtLY/DgwcycOVPrqDajvsHA/d/sZPOxQp4fFSvXWVgRKXcr5uCg8Oat3RgaG8DsjRks3ZurdSSTCgoKIj4+HgBPT09iYmLIyclh0aJFJCUlAZCUlMTChQu1jGkzGgwqD3+7m1WH8nnpps6MiQ/WOpK4DFLuVs5Z58A74+LwctXx4IJddjMOfGZmJrt27SIxMZG8vDyCghqHlw0KCiI/P7/J18yaNYuEhAQSEhIoKCgwZ1yrYzCoPPPTPpbszeXpGzpyR2+5SMnaSLnbAA8XHV9M7knntt7c/81O1hzO0zqSSVVUVHDLLbfw7rvv4uXl1ezXTZs2jZSUFFJSUvDzk8qz8EcAABJXSURBVJs1X4iqqry09CDfpmTxwHWRTJfhe62SlLuN8HR1InlKLzoGenHPVztZn2qbW6b19fXccsst3HbbbYwZMwaAgIAAcnMbd0nl5ubi7++vZUSr9/bKVOZsymRKv3AeHtJB6zjiCkm52xBvNyfmTe1FhK8Hd89NYcuxQq0jGZWqqkydOpWYmBgeeeSRs4+PGjWK5ORkAJKTkxk9erRWEa3eB2vSWLYvlwk9Q+QUWyunqKrJLoKRq2s0UlhRy4RZW8kpqebLO3vSK7y11pGMYuPGjVxzzTV06dIFB4fG7ZJXX32VxMRExo0bx4kTJwgNDeX777+nVatWF51XQkICKSkp5ohtFVRV5a3fUvlw7VFuSwzlxdGd5YYb2jHKipdyt1H55TU89t0ejuSV8864OPpGynCs55Jy/z+qqvLqskN8tiGDCT1DePXmLjhIsWvJKCtfdsvYKH9PV94c142Wbs5M/nI7qw/Z9kFWcWUMBpX/Lj7AZxsySOrTTordhki52zB/T1e+nd6bmEBPps/bwS97TmodSVgQg0HlmZ/3MXfLce6+JpznR8VKsdsQKXcb19Ldma/uSiS+nQ8PLNjFt9tPaB1JWID6BgMvLzvEgu1Z3D8okmdGyMFTWyPlbgc8XZ1IvrMXA6L8ePLHfczdkql1JKGhylo9dyWnMG9LJv8Z2YnHhkVLsdsgKXc74ebsyKxJPfhnrxDeXHGEV5YelOGC7dDpilomfraVDWkFvDi6M1P6y03XbZUM+WtHXHSOvHRTF3SODny2IYOTJTW8Na4brk6OWkcTZpB5upKkOdvIK6vhs0kJDI6RQcBsmZS7nXF0UHhhVCwhPu68suwQp878R2/l4ax1NGFCe7JKmPLldgyqyjd395Zhe+2A7JaxQ4qicPeACD6+LZ59OaXc8slmjhdWah1LmMiK/bk88eNe3Jwd+eHevlLsdkLK3Y6N6BLEN3clUlJVx5iPN5OSWaR1JGFEqqry4Zo0pn+1kyAvV366ry/t/VpoHUuYiZS7nUsIa8VP9/WjV3grJn62lblbMjHhVcvCTKrrGvj3/F28+Vsqo+Pa8OkdPfD3dNU6ljAjKXdBuK8HM2/pyoAoP/6z6ACPfr+HmvoGrWOJK5RbWs24/21h6b5cnhzekXfHx8lBczsk5S6AxhElP5uUwMPXd+DnXTmM+XgzWUVVWscSl2nzsdM889M+Mk5X8vmkBO4d2F7OYbdTUu7iLAcHhQevj+KLpJ5kF1cx8oONrDvS9F2NhGVpMKi8vzqN2z//gxNFVSz8V1851dHOSbmLvxnU0Z9f/t2fIG9X7vxyO++tSpULnizY6YpaJs/ZxtsrUxnVrQ2L7+9PpL+n1rGExmTIX3FB1XUNPP3TXnJLa1AUePPWbgT7uGsdyyhsZcjfLcdO8+CC3ZRU1/PiqFjG9wyR3TDWT8ZzF6anqio/7Mjm+cUHcFAUnh8Vy5j4tlZfINZe7jX1DbyzMpVf9+fi4azjrXFxdGrT/PvJCosm5S7MJ6uoike/28O2zCKGxwby6pguVn1VqzWX+77sUh75bjdp+RX8MzGUZ0d0xMPFSetYwnik3IV5NRhUPtuQztu/peLl5sTrY7twXUfrPGhnjeVepzfw4dqjfLT2KH4tXHhtbFeu7eCndSxhfFLuQhuHcst4+NvdHD5VzvQBEUy/tr3VbcVbW7kfyCnliR/3cuBkGWO6t+W/o2LxdpOtdRsl5S60U6tvYPaGDN5ZlYq7s47HhkXzz16hVnNTZWsp9/Kaet5dlcacTRn0jfTl9sR2DO8cqHUsYVpS7kJ7qXnl/GfRframF9G5rRcvjOpMj3aWPzCVpZe7qqos2ZvLS0sOUlBRy8ReoTwxLJqW7tb1G5K4IlLuwjKoqsove3N5ZelB8spqubVHME/e0BHfFi5aR7sgSy73AydLmbMpkx92ZNO5rRcv39SFuJCWWscS5iPlLixLRa2eD1anMXtjBu7Ojjw2NJpxPUMsclwTSyz3rKIq3l6ZysLdOUS09iCpbxi39W5nNbu6hNFIuQvLdDS/go/XHuWnXTn4e7rwr0GRjLewkrekci+urOPDtUeZt+U4igJT+odzz7Xt5YCp/ZJyF5Zty7FC3lmZyrbMIoK8XfnXoEjGJYTgrNN+1AtLKPf8shpmb8rgQE4pm48VcmuPEB4aEkWQt5umuYTmpNyF5VNVlc3HCnl7ZSo7jhcT4evB7b3bcWtCMJ6u2m2Zalnu6QUVzFqfzk87c9AbDNwU15Z7ro2gQ6BcYSoAKXdhTVRVZX3aaZbsOcn3O7LxcHbklh7BTOoTRqS/+e8OZO5yV1WVHceLmb0xg+UHTuHs6MCtCcHcfU0E7Vp7mC2HsApS7sI67ckqIXlzJkv25lLXYOCaKF8m9WnHdR0DzHbw0Fzlfrqilp92ZvPt9iyOFVQS5d+CobEBTO4bjp+n5Z5NJDQl5S6sW0F5LQu2neCrP44T5O1GdnE1I7sG8Y9ubYgPbWnSwclMWe51egObjhawYHsWqw/lozeoxIe2ZHzPEEZ2DZJxYMSlSLkL21DfYGBDagHf78hm9eF86vQG2rZ0Y1S3IIbGBtItuCUORt6iN3a5V9c18HtqASsOnGLVoTxiAj05VlDJmPi2jO8ZIuOri8sh5S5sT3lNPb8dyGPxnpOUVtezO6sE3xYu3Ny9DR0Dvegb2brJs0mWL1/Ogw8+SENDA3fddRdPPfXURZdzteXeYFA5cLKUTUcL2XzsNPoGA1vSi2jp7sSQmABGdAmiX6SvRZwZJKyOlLuwbcWVdaxLzWfN4QL255SScboSJweFkFbuXBvtR7tW7nQLbkmEnzvxXTqxcuVKgoOD6dmzJ/Pnz6dTp04XnPfllLuqquSX13LwZBmHcsvYnllESXU9u06UABAd4MnQ2AB6R7QmMbwVOkcpdHFVpNyF/TAYVA6fKmfniWI2pBVQ36Cy5nA+7f08cNDXkJFXzC39YvFxd2L3HxtpodRx9x0TaN3CGW83JzycHXFz1p3dj/9nuTc0GKiub6Csup7SGj3FlXWcrqjldEUtBeV15JfXcLKkhi3phQB0C/amqq6BYbGBRAW0oE/71vh7umq5aoTtkXIX9ktVVU6V1XAgp4wlazezNS2PLvEJlNfUszW9CBdDDS29vfF2d8LH3Zn6BgMGg4qTzoEWLjoWv5DENY9/joOioHOAgoo6qmr1hLRyx8FBQVVVWrjo8HZzwreFC8E+bnRq403HwBZ4ucngXcKkLLvcY2NjVTc3y7/SrqCgAD8/y7/hgeS8sOLiYsrKymjXrh0ApwuLKK+qxs8/gAaDikFVMRhUyisqqaysBKC+spS24VEoCjgoytk/nRwVdA4O6BwVHCzgVoLyvhuPNWQE2LFjxwFVVTtf9YxUVTXJV48ePVRrIDmNS4ucmzdvVocOHXr2+1dffVV99dVXL/oaWZ/GZQ05rSGjqqoqkKIaoYPlyI+wej179iQtLY2MjAzq6upYsGABo0aN0jqWEJrSaR1AiKul0+n48MMPGTZsGA0NDUyZMoXY2FitYwmhKZOV+7Rp00w1a6OSnMalVc4RI0YwYsSIZk8v69O4rCGnNWQ8Y5YxZiJnywghhGUxypF82ecuhBA26KrKXVGUWxVFOaAoikFRlIRzn5sxYwaRkZFER0ezYsWKJl+fkZFBYmIiUVFRjB8/nrq6uquJ0yzjx48nLi6OuLg4wsLCiIuLa3K6sLAwunTpQlxcHAkJCU1OY0rPP/88bdu2PZt12bJlTU63fPlyoqOjiYyMZObMmWZOCY8//jgdO3aka9eu3HzzzZSUlDQ5nVbr81Lrp7a2lvHjxxMZGUliYiKZmZlmywaQlZXFoEGDiImJITY2lvfee+9v06xbtw5vb++zn4UXX3zRrBn/dKn3UFVVHnjgASIjI+natSs7d+40e8YjR46cXU9xcXF4eXnx7rvv/mUardbnlClT8Pf3p3Pn/zvLsaioiCFDhhAVFcWQIUMoLi5u8rWKoiQpipJ25iupWQu8mlNtgBggGlgHJJzzeKeuXbuqNTU1anp6uhoREaHq9fq/nfJz6623qvPnz1dVVVWnT5+ufvzxx8Y8o+iSHnnkEfWFF15o8rl27dqpBQUFZs1zrv/+97/qG2+8cdFp9Hq9GhERoR47dkytra1Vu3btqh44cMBMCRutWLFCra+vV1VVVZ944gn1iSeeaHI6LdZnc9bPRx99pE6fPl1VVVWdP3++Om7cOLNmPHnypLpjxw5VVVW1rKxMjYqK+lvGtWvXqjfeeKNZczXlUu/h0qVL1eHDh6sGg0HdsmWL2qtXLzOm+zu9Xq8GBASomZmZf3lcq/X5+++/qzt27FBjY2PPPvb444+rM2bMUFVVVWfMmPHn/5/ze7YVkH7mT58zf/c5f7rzv65qy11V1UOqqh5p4qnREyZMwMXFhfDwcCIjI9m2bdvffqisWbOGsWPHApCUlMTChQuvJs5lUVWV7777jokTJ5ptmca2bds2IiMjiYiIwNnZmQkTJrBo0SKzZhg6dCg6XeNx+d69e5OdnW3W5V9Mc9bPokWLSEpq3BAaO3Ysq1ev/vM/lFkEBQURHx8PgKenJzExMeTk5Jht+ca0aNEiJk2ahKIo9O7dm5KSEnJzczXLs3r1atq3b3/24jatDRgwgFatWv3lsXM/fxfpwGHASlVVi1RVLQZWAsMvucBLtX9zvvj7lvuHwO3nfD8bGHvea3yBo+d8HwLsN0aeZmYewEUuFgAygJ3ADmCauXKds/zngUxgL/AFTfykBsYCn5/z/R3Ah+bOes7yfzn3fdd6fTZn/QD7geBzvj8G+Gq0/sKAE4DXeY8PBAqBPcCvQKxG+S76HgJLgP7nfL/63F7QIO8XwP1NPK7Z+jzzHu8/5/uS854vbuI1jwH/75zvnwMeu9SyLnkqpKIoq4DAJp56VlXVC20mNnW09/zNoeZMc0WamXkiMP8is+mnqupJRVH8gZWKohxWVXW9MfI1JyfwCfASjevkJeAtYMr5s2jitUbf7GzO+lQU5VlAD3x9gdmYfH02QdPP4eVQFKUF8CPwkKqqZec9vRNop6pqhaIoI4CFQJS5M3Lp99Ai1iWAoijOwCjg6SaetpT12VxXtF4vWe6qql5/BWGyadwS/1MwcPK8aU4DLRVF0amqqr/ANFfkUpkVRdEBY4AeF5nHyTN/5iuK8jPQCzBqGTV33SqK8hmNW0Xna856vmrNWJ9JwEhgsHpm06KJeZh8fTahOevnz2myz3wuvIEiE+f6C0VRnGgs9q9VVf3p/OfPLXtVVZcpivKxoii+qqqeNmfOZryHZvk8NtMNwE5VVfPOf8JS1ucZeYqiBKmqmqsoShCQ38Q02TT+tvGnYBr3llyUqU6FXAxMUBTFRVGUcBp/Kv5lp/uZElhL46/OAEmAuXYYXw8cVlW1yR3EiqJ4KIri+effgaE0/vpuNmfe6D/dfIHlbweiFEUJP7OlMoHGdW82iqIMB54ERqmqWnWBabRan81ZP4tp/OxB42dxzYV+QJmC0jgG8WzgkKqqb19gmsAz06EoSi8a/98WmivjmeU25z1cDExSGvUGSlVV1Wqn+wV/M7eE9XmOcz9/F+rAFcBQRVF8FEXxoXHdN30K4rmucv/RzTT+VKkF8oAV5zz3LI37L48AN5zz+DKgzZm/R9BY+keB7wEXM+33+hK457zH2gDLzsm158zXARp3P5h7f+E8YB+N+9wXA0Hn5zzz/Qgg9cy61iLnUSAL2H3m61NLWp9NrR/gRRp/GAG4nvnsHT3zWYww8/rrT+Ov2HvPWYcjgHv+/IwC959Zb3uArUBfDd7nJt/D83IqwEdn1vU+NNrfDrjTWNbe5zym+fqk8YdNLlB/pjenAq1pPDaRdubPVmemTeCvx4umnPmMHgXubM7yTHmFqhBCCI3IFapCCGGDpNyFEMIGSbkLIYQNknIXQggbJOUuhBA2SMpdCCFskJS7EELYICl3IYSwAIqi9FQUZa+iKK5nrgg+oChK50u/8gLzk4uYhBDCMiiK8jKNV027Admqqs644nlJuQshhGU4MwbSdqCGxmERGq50XrJbRgghLEcroAXgSeMW/BWTLXchhLAQiqIsBhYA4TQOFnj/lc7rkuO5CyGEMD1FUSYBelVVv1EUxRHYrCjKdaqqrrmi+cmWuxBC2B7Z5y6EEDZIyl0IIWyQlLsQQtggKXchhLBBUu5CCGGDpNyFEMIGSbkLIYQNknIXQggb9P8B1yA3JlYw5ZcAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEMCAYAAAA1VZrrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcwUlEQVR4nO3deZRdZZnv8e9TU2pMKpVUQgYgIGUIIYZoEVBQhogNikCvi1MLxpZl7u2r97bo7QZc3gvLbrux73WI3bQtS7SxFWwaB5AGFAIIiAlUBjKigRCSEEgqqenUPJzn/nF2SBGqcqqSqv3uU+f3WavWOXs69dSudc7v7Pfd+93m7oiIiBxNQegCREQk+RQWIiKSlcJCRESyUliIiEhWCgsREclKYSEiIlkpLGRCM7NbzOzHR1m+xcwuHOVrvtfM/nDcxY2SmX3ZzL5/lOWfNrOn46xJ8kdR6AJEjoeZtQ+aLAd6gIFo+r9m297dF472d7r7U8D80W43GlGA/djd5w76vX83aPk84GWg2N37x7MWEdCRheQ4d6889APsAj48aN5PQtcnMlEoLCQflJjZj8wsFTU71R9aYGY7zez90fOlZtZgZm1mts/MvjnUi5nZhWa2Z9D0DWb2avT6fzCzZcNs9yEzWx+9/m4zu2WY9SqAh4DZZtYe/cw+okntyeixJVr+7iFe53Qze8TMmqK6PjqCfSUyJIWF5IMrgJ8C1cD9wD8Ns95KYKW7TwbeBtyT7YXNbD7weeBsd68C/gTYOczqHcCnojo+BPyFmV115Eru3gFcBuwddJS094jV3hc9VkfLf39EXRXAI8BdwAzgE8A/m9mom91EQGEh+eFpd3/Q3QeAfwMWD7NeH3CamU1393Z3Xz2C1x4AJgFnmFmxu+9095eGWtHdn3D3Te6edveNwN3ABcfw94zE5cBOd/+hu/e7+zrgZ8DV4/T7ZIJTWEg+eH3Q806g1MyGOrnjOuDtwAtm9pyZXZ7thd39ReALwC3AfjP7qZnNHmpdMzvHzB43s0YzawX+GzB9lH/LSJ0MnGNmLYd+gE8CJ4zT75MJTmEhEnH37e7+CTLNNl8H7o2ac7Jtd5e7n0/mA9qjbYdyF5lmsBPdfQrwL4AN97LZfm2W5buB37p79aCfSnf/iyzbiQxJYSESMbNrzKzW3dNASzR7IMs2883sYjObBHQDXUfZpgpocvduM1sK/NlRXnofMM3MpgyzvBFIA6cOs/wB4O1mdq2ZFUc/Z5vZgqP9PSLDUViIHHYpsCW6dmMl8HF3786yzSTgVuAAmeauGcCXh1n3vwNfNbMU8H84Sge6u79Apk9jR9SMNPuI5Z3A14DfRcvPPWJ5CvgA8HFgb1Tb16N6RUbNRnLzIzObAZwHzCbzzWkz0BB9AxMRkQnuqGFhZhcBNwI1wHpgP1BKphPwbcC9wDfcvW38SxURkVCyhcX/Bf7R3XcNsayIzOl5he7+s/ErUUREQhtRM5SIiOS3EXVwm9m/DT4rw8zmmdmq8StLRESSZKSjzj4NrDGzLwJzgL8CvjRuVY2cDotEREZvuOt7ht9gpM1QZnY+8DiZUwSXuPvrWTaJg8JCRGT0Rh0WI22Guhb4AZlB0P4VeNDMhhtfR0REJpiRXmfxS2CFu++PppcC33P3JeNcXzY6shARGb3xa4Z6y4ZmJe7ee0wbjx2FhYjI6I1tM5SZfcXMaoZa5u690Zg4WUfmFBGR3JbtbKhNwK/MrBtYR2bwslKgDjgLeBT4u+E3FxGRiSBbB/fV7n4e8GtgC1AItAE/Bpa6+/Xu3jjUhmb2AzPbb2abB82riW7zuD16nBrNNzP7jpm9aGYbzeydY/LXiYjImMgWFu8ys5PJ3DTlfuB7wI+A54CyLNv+K5lRPAe7EVjl7nXAqmgaMreQrIt+VgDfHWH9IiISg2zNUP8CPExmzPyGQfONTOfycGPp4+5Pmtm8I2ZfCVwYPb8TeAK4IZr/I8/0tq82s2ozm+Xur43orxARkXF11CMLd/+Ouy8AfuDupw76OcXdhw2Ko5h5KACixxnR/Dlk7ux1yJ5o3luY2QozazCzhoULde95gPUXruePn/tj6DJEZAIb0UV5MdyKcajTuIY8Ldbdb3f3enevLyvL1hI28XnaST2XoqBE97ESkfET9yfMPjObBRA97o/m7wFOHLTeXDJ395Isund2k+5MU3Fm1ltFi4gcs7jD4n5gefR8OXDfoPmfis6KOhdoVX/FyHRs7gBQWIjIuBrpqLOjZmZ3k+nMnm5me4Cbydyr+B4zuw7YBXwkWv1B4IPAi0An8OfjVddEcygsys8oD1yJiExk4xYW7v6JYRYtG2JdBz43XrVMZB2bOyidV0pR1bj9K0VEYm+GkjHWsblDTVAiMu4UFjks3Zem84VOyheqCUpExpfCIod1be/C+1xHFiIy7hQWOUxnQolIXBQWOax7VzflZ5RTfrqaoURkfCkscljr062QhsLSwtCliMgEp7DIYR2bOqh4h5qgRGT8KSxyVH97P907uqlYpLAQkfGnsMhRhzq3KxdVBq5ERPKBwiJHdWyKzoTSkYWIxEBhkaM6NnVQUFFA6bzS0KWISB5QWOSojk2ZYT6sYKhbgYiIjC2FRQ5yd9o3tVP5DvVXiEg8FBY5qPf1XvoP9qu/QkRio7DIQR1bOyieWaxhPkQkNgqLHNS+rp2+fX06shCR2CgsclD78+2UzCmhZHpJ6FJEJE8oLHJQx8YOKherc1tE4qOwyDHpnjSd2zoVFiISK4VFjul8oRPvd4WFiMRKYZFj2p9vB9BosyISK4VFjml/vp2C0gLK6spClyIieURhkWM6NmaG+Sgo0r9OROKjT5wc4u60P9+uJigRiZ3CIof07uulr7FPndsiEjuFRQ7peD664ZHCQkRiprDIIe0bdSaUiIShsMghXS91UXNZDcVTi0OXIiJ5RmGRQ1qfasWKdLMjEYmfwiJHDHQN0PlCJ5VL1F8hIvFTWOSIjk0dkIbKsxQWIhK/IGFhZteb2RYz22xmd5tZqZmdYmZrzGy7mf27mWn87UHaN2Q6txUWIhJC7GFhZnOA/wnUu/uZQCHwceDrwLfcvQ5oBq6Lu7Yka9/QTuGUQkrnlYYuRUTyUKhmqCKgzMyKgHLgNeBi4N5o+Z3AVYFqS6T29e1UnlWJmTq4RSR+sYeFu78K/D9gF5mQaAXWAi3u3h+ttgeYM9T2ZrbCzBrMrKGxsTGOkoPzAad9Y7uaoEQkmBDNUFOBK4FTgNlABXDZEKv6UNu7++3uXu/u9bW1teNXaIJ0vdhFujOtsBCRYEI0Q70feNndG929D/g58B6gOmqWApgL7A1QWyId6tyuWlIVuBIRyVchwmIXcK6ZlVumAX4ZsBV4HLg6Wmc5cF+A2hKp6+UuKt5RQfmC8tCliEieCtFnsYZMR/Y6YFNUw+3ADcAXzexFYBpwR9y1JVXLYy1YoVFQostiRCSMouyrjD13vxm4+YjZO4ClAcpJNHcntS7F9Kumhy5FRPKYvqomXM/uHvoP9lP1TvVXiEg4CouES61LAVD5Tp0JJSLhKCwSrn1dOxRA5TsUFiISjsIi4VLrUpQvKKewvDB0KSKSxxQWCde+rl39FSISnMIiwXpe66H3tV71V4hIcAqLBGtfH125rSMLEQlMYZFgXS91MfncyRoTSkSCU1gkWMtjLfQ19VE0Oci1kyIib1BYJFhqbYqqejVBiUh4CouE6t3XS8/uHoWFiCSCwiKhUmszV25XvUthISLhKSwSKtWQAoPKJercFpHwFBYJlWpIUX56OUVV6twWkfAUFgmlzm0RSRKFRQL17O2hd2+v+itEJDEUFgn0Rue2jixEJCEUFgmUakhlhiXXldsikhAKiwTqfqWb2qtrKazQsOQikgwKi4Rxd5r+s0lBISKJorBImO6d3fQd6KNqqforRCQ5FBYJk3ou07k9+ezJgSsRETlMYZEwbc+2YZOMikUVoUsREXmDwiJhUs+lqFpSRUGJ/jUikhz6REqQdH+aVEOKqrPVXyEiyaKwSJDObZ2kO9Pq3BaRxFFYJMgbndtL1bktIsmisEiQ1t+3UragjLLTykKXIiLyJgqLBEk9m6L0pFKswEKXIiLyJgqLhOhP9dOxuYPJ56oJSkSSJ0hYmFm1md1rZi+Y2TYze7eZ1ZjZI2a2PXqcGqK2UFINKUjD5HMUFiKSPKGOLFYCD7v76cBiYBtwI7DK3euAVdF03mhb0waoc1tEkin2sDCzycD7gDsA3L3X3VuAK4E7o9XuBK6Ku7aQ2la3Ufb2MoqnFYcuRUTkLUIcWZwKNAI/NLP1ZvZ9M6sAZrr7awDR44yhNjazFWbWYGYNjY2N8VU9jtydttVt6q8QkcQKERZFwDuB77r7EqCDUTQ5ufvt7l7v7vW1tbXjVWOsenb10LevT/0VIpJYIcJiD7DH3ddE0/eSCY99ZjYLIHrcH6C2INpWR/0VOrIQkYSKPSzc/XVgt5nNj2YtA7YC9wPLo3nLgfviri2Ujs0dFE0t0kizIpJYRYF+7/8AfmJmJcAO4M/JBNc9ZnYdsAv4SKDaYtf0SBMViyooKNZlLyKSTEHCwt03APVDLFoWdy2hDXQN0L6unbnXzw1diojIsPRVNrDU2hTe50x5z5TQpYiIDEthEVjb76PO7Xerc1tEkkthEVjbM22UnVZGyYyS0KWIiAxLYRGQu9P6TKuOKkQk8RQWAXW91EXfwT4mv0dhISLJprAIqO2ZNqzEmHKeOrdFJNkUFgG1Pt1KQUkBFQt1MZ6IJJvCIqDW37Uy5T1TdGc8EUk8hUUgfU19dG7tZMr5aoISkeRTWATS+kwrgMJCRHKCwiKQ1qdbsWKj6uyq0KWIiGSlsAikfW07Ve+qorCsMHQpIiJZKSwCGOgaoPnJZqZeMjV0KSIiI6KwCCD1bAp6oWqpmqBEJDcoLAJoebIFDF2MJyI5Q2ERQOtTrVQsqqB4anHoUkRERkRhEbN0X5rWZ1qpfl916FJEREZMYRGz9vXtpDvSTHmfmqBEJHcoLGLW8mQLAFPeq7AQkdyhsIhZqiHFtCunMemESaFLEREZMYVFjNL9aZoeaqJkpu6KJyK5RWERo/YN7Qy0DVB9oTq3RSS3KCxi1PJ4pr9CYSEiuUZhEaOWJ1oom1/GpFnqrxCR3KKwiEm6P03rU61MvUjjQYlI7lFYxKR9XTsDqQGqL1ITlIjkHoVFTFqeiPorLlBYiEjuUVjEpOulLqZdOU2nzYpITlJYxCDdm2bfj/dRemJp6FJERI6JwiIGbavbSHemmfp+dW6LSG5SWMSg+dFmKIApF2g8KBHJTcHCwswKzWy9mT0QTZ9iZmvMbLuZ/buZTZjG/eZVzVTVV1FcrftXiEhuCnlk8ZfAtkHTXwe+5e51QDNwXZCqxlh/qp/UsymmLlMTlIjkriBhYWZzgQ8B34+mDbgYuDda5U7gqhC1jbXW37VSNr+M6ot1yqyI5K5QRxbfBv4aSEfT04AWd++PpvcAc4ba0MxWmFmDmTU0NjaOf6XHqemhJrp3dDPlfPVXiEjuij0szOxyYL+7rx08e4hVfajt3f12d6939/ra2tpxqXEsNf+mmeoLqiksLQxdiojIMSsK8DvPA64wsw8CpcBkMkca1WZWFB1dzAX2BqhtTHXv6qbzhU5mrZgVuhQRkeMS+5GFu9/k7nPdfR7wceAxd/8k8DhwdbTacuC+uGsba82PNANQ84GawJWIiByfJF1ncQPwRTN7kUwfxh2B6zluTb9pomR2CeVnlIcuRUTkuIRohnqDuz8BPBE93wEsDVnPWPIBp/nRZqZfMZ3MyV4iIrkrSUcWE0pqXYqyt5Ux9VJdXyEiuU9hMU6aHmwi1ZCi5v3qrxCR3KewGCcHHzzI5HMmUzxNQ3yISO5TWIyD3sZeUs+lqLlMRxUiMjEoLMZB06+bwKHmgwoLEZkYFBbjoOmhJopnFFP1zqrQpYiIjAmFxRhL96dpW9NGzaU1WIFOmRWRiUFhMcZSa1J07+hm2pXTQpciIjJmFBZj7MCvDmCFxtSLdX2FiEwcCosxdvCBg0x57xTdFU9EJhSFxRjqermLzi2dTPuwmqBEZGJRWIyhgw8cBFBYiMiEo7AYQ23PtFH7kVrKT9MosyIysSgsxkhfcx+N9zZS9ray0KWIiIw5hcUYOfjAQbzfmf6n00OXIiIy5hQWY+TALw5QMqeEqnpdtS0iE4/CYgwMdA7Q9HAT06+crqu2RWRCUliMgabfNJHuSqsJSkQmLIXFGDjwywMUTS2i+oLq0KWIiIwLhcVxSvemafltC7M+O4uCYu1OEZmY9Ol2nJpXNdOzs4cp750SuhQRkXGjsDhOjfc0Uji5kJpLdKMjEZm4FBbHId2b5sAvDzD9qukUTNKuFJGJS59wx6H50Wb6W/qZ8dEZoUsRERlXCovj0PLbFsrqyph6ie5dISITm8LiGA10DbD3u3uZfN5kCkq0G0VkYtOn3DE6+KuDDKQGOOGaE0KXIiIy7hQWx2jfT/ZRMruE6gt1IZ6ITHwKi2PQd7CPpgebmPGJGVihxoISkYlPYXEM9v/HfrzfmXnNzNCliIjEIvawMLMTzexxM9tmZlvM7C+j+TVm9oiZbY8eE3uK0b4f76P8jHIqF1eGLkVEJBYhjiz6gS+5+wLgXOBzZnYGcCOwyt3rgFXRdOJ0vtSJFRqzPjMLMzVBiUh+iD0s3P01d18XPU8B24A5wJXAndFqdwJXxV3bSOy7cx+tT7VS+9Ha0KWIiMQmaJ+Fmc0DlgBrgJnu/hpkAgUY8rJoM1thZg1m1tDY2BhXqQD4gPP6D1+n5k9qKD2xNNbfLSISUrCwMLNK4GfAF9y9baTbufvt7l7v7vW1tfF+u296pImePT2ccJ2urRCR/BIkLMysmExQ/MTdfx7N3mdms6Lls4D9IWo7mtfveJ2iaUVM/7DuiCci+SXE2VAG3AFsc/dvDlp0P7A8er4cuC/u2o6mt7GXA/cd4IRrT9AIsyKSd4oC/M7zgGuBTWa2IZr3ZeBW4B4zuw7YBXwkQG3DavyPRqrOqeKEz6gJSkTyT+xh4e5PA8Odc7oszlpGytPOnm/toXhGMZWLdG2FiOQftaeMQPOjzXS92MWcz80JXYqISBAKixF49bZXKa4tpva/6NoKEclPCossul/p5uADB5n12Vnq2BaRvKVPvyxevf1Vqi+oZtaKWaFLEREJRmFxFP2pfvbetpfi6cWUnVwWuhwRkWAUFkfx2h2vMdA6wIlfOjF0KSIiQSkshpHuT/PqyleZfN5kJp8zOXQ5IiJBKSyGcfBXB/G066hCRASFxZDcnZ237KSgsoBpV0wLXY6ISHAhhvtIvIO/OkjHxg5O/9HpFBQqT0VE9El4BHfnlb95hdJTS5nxiSFvqSEikncUFkdofrSZjq0dnHTTSRQUafeIiIDC4k087ey4cQdl88s44VMaXVZE5BCFxSCN9zbSvq6dE68/kYIS7RoRkUP0iRgZ6B3g5a+8TMWZFcz8s5mhyxERSRSFRWTvP++lqKaIU//hVKxwuNttiIjkJ4UF0Lu/l5237KRoShE1l9aELkdEJHEUFsCOm3aQ7kxT9506MrcIFxGRwfI+LNrWtPH6D15n7vVzKZ9fHrocEZFEyuuwSPel2f3t3Uw6aRInf+Xk0OWIiCRWXg/38crfvkLjTxs5874zKarK610hInJUeXtk0fZsG6987RVmXjuT6VdMD12OiEii5WVYDHQOsO3abUyaPYm6f6wLXY6ISOLlZdvLzr/ZSc+uHhb95yKKpuTlLhARGZW8O7LY+7297L51Nyf975OYevHU0OWIiOSEvAqLlqda2P757dRcVsPJN+jsJxGRkcqbsGjf2M5Lf/USle+qZMFdCzSkh4jIKORFg33Hlg6eX/Y8BaUFLH5yMcXVxaFLEhHJKRP+yCK1IcWWq7dgxcbixxZTfoqu0hYRGa0JHRaN9zWy/vz1FM8szgRFnYJCRORYTMhmqIHOAV75+1doeaKFijMqOOPuM5g0a1LoskREclaijizM7FIz+4OZvWhmN452+3R/mv0/28/GyzbSeG8jlYsrOevJsxQUIiLHKTFHFmZWCNwGXALsAZ4zs/vdfevRtutp7qFjYwep36do/X0rPa/0UH56Oad89RSqL6iOo3QRkQkvMWEBLAVedPcdAGb2U+BKYNiw6Hqpiz8u/yOO431O2SllzP7sbKZdNk2nxoqIjKEkhcUcYPeg6T3AOUeuZGYrgBUA5YXlXLPxGqzEKCwvxBoNngVuiaPcZGlsbKS2tjZ0GYmgfXGY9sVh2heHrV27drO7nzmabZIUFkMdCvhbZrjfDtwOUF9f7w0NDeNdV06or69H+yJD++Iw7YvDtC8OM7Pu0W6TpA7uPcCJg6bnAnsD1SIiIoMkKSyeA+rM7BQzKwE+DtwfuCYRESFBzVDu3m9mnwd+DRQCP3D3LUfbZsWKFbHUlgu0Lw7TvjhM++Iw7Ys3uX20G5j7W7oFcklOFy8iEsioTxdNUjOUiIgklMJCRESyytmwMLNL58+fz2mnncatt94aupxYfeYzn2HGjBmceebh06Sbmpq45JJLqKur45JLLqG5uTlghfHYvXs3F110EQsWLGDhwoWsXLkSyM990d3dzdKlS1m8eDELFy7k5ptvBuDll1/mnHPOoa6ujo997GP09vYGrjQ+AwMDLFmyhMsvvxzI330xb948Fi1axFlnnUV9fT0AZlZjZo+Y2fboMettQ3MyLA4NDfLQQw+xdetW7r77brZuPeqoIBPKpz/9aR5++OE3zbv11ltZtmwZ27dvZ9myZXkRoEVFRXzjG99g27ZtrF69mttuu42tW7fm5b6YNGkSjz32GM8//zwbNmzg4YcfZvXq1dxwww1cf/31bN++nalTp3LHHXeELjU2K1euZMGCBW9M5/O+ePzxx9mwYcPg60xuBFa5ex2wKpo+OnfPuR/g3cCvB03fBNwUuq6Y98E8YPOg6T8As6Lns4A/hK4xwD65j8zYYnm9L4ByYB2ZERAOAEXR/De9bybyD5nrtFYBFwMPkOnQzdd9sROYfsS8Ub9HcvLIgqGHBpkTqJakmOnurwFEjzMC1xMrM5sHLAHWkKf7wswKzWwDsB94BHgJaHH3/miVfHqffBv4ayAdTU8jf/eFA78xs7XRcElwDO+RxFxnMUojGhpE8oOZVQI/A77g7m1m+TmIpLsPAGeZWTXwC2DBUKvFW1X8zOxyYL+7rzWzCw/NHmLVCb8vIue5+14zmwE8YmYvHMuL5OqRhYYGeat9ZjYLIHrcH7ieWJhZMZmg+Im7/zyanZf74hB3bwGeAM4Fqs3s0JfCfHmfnAdcYWY7gZ+SaYr6Nvm5L3D3vdHjfjJfIpZyDO+RXA0LDQ3yVvcDy6Pny8m0309oljmEuAPY5u7fHLQoH/dFbXREgZmVAe8HtgGPA1dHq+XFvnD3m9x9rrvPI/PZ8Ji7f5I83BdmVmFmVYeeAx8ANnMM75GcvYLbzD5I5tvCoaFBvha4pNiY2d3AhcB0YB9wM/BL4B7gJGAX8BF3bwpVYxzM7HzgKWATh9umv0ym3yLf9sU7gDvJvB8KgHvc/atmdiqZb9c1wHrgGnfvCVdpvKJmqP/l7pfn476I/uZfRJNFwF3u/jUzm8Yo3yM5GxYiIhKfXG2GEhGRGCksREQkK4WFiIhkpbAQEZGsFBYiIpKVwkJERLJSWIiISFYKCxGRPGBmZ5vZRjMrja7s3mJmZ2bfMtpeF+WJiOQHM/tboBQoA/a4+9+PeFuFhYhIfojG0nsO6AbeE41UPCJqhhIRyR81QCVQReYIY8R0ZCEikifM7H4ygymeQuZOeZ8f6ba5evMjEREZBTP7FNDv7neZWSHwjJld7O6PjWh7HVmIiEg26rMQEZGsFBYiIpKVwkJERLJSWIiISFYKCxERyUphISIiWSksREQkq/8PHWbhJ131mkYAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": "Plot object containing:\n[0]: cartesian line: x**2 for x over (-10.0, 10.0)\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "x,a = sym.symbols('x a')\nexpr = a/(x**2-a)\ncolors = ['r','b','g','y']\np = symplot(expr.subs(a,1),(x,-5,5),show= False,line_color=colors[0])\np[0].label = 'y=' + '$' + sym.latex(expr.subs(a,1)) + '$'\nfor i in range (2,5):\n p.extend(symplot(expr.subs(a,i),(x,-5,5),show= False, line_color=colors[i-1]))\n p[i-1].label = 'y=' + '$' + sym.latex(expr.subs(a,i)) + '$'\np.ylim = [-10,10]\np.legend = True\np.show()", | |
"execution_count": 175, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<Figure size 432x288 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD2CAYAAADoKV2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUVfrHP/dOSZ0kpAEhQCDUQGgJoKsoiBUUxV6wUERUBH/LuhZWFllYXVFX19VFFATXRVR2V1kBFRV0F0QIAlKkGUAS0kiv0+75/XGSQEyZljKB+3meeSYz99wzZyaTb977nrcoQgh0dHR0dFofta0XoKOjo3O+oguwjo6OThuhC7COjo5OG6ELsI6Ojk4boQuwjo6OThuhC7COjo5OG6ELsI6Ojk4boQuwjo6OThthbOsF6LQ+iqLEAhcBcUAlsA9IE0JobbowHZ3zDEXPhDt/UBRlDPAEEAnsAnKBQKAPkAisAV4UQpS02SJ1dM4jdAE+j1AUZTHwqhDi5waOGYFrAYMQ4p+tvjgdnfMQXYB1mg1FUZYjRTxXCDGw+rlI4H0gATgO3CqEKGzg3HuB31U/XCiEWNkaa9bRaUv0TbjzEEVR/q4oSvhZjxMURfmyGaZeAVz9i+eeAL4UQvQGvqx+/Mv1RAK/B0YCI4DfK4rSoRnWo6Pj1+gCfH7yP+A7RVHGKYpyP/A58LKvkwohvgEKfvH09UCNNbsSuKGBU68CNgohCqqt443UF3IdnXMPIURTN502ZO/eG8T27YOEEEKUlx8SmzYhsrP/IYQQ4s2dbwrmI34u+rl2/KmSU4L5iCU7ljQ6Z4cOQjzyiBB33nlSQIXo1KmTyMrKanoho0cLMWqU/Pnuu4Xo0aPRoceOHRMDBgyofRweHl7neERERL1zFi9eLP7whz/UPl6wYIFYvHhxg/O/8cYbIiUlRaSkpIikpKSm193S3HuvEN27C5GaKsQ117h92oUXCnH55Wceb9smBAixfn3dcQdyDwjmI1bvXS12ZO4QzEesPbi2zpjCwv+KTZsQ+fkba5/bvfsKsXPnBV68IZ1mxJW2IoTQLWB/RggHimJo8FiFvQKAEHOIR3NqGhw69CMbNqzHZDJx3333MW7cOPbs2dP4SVYrBAR49DqeIBrYh1AUpcGx06dPJy0tjbS0NIKCglpsTR6hKODhXsrZb89YHQzqcDQ+PjIoEoCCyl9eYNRHVYNwOis9Wo9O26ALsB8jhBMZnFCfGgEONgV7OCccPXqUu+66C4PByLPPPsuSJUu47777Gj/JZvNagDt27EhWVhYAWVlZxMbG1hsTHx/PyZMnax9nZGQQFxfn1eu1CarqsQCfTY0A2+2Nj/FUgDVNF+D2gC7AfowrC1hBIcDgmTAKARMmXEdw8BnLecSIEXz33XeNn2S1gtns0evUMGHCBFaulC7glStXcv3119cbc9VVV/H5559TWFhIYWEhn3/+OVdddZVXr9cmKIq8tPASk0neN2UBhwWEoSoq+ZX5LuczGHQBbi/oAuzHCOEEGhfgYFNwo5fqDbFw4UI0TdDQKWazma+++opPPvmk/kE3LeA77riDCy+8kEOHDhEfH8+yZct44okn2LhxI71792bjxo088YQMgkhLS2PatGkAREZG8vTTTzN8+HCGDx/OvHnziIyMdPt9tTleuCDOxh0LWFVUIoMidQv4HENPRfZjXLkgPHU/JCcnU1lZyZo16+jUKRqH42IWLHiWI0eOsHv3bi6//HKeeuqp+ie6aQG/9957DT7/5Zf1I9xSU1N56623ah9PmTKFKVOmuP9m/AkfXRDuWMCARwLcXD5gu91ORkYGVVVVzTLfuUZgYCDx8fGYan6JHqILsB8jhANVbdjy9EaA16xZQ2Dg9SQkdCc0VG5ghYWFMWnSJJYuXdr4ppYPPuDzAh9dEO5YwCAF2B0XRI0FLITw6AqpITIyMrBYLCQkJPg817mGEIL8/HwyMjLo0aOHV3PoLgi/pnkt4LS073E6NQ4f3kGvXr0wGo3cc889DB8+nMrKJiwmH3zA5wU+uiDctYCjgqLcsoANhiBAQwgXiu4GVVVVREVF6eLbAIqiEBUV5dPVgS7AfoyrTThPBXjy5EewWlVOnz7JO++8g9VqJTU1lZSUFFJTUxs/UbeAm6aZoiCa0wUBNJsfWBffxvH1s9EF2I+RPuDmE+Dbb58BwMUXD+SBBx4gICCQ9PR0jh07Rnp6euMn6hZw07SmC6LCPRcEoMcCtwN0AfZjmtqEK7eXeyzARUXyfubMSe6fpGlSGXQLuHFa0QVRaivF7mxaqZvbAtZpOXQB9mOEcOAqDM0TagS4gydlbmrMMl2AG6cVEjHgTDJGYVW9YnJ1kD5gXYBdkZ6eztSpU7n55pvbbA26APsxzR2GViPAEREenGS1ynvdBdE4rZCIAWcE2JUbQreA3aNnz54sW7asTdegC7Af42oTLsTkWR2IwmrDySMBttnkvW4BN46PLghVlVO4soCjgqMA1+nIug+4/aALsB/T3FEQugXcQvjoggBpBbtrAbsrwLoF7P/oAuzHOBwlGI1RDR7zRYDDw5seVwfdAnaNjy4IkH5gt10QLpIxzjUf8NNPP80rr7xS+3ju3Ln85S9/8Xne/Px8ZsyYwa5du3j22Wd9ns8b9Ew4P8XprMLpLMRsjq53zO6049AcXglwaOiZTR+30C1g1/joggD5O3Hpggjy1AVR4dOa/IWpU6dy4403Mnv2bDRNY/Xq1Wzfvp1Ro0ZRWlpab/wLL7zA5Zdf7nLeqKgolixZ0hJLdhtdgP0Umy0bALO5c71j3paiLCryMAJCLkTe6xZw47SSCyIsIAyDYmhbF8To0c073+bNLockJCQQFRXFrl27yMnJYejQoURFRfHf//63edfSBugC7KfYbLKGbnMLsEf+X9AtYHdoJheEKwtYURQ6BHVwGQVhMMjvxbniggCYNm0aK1asIDs7u7ZokysLuCUz+BpqIuANugD7KS0hwIWFPgiwbgE3jqHhjVJPcMcChup6EFVtaAG7YbG2BBMnTmTevHnY7XZWrVoF4NIC/qVIrlu3jrS0NBITE5k0yYNkpBZEF2A/pUaAAwKa1wLu1s3jhch73QJunMBAaKqYkRu4YwGDe/UgzsUwNLPZzJgxY4iIiMDg5T+88ePHc+mll/L666838+q8R4+C8FOs1izAgMkUU+9Yub0caGUXhG4BN05oKDRwKewJ7lrA7tSDUFUTYDinXBCaprFt2zamTp3q0xyLFy9m+vTpbo1vjUw5XYD9FJstC7O5I4pS/1fUqj5gfRPONRYLlJT4NIU7YWggkzHcLUl5rgjwgQMH6NWrF2PHjqV3795un5eXl8fkyZPJyMhgypQpLFq0iMLCQrZu3erW+a2RKae7IPwUKcD13Q/gnQBrmtQIfROuBbBYoKxMRkJ4ufHjtgsi8PxrS5SUlNR0tb5GiImJoVu3bsyZM4dly5YRGhpab8zevXt58skn6zy3fPnyBpvHtgS6APspVuspAgO7NnjMGwEuKZH60NphaIcOHeK2226rfZyens6CBQt49NFHa5/bvHkz119/fW1XgRtvvJF58+Z59XptgsUiP9zycumO8AJPXBCltlJsThtmQ+P/FPXW9FBWVkZ6ejpGo7FB8QXZpqvBPoithO6C8FPcsYBDzO7XgvAqDRl8toD79u3L7t272b17Nzt37iQ4OJiJEyfWGzdq1Kjace1KfEEKMPjkB3bXAq6pB1FY2XRFtHPJAvYGh8PBrFmzWLhwIUOGDGGzF9EbrZEpp1vAfoimObDb85rVBeFVIR5oVh/wl19+SWJiIt27d/d5Lr/ibAHu3PDvzBWeWMAgs+E6hnZsdNy55AP2BqPRyPLlywF47LHHvJqjNTLldAvYD7HbcwDRrALcVhbw2axevZo77rijwWPffvstgwcP5pprrmH//v0+v1arEhYm71vBAna3HsT5bgG3F3QB9kNkCFrDMcBwRoCDjI10MW4ArwW4mSxgm83G2rVrueWWW+odGzZsGCdOnGDPnj088sgj3HDDDY3Os3TpUlJTU0lNTSUvL8+nNTUbNRawD5EQniRigHv1IM53H3B7QBdgP6SpLDiQAhxgCMCguh+Q3tYW8IYNGxg2bBgdO9a/bA4LC6vdJBk3bhx2u53Tp083OM/06dNJS0sjLS2NmJj6MdJtQjP5gD11QTSFbgG3D3QB9kPcEeBWaUcEUoBV1cMSavV57733GnU/ZGdn16aNbt++HU3TiIpquAynX9KKm3DudsU4333A7QV9E84POSPADW+yeCvAinLGXenBYny2fisqKti4cSNvvPFG7XM1mxszZsxgzZo1/O1vf8NoNBIUFMTq1avbVyv0ZhBgd10QnlRE0wXY/9EF2A+xWrMwmaJR1YaFz5uOyIWFUnxVT695rFaf/b/BwcHk59e12GbMmFH788yZM5k5c6ZPr9GmtOImnKIobteDOFfqAZ/L6C4IP6SpGGDw3gL22P8rF6OnIbsiOFj+Z2uFTTiorgehR0GcE+gC7If4lQBbrXoasisUxeeCPO5awOBePQjdB9w+0AXYD7HZsggIiGv0uG4B+yEWS6v4gMH9kpRCONA0NyfVaRN0AfYzhNCw2bJ1C7i94aMAe2IBuyfA515XjObmo48+4v777+f666/n888/b5M16ALsZ9jt+QjhcCnAntSBAC/7wYFuAbtLMwiwuxZwVFDUedcZuSW44YYbePPNN1mxYgXvv/9+m6xBF2A/w1UMMFRbwEbdAvYrwsJa1QVRZivD5rQ1OqZF2xKdYyxcuJCHH364TV5bF2A/o6lWRDV46oJwOKQ2eC3AugXsGh+LsnvqgoCmK6Kdi22JmhshBI8//jjXXHMNw4YNa5M16ALsZ9TUgWhOH3Bxsbz3ehNOt4Bd08qbcNB0QZ5zyQJ++umneeWVV2ofz507l7/85S8+z/vqq6/yxRdfsGbNmhavetYYeiKGn+HKBSGERpWjqnUqoYG0gL068TyjmTbh3GmqcXZBnjhTw2POJR/w1KlTufHGG5k9ezaaprF69Wq2b9/usi29K2bNmsWsWbNaYsluowuwn2GzZWEwhNf+AdU77pTXqa0mwPomnHs0gwUMsnWUq6a/dQryhEU2OKalLODRo5t1Ore63CckJBAVFcWuXbvIyclh6NChREVFuWxL3x7QBdjPsFpPNen/tTqrAO8E2KsoCH0Tzj3CwuQ/Ky995jW1jux29wVYFuRpWoDPFR/wtGnTWLFiBdnZ2UyZMgXApQXckvVEaopH+YouwH6Gqyw4a/XOt24B+xlnF+TxQYDd7YwMTZekbCkL2IvOPs3CxIkTmTdvHna7nVWrVgG4tIB/KZLr1q0jLS2NxMREJk2a1GJr9QRdgP0Mmy2LsLALGz/ukPV5W6UdEegWsLucLcDR0R6fXuOCcEeALWaLy4po55IPGMBsNjNmzBgiIiIwuLpEaITx48dz6aWX8vrrrzfz6rxHj4LwI4QQugXcXvGxJOXZLghX1FREO1+iIAA0TWPbtm1MnTrVpzkWL17M9OnT3RrfGplyugD7EQ5HMZpW1aQP2Ob03AIuKpLFurzqmK5bwO7howB7YgGD64I855IP+MCBA/Tq1YuxY8fSu3dvt8/Ly8tj8uTJZGRkMGXKFBYtWkRhYSFbt2516/zWyJTTXRB+hDtZcN5awOHhXtQCBj0Rw11a0QIG1/UgzljA7b8mcFJSEunp6R6fFxMTQ7du3ZgzZw7Lli2rbXt1Nnv37uXJJ5+s89zy5cuJjY2tfdySmXK6APsR7giwzSEF2JNaEF7XgRBCKoJuAbvGx6LsnlrAkUGRZJRkNHpcVQMA5ZxxQXhDWVkZ6enpGI3GBsUXIDk5mU8++aTBY0IInnjiiRbNlNNdEH6Eexawdy4Ir/2/oFvA7uBjZ2RPLeCooKZdEIqioKqB54QLwhscDgezZs1i4cKFDBkyhM1ehG+0RqacbgH7Ea7a0QO1BVhaVYCbwQJOSEjAYrFgMBgwGo2kpaXVOS6EYPbs2axfv57g4GBWrFjRZvn5XtFMLojmrgl8vlrARqOR5cuXA/DYY495NUdrZMrpAuxH2GxZqGoQBkPjnTO9sYALC6FfPy8WVNOSvpks4E2bNhHdSIjWhg0bOHLkCEeOHOG7777jwQcf5LvvvmuW120VWnkTrqYimkNr3GQ+nwW4vaC7IPyImhC0pjJ4anzA55oL4uOPP+aee+5BURQuuOACioqKyMrKavHXbTaMRggMbLVNuJp6ECXWxl0eelsi/0cXYD/CVSsikBawQTFgUhupwtIAPtUChmZxQSiKwpVXXklKSgpLly6tdzwzM5OuXbvWPo6PjyczM9Pn121VfKgH4Y0FDE0LsMUyojYaQsc/0V0QfoTVmkVo6KCmxzisBJuC3c5zt9mgoqLtLeAtW7YQFxdHbm4uV1xxBf369eOSSy6pPd5Qbn1D73Hp0qW1Ap6Xl+fzupoVH4qyexOGBk0LMAgKCzd6tR6d1kG3gP0IV1lwIDfhvKkF7HUhHmgWCzguTlr2sbGxTJw4ke3bt9c5Hh8fz8mTJ2sfZ2Rk1J5zNtOnTyctLY20tDRiYmJ8Xlez4kNRdm8SMcC1BWy1ZmC1nvJqTTotjy7AfoLTWYHTWeJSgK1Oa+umIYPPFnB5eXlt1ary8nI+//xzBg4cWGfMhAkTeOeddxBCsG3bNsLDw+ncuenPwu/wwQXREhZwWNgIAEpLd3i1Jp2WR3dB+AnutCICzy1gnwvxgM8WcE5ODhMnTgRkfOadd97J1VdfXRtbOWPGDMaNG8f69evp1asXwcHBvP322z69ZptgsUBOjlen+uIDbmzXIDR0KGCgpGQH0dHXe7UunZZFF2A/wZ1WRNDKFnAzhaH17NmTPXv21Ht+xowZtT8risJrr73m0+u0ORYLHD3q1amexgFbzBaMqlFawI0UBzMYgggNTaa0dHvDA3TaHN0F4Se4kwUHnlvAzeKC0FOR3aMVN+FqKqI1vQkn/cClpTsQQvNqXTotiy7AfoK7Amx1Wj2uAwFtawGfN7TiJhzglgCHhY3A4SiistI7y/xc5scff2TGjBncfPPN/O1vf2uTNeguCD/Baj2FopgwmaKaHGdz2AgOaKV2RLoF7BkWC5SXy8ZuHpae89QCBpmMUWJzZQEPB+RGXHBwH4/WdK7Tv39/lixZgqZp3H///W2yBt0C9hNkCFonl/G9Ni98wEYjBLt/yhl0C9gzatKRy8o8PrWlLODg4CRUNZiSEt0P3BBr167l4osvZuzYsW3y+roA+wnuxACDrAccbPQsCiIiwnWr80YWJe91AXYPH+pBeGMBRwZFUlLVtACrqhGLJUXfiGuECRMmsHXrVv7xj3+0yevrLgg/wWbLIjAw0eW4mkw4d/E6DRmaNRHjvMAHAfbGAo4KiuKACwtYLmsEmZl/RdPsqB6ksPsLTz/9NNHR0cyePRuAuXPn0rFjR58rlW3evJl//etfWK1Wxo0b1xxL9RhdgP0EqzWL8PCLXY/zwgXhtQDrFrBn+FCU3WyGgQPPfOTuEBkUSaWjyo1lDScjw0p5+V4sFt9KfI5eMdqn83/J5vs2uxwzdepUbrzxRmbPno2maaxevZrt27e7bEvvitGjRzN69GgvVt186ALsB2iaDYcj3y0XBLRSJTTQLWBP8aEoe3g4/PwzHDni/jk1yRiulzWielnbfRbgtiAhIYGoqCh27dpFTk4OQ4cOJSoqymVb+vaALsB+gM2WDbgOQavBUwGOj/dqWfomnKf44IJQVRg8GHbvdv+cmnoQrggMTMBkiq72A89wOb4p3LFYW4Jp06axYsUKsrOzmTJlCoBLC9jdglXe0FDxKG/QBdgPcDcGuAZPBdirEDSQ18OKAoZGUq106uJjUfbBg2HFCvej2Ny1gBVFwWIZ3q5rQkycOJF58+Zht9tZtWoVgEsL+JciuW7dOtLS0khMTGTSpEkttlZP0KMg/AB3WhGdTau6IAICvAyhOA/xUYCHDJERbO42AHZXgEG6IcrL9+NweLe2tsZsNjNmzBhuvfVWDF4aBOPHj2fOnDmcOuU/1eF0AfYDWsoCrqqSN5824XT/r/v42Bl5yBB5764boqYrhjvIymiCsrLvPV+YH6BpGtu2bWPq1Kk+zbF48WKmT5/u1vjWyJTTBdgPqKr6GVAwmWJdjk3skEhsiOtxAFlZ8KtfQY8eXi6sxgLWcY/AQOk7yM/36vQBA6S3p4G6RQ0SGRSJxWxxa2xNRlxJSftzQxw4cIBevXoxduxYevfu7fZ5eXl5TJ48mYyMDKZMmcKiRYsoLCxk69atbp1fkyn3wQcf1Gsi21zoPmA/oKRkG5GR16Cqrn8dx4qOkRST5Na8338PW7fCiy96uTCbTRdgT1AUSE6W4QxeEBgom6e6awFbAixYAkIB1xa32RxDYGBCu0zISEpKIt1dv8xZxMTE0K1bN+bMmcOyZcsIDQ2tN2bv3r08+eSTdZ5bvnw5sbHSyFm7di3PPfccM2fO9G7xLtAFuI2x2XIoLv6G7t3nujW+f3Q/OgS5t6u2ZYv8o/a6u7vVqrsgPKVnT/mfz0uGDIGvv3Z//NBOQ4EsNOF0OdZiGUFJSTvqNO0jZWVlpKenYzQaGxRfgOTkZD755JNG55gwYQITJkxg/Pjx3Hnnnc2+Rt0F0cbk5f0T0IiNva3JcT8XS6tqWOcUt+fesgWGD/dBQ00mGDXKy5PPU4YNk8G8Nb2gPGTIEMjIcN+LMaKLjPE9lH/I5diwsBFYrSew2XK9Wlt7wuFwMGvWLBYuXMiQIUPYvHmzx3Ns3ryZWbNm8cADD7RYppxuAbcxubkfEBycREjIgCbHfZX+JUnAsM7umbMVFdIQ+81vfFjcF1/AWY0zddwgpfof5K5d4EWW1eDB8n7PHuic7MbLxaVwrBh2ntrJRS6KnZ1dGS0qarzHa2tPGI1Gli9fDsBjjz3m1RytkSmnW8BtiNWaRXHxN8TG3upy7JfHvwJwewNuxw5ZV+Cii7xcXF6eNMW89l+cp9R8Xl66IWoE2F0/cHiADHHZmbXT5djQ0GGAqldG8yN0AW5DpPtBEBNzS5PjCioLSDvl2S7sli3y/le/8nJxu3bJex8F+OTJk4wZM4b+/fszYMAAXnnllXpjNm/eTHh4OEOGDGHIkCEsWLDAp9dsUzp2hC5dYKdrQWyI2FiIi/MsIw7gx7wfKa5q2u1hNIYSEjKgXW7EnavoLog2JC/vA0JCBhIS0nRUw4YjG9A8bCmzdSv07w+R7sfq16XGghs61MsJJEajkRdffJFhw4ZRWlpKSkoKV1xxBUlJdd/zqFGjmtwMaVekpHgtwCD9wJ4KsFNobDq+iRv63dDkOItlBKdP/xshRIum6uq4h24BtxFWaybFxf8jJsa1+2Ht4bVEB0e7PbcmpAB77X4AKcA9e/qQxSHp3Lkzw6qtaIvFQv/+/cnMzPRpTr8nJQUOH/Y6IePSSyE01LO67kGmQD7/6XOX48LChuNwFFBevt+rtek0L7oAtxF5eWsA4dL/a3Pa2HBkA5cljHF77pxsWYjdZwFuZv/v8ePH2bVrFyNHjqx37Ntvv2Xw4MFcc8017N/fzsUhJQWE8NyMreaii+Dbb+GrTe6fM6b7GE4Un8CpNR2OFhU1AZMplpycd7xam07zogtwG5Gb+wEhIYMJDu7b5LjNxzdTaivlsp7ut0w5ehSSknwQ4KIi+OmnZhXgsrIybrrpJl5++WXCalJ2qxk2bBgnTpxgz549PPLII9xwQ+OX0UuXLiU1NZXU1FTy8vKabX3NSs3n5qUb4sILoXt3WL/O/XNS4lJYf2Q9G45uaHJcQEBnOnS4nMzM17HZTnu1Pp3mQxfgNqC4eBt2ez7x8a4r+q89tJYgYxAXxl/o9vzffisNsF69vFxgjeXWTAJst9u56aabuOuuu7jxxhvrHQ8LC6sNlB83bhx2u53TpxsWh+nTp5OWlkZaWhoxMTHNsr5mp3NnefMyEkJV4fbb4X9b3D/noq4X0cXShb9u/6vLsd27z0XTysnIeNmr9ek0H7oAtzJCCH766f9wOotd+n/tTjvfZ33PVb2uItAY6PZrpKfD1Kk+FDGrEY5mEGAhBFOnTqV///78+te/bnBMdnZ2benA7du3o2kaUVHuF5rxS3zciLvzTnDhTaiDQTUyI3UGn/30GYdON52UERKSRHT0TWRmvordXuT1GnV8RxfgViYv7wNKSrbRo8cijMaG0yNrWJK2hG8zvuXXFzQsXI2hGuDuu31Y5OHDcN110AwW5pYtW/j73//OV199VRtmtn79epYsWcKSJUsAWLNmDQMHDmTw4MHMmjWL1atXt/8d+mHD4OBB2abeC5KTPb+CuX/Y/ZgNZl7b8ZrLsd27/w6ns4TMzFe9Wt+5Qnl5OSkpKW0WgaOHobUiTmcVP/30OKGhQ+jU6d4mxxZUFjD/6/mM7TGWi7tdTGWl61419uqGjoOSZTypVxQVyargbpbsc8XFF1/ssnvAzJkzW6zYSZuRkiIrq+/Z41UwtqLA+GvhFQc04o2pR8fQjjw68lE2H9/MyeKTdA3v2uhYi2UIUVHXkZ//CXFxMzCb/dSd08L86U9/4tZbXUcitRS6BdyKZGS8jNV6gsTEF1GUpotKL/h6AUVVRbx01UtuW4OfVu+//MqX6Ic1a2QRHp9MaB2GD4fLLvOsss4vGF9dfsCTaIgHhz/I3ty9zP50tsuxiYl/prz8Bw4enNxsLXbaE1988QVJSUl07NixzdagC3ArUVa2l+zst4mLe5gOHS5rcuyh04d4bcdrTBs6jUEdB7k1v9MJL/1Z/jyg6bISTfP3v0PfvpCa6sMkOnSuLq7/+utgt3s1RU0vv/+shZMn3TsnISKBeZfO498H/80nh5u+rA4OTqRnzz9RULCOzEzXm3fnGps2bWLbtm2sWrWKN998E03zLNmpOdAFuBVwOErZv/8WnM4Sunf/ncvxj218jCBjEAvGuJ+Su3w5HDoofzZ4+1s9fhy++QbuuUdvQ9QczJ4t62l89JFP0wjgqafcH//rC39NUkwSMyfq7TsAACAASURBVNfPpMJe0eTYLl0eITJyPD/99BvKytysBN/KPP3003VS2OfOnctf/vIXn+ddtGgRL7/8MnfeeSf3338/qjuN+JoZXYBbGE2zc+jQNBTFQFLSagICOjU5fvmu5WSUZPDs5c/SMdS9S6PSUvjd7+RVr0+8+668v+suHyfSAWD8eJlN2ED9C0+nefddcLcpg9lg5m/j/0ZRVRELv1nY5FhFUejX721MpkiOHZuH3e5dN4+WZOrUqaxcuRKQbYVWr17NXXfdxahRo2o3ds++ffHFFx7Nf99993Httde2xNJdom/CtSBCODly5CHy8j6gd+83iIi4tMnx32V8x4PrHuSS7pfwQMoDbr/OwoUQHg7z58N4D/yFddA0+M9/ZB5s9+5eTqJTB4MBZs6EX/9ahqSluF/L+Wyuvx6+fRN+/3tYu9a9JtWXdL+EWSNn8Ydv/kCfqD7cN+S+RseazTEMHPgfdu26mB9+uJpBgzZiMjWcgr5r12iv3kNjDB262eWYhIQEoqKi2LVrFzk5OQwdOpSoqCiXXZHbA7oF3EJompUDB+6goOBzevZ8gS5dmo4q+DHvRx7Z8AjDOg1j9U2rMbrRngjgn/+E55+XUWM+1c15911Zw/Lxx32YRKceU6bIwg4+WMHBQfDGG/Dll/KfrbvMu3Qel/e4nJW7V7L+yPomx4aFpTJgwBoMhlD27Lnc74q2T5s2jRUrVvD2228zZcoUAJcWsKIoLXZrLnQLuAWw2XI5ePBeyssPEB8/i65d5zQ5fm/OXiasnkClvZKv7/uaqGD3khD27YPf/hZGjIBnn4V8q5cLLimBuXPlxttVV3k5iU6DhIfDww/L+qCHDskNTi+4/nqZHbd4sfxHO2GC63OMqpE1t67hsncu46b3b2LNrWsY36fxQuzR0deiKAr799/CoUP3k5DweyCozhh3LNaWYOLEicybNw+73c6qVasAXFrAv4zsWLduHWlpaSQmJjJp0qQWW6sn6BZwM1NQ8CUHDtxJUdF/SUx80aX4bvxpI6PeHkXfqL58de9X9I127w/06FG4+mqwWODDD31s3fbkk7Ju5SuvyDxYnebl0Udh/3647z4ZruIFiiIDKq6+Gm69VVrD7hAeGM7nkz7n5qSbuX719bz1/VtNhpxFRY1n6NAtlJXt5vvvL8ThKPGLEDWz2cyYMWO49dZbMbjjg2mA8ePHM2fOHE6dOtXMq/Me/a+tmbDb8zl0aAbHj/8eqzWDYcO2ERt7c6PjHZqDBV8v4JENj9A3ui9Lr1vqdrfjH36Q3W6Sk+Gdd6BbNx8W/u9/y7/sK66QVWB0mp9OneCvf4UDB6S/yEuCg6Ur4uKL4f77pT/YHaKCo3h9/OvcPvB2nvjiCR5a9xAl1pJGx1ssQ0lN/Z7IyCtxOIqprPwJp7PK63U3B5qmsW3bNqZOnerTHIsXL2a6B0lGLZ0ppwuwj2ialYyMV9m2rTelpTuwWEaSmvo9oaEDGz1n56mdjHxrJF8d+4rUuFS+uPsLuoW7p6JpaTBmjLySff55GORemHDDCA0eegjuuAMWLfJhIh2X3HGH9Ac/9RTkee9fjYqC996D6Gh44QX5D9gdLAEWVt6wkpnDZ7ItcxupS1ObjBM2maIYOHAtJlMHnM4SKisPU1WVgaY5vF67txw4cIBevXoxduxYevfu7fZ5eXl5TJ48mYyMDKZMmcKiRYsoLCxk69atbs/R0plyug/YSxyOErKz3+XnnxcRFNSbsLAUEhNfJDS0cUU8UXSCZ75+hn25+zhVeopXr3mVm/rf5JZTv6TaYHntNdkn89VXzwTqe0V2Ntg7SB/l4sUQEODDZDouURT4059g717YngNBGtB0SGJjxMTIBLvJk+U/5EGDIDPTdfcTg2pg/pj5XNXrKl757hXu++g+Lux6Ic9c+gzD4uoXXlIUBYMhlJCQRGy2XOz2bDStAlUNxmyORVV98Xu5T1JSEunp6R6fFxMTQ7du3ZgzZw7Lli1rsDX93r17efLJJ+s8t3z5cmJjY2sz5aqqWs761wXYA4QQlJbuICfnXcrLD1BU9CUxMbfRufP9dOhwWaNCujdnLy9ve5nd2bvZn7efJy5+gkcveJSIQNfdJux2WLkSNm6EBx+UmzGTJ/vo833/fdikgZgI69fLHmY6LY/ZLJMyupyAgz/Cs2/LqBMv/O5BQdISfv99+fj552X04G9+47qJyYVdLyQlLoWVu1fy+BeP8+D6B+nVoRf3p9zPpd0vrfc9VlUzgYHxmExR2Gw5OJ1FlJdnYzRGYzJFYDCEoSj+dzFdVlZGeno6RqOxQfEFSE5ObtS9sGnTJsrLyzlw4ABBQUGMGzeu2ZM1dAF2gRAaJSVp5Od/REXFQU6f/jcREZcRGNiLYcOeIyys4ZTdwspCPj74Mct2LwMhu9b+5le/4aPbP2qySEoNZWVSeF97Tfr+aqzdG27wQXwLCuCZZ6Q/stNKafX27OnlZDpeERoqm/VlG6U7Yv9++TtJTPR4KkWRm3K7d8vKaR9+KN35Tz0FkyZJ13NjmA1m7k+5n1uSbuGvO/7Ktye/5fY1txMVHMVDqQ8xoe+Eet9TgyGIoKAENM2KzZaHplVQWXkUMGIyRWI0hmMwWPxCjB0OB7NmzWLhwoV88MEHbN682eMW84uq3XIrVqwgOjq6RTLldAH+BUIIqqrSKS7+lsLCz7BaT1FU9BUBAfFYLBfQt+9bxMTcjNEYXu/cn4t+Zv3R9Xxz/BvW/LgGu2ZnTMIYJvSdwEe3f+QyvEzTYPt2+OQTWZCssBBuuUXuel96qQzT9YrKSnjrLbnh9s030uVw6g54TU83bhNUFfr0gefegwcekEkaEybImEIv6yA/8oi8Onr+eZg3D/71L6nzEyfClVc2/k87IiiC313yOyrtlXx88GNeT3uduV/NZeaGmUxKnsTDPR+m0l5JoDGw1jJW1QACA+MRQsPhKMHpLMZuP43dnovBYAFUjMYwDAYLqhrUJqVFjUYjy5cvB+Cxxx7zaa777ruvGVbUMOe9ANvt+ZSW7qasLI3y8h8pLPwcmy0LMBMQEEtMzG106jSZyMhrMJvP/HEIIUgvTGdbxjZ2Z+9m7eG1dArpxDc/f0OPiB48ftHjTOg7gdS41Ca/gGVlsHmzFN7ly2VEw08/Scvm4YdlerGiQEXTKf0Nk5kpr1MXL5bXpUOGyD/2wYNBz7doYxQZ2HvJJfDSS/DnP0vVvPlmmQo+sPFN3MYYMgRWrZLhxm++CT/+KBN0+vaFcePkd+nyyxsu8xxkCuL25Nu5Pfl2jhYc5f197/N91vcUVRZxovgEVoeVyKBIAo2BhJhDCDIGoSgqJlMEJlMEAQFdcTpLcDrLsdsLsFqLUdUQNK0KgyEEgyEMVQ3EYAhGUUztv95zM3FeCLAQGjZbFhUVR6isPER5+UEqKw9RVrYbmy2LkJCBlJfvIyCgJ5GRV2GxjCQiYhRBQf1QVQNVjip+PH2I/XmfsT93P2lZaShC4bP0zwC4MvFKekf2Znzv8Sy5dgn9ovs1+AUTQtZm2b1bGqL/+58U27w8+fc2fLj8+7vuOvhF2zTP2LoFHv8A8vPBaJQpsE88AaNG6UV2/I24OBnOMG0aPPec7Cf13HOyAMSv+lQP8iwOt29fOaXNBl99BatXy6SdP/9ZJu0EBcmegRdcACNHQu/edd3QvSJ7MfeSuQDs3b+XmOAYiq3FVNgryCnPIcQUQqWjkmBTMKHmUAIMAQSbggk0WggwRhAQ0AVNs+J0lp11K8Zmy8BgCMXprMJgCEZVA1DVQFQ1EEUJQFUDzjthPicE2OEoxWrNxGrNqL6dxGrNwGbLobLyCFVV6WhaTUlAJ6oaRETEaDp0uILQ0EEEhwzBqnYhq6KcgyUnOfbzMYoOf8B3md9xpOAI8ZZ4vvn5GwAGdxyMoiiMSRjDxP4TubDrhQyIGYBBPRMcrmmQlSUbS5w4Abt2yc3vgADYsEGWizxyRCae/eY38v6ii7wIRNA0OdHu3dKMPr4XLgDeWw2VSXDvvVLNvW4Op9Nq9Osn/U6nT0tn7jvvwMbPYTTwhz9A521yzIUXSvU0mVxOaTbLK6mrr5b5H2lpMnriyBGZef63v8nv3e7d0gAYNEhO3bev9JB07y6z6aKCo4gKjkIIgdVppcJeQZmtjEp7JbnluWhCI9QcSpmtDJNqIiwgDEVRCDIGYTJYMBujMBoMmHGgaVZUtRwhHNjtBcCZxBSDIRRNs6OqZhTFXC3QASiKsdpqNlX/fO6ItN8JsKbZcDiKcDiKsNvzcTgKsNvzsdvzEcJBZeWR6pCYXGy2HOz2XAIDEygv31dnHpMpFoOpE4qpO4p5MJVaGIX2ELJtRk7bVI4cOkpmyREySzeTVZqFvVqgDYoBp3AyossIHJqD4XHDGRE3goeGP8SA2AH0iuhDeamZ7Gx5hb9zL6zNlJZtRgYcOyZvNW6D7t3l39SAAdL6GD9eGqRDhkCgu23eqqrg+DH584YNsH+XVPXt2+Vfzf79UozvvgHYAnOfgvG/163d9kh0tAx3efBB2LcJ/nkZdOggL5VeeUX+M83OlgqZnAwpZkgGjqWDuUxu8jWAwSCt3ZEj5eMlS2THpB9+gG3b5P2WLdJ1UcNFF8kCT6oqrWajUcFkCsRkCiTaHIkpGAxGgc1ppcpRRaW9kipHFQ7NQbm9nCpDFWX2sjrrMBvMBBgCMKgGTGokZoOBAFXBgBMQKKoBIRxoWgkOhx2DwYLTWXrWDAqKYsJgCEUI51nibERVTYABRTFUP19z3/abgo3hkwBrmgNNq0DTKnE6K9C0CpzOSjStqtofVIbTWY7TWQZo2Gy5OJ2lOJ2lOByltR+s1fpztegWo2mVAASFpFJZXrf+nt3YH9WZiUOxUKkFUq4FUOroQV6xGVUdzb6CHH4ur+RYaSl5lQX8Kr4f3/xcv033BV0uIL+igI7B8QztcCljortgEV0IdnTBIrpBYQ8qj3egqFDBbIZ1P0g3QW6uFFOnU+4wZ2efmTMqSmph376ynEL//pCQIC/vunVrINJICCgtkxOfPi1veXlSxU+dOnOzWGTe6bBYeBFpuqhXyOvLadOk+ZycLE2Xilx46R3o1FkX33OBjtVhDDMfgQG3yv/sO3ZI5dy6Vd7v/A5eBaY/ABlPyy9nt27SpA0JkYXhO3WSoYbh4fKLGhWFoUMHBgwwMWCAzBEB+ZXMy5NXbocPSw+W2QxOp6CiQqGsrpYSGAhVVQpGYyBBQYEIEYHRCCYjRBlA1ZxYDDaEakNTbWjYcAh5q7JXUSbKcGiOWuv5bAIMATiFgQDVitkQSJDRBMKBUQGDIkBUYcSBghPQUBCgBIGorPcxKkoA0tKW4qyqwYCDM2KtoihGQAHU6m41avWxmudUwID8B6BW3ys+p2k3KcA79txCVeVBhGZFE1YQILQSEFYQNhScOAydMTqz6pxXTDzhZNR5rsARRgdDKVZhwKoZqNJUUIL5udyKJpyU2DWKbU5MhliOl+VSYEujSoMSO0AkGZUFlDt+RABdzF3JtO3HSACBhBNAOPFqHwqtZoyODoTaOtDJEMnpzV3pUzkFZ2kM9uIYukfHsHtLDNuLQuTVO/J7mZl5Zp3JydJdoKrS8LjgAqiq1OjZTWPkYAexETZiwqx0jS4nNqSSLqHFxAUVEugokyavEJCTAydKYV+pLNZrt0v1LiyUPdeKiuQfx/HjdT/wPn3kNz8yUvoG4+KkuXzJJdA7EHhcmi6J09uVwH766afMnj0bp9PJtGnTeOKJJ+oct1qt3HPPPezcuZOoqCjef/99EhIS2max/oqiyJDBX4YNZn0Oh66C382FQ6Hw88/yVlIiY7zzq+v7DhokzdyzCQuT37XoaAgLQwkLI7b6drHFAp06ccwxEEtgAFHh4YiOBuyaAbtmxO5UcWgKNoeKw6kigCqrgtWqUF4u/w9omgFZzCcIoxEcDSTRqQaNKqOdAJMDVHlTDA5QnRhUB07VQbndQSVGHIodDScCJwINoxKAQ0gXhgoYlErMqhGBA4MCqgIGBQJUDYETg+JEVRQ0YSXQAKAhpVSgoWJQ6nbEcGLCQN1uJhqBqFQhACEUSoqdlFXsZvOWK1GUwFq/9kUj3Cve3KQAf7R3E2HB+dg0sGngtAVRqVbWPrY6gdJASoKgyglWTd5XODNQcwdTHHqYKnsgVmsAVlsg1tyL0IJzEfZAhD2YaHtXTjvKwR4M9mBig1Rys6pjD+0hYAuhR4TGsYw4+dhqAZsFY4gTsrrhcAZQBpQBg7r9xLHsOIKNdoKNVjqG51BgtxBCOSFqFSGGKnpUHWRo2A9YIsqxKGVYOhjoUHiMkJ6lhGtFhGuFhNttRMYcxWLLR62ogg1W2VRx3f/qf0DDh9ePDbv0UuloU1VpvVos8gseGCitj8REGZEQHS0tkujoM7eOHaXF0pBvouIwbH9czteOxNfpdPLwww+zceNG4uPjGT58OBMmTCAp6Uzdi2XLltGhQweOHj3K6tWrefzxx3m/JsNAp2mCguX9paNh4uX1j9ts0iDIzZVinJ8v48HPvq+okJdzeXlSuEtL5X1SEvEnT5Ixfz55vXqduYwLCJB9A3+J0YjqcGCu/n4KRUVTDGgYcCoqKioaarW9qqKpBoQGmlAQKLXPC1Ft0woFgyqwa9ItITAABgIMDqxOAygaECDvFVF9L10Z8rHAYHDidEpBr3leUTWE0wAG+5nnhIJiqHaDKAIVAYq0iZWaexRAoFY/Bo2iqnS2Z81DiEJMKphVMKngblvGJgX4yz89yTFnMAanisGpEuaswGqMwVhpx+hUMTpVuobZyc8LxOxUMTkUEp0FlIf1xlyQhxEHRhyYAlSCrYUIFMzYMGHH1MFCZOFRrMTI5yJCCC06CRzAjK32FpyciOmnlQRgPXNLHERQxjcEUkUgVQRgw1gULD9QgxGMJrAapb8sI0NuWBiNkJAEHJePTSZpTeTmyusssxnMIRAeB1o3+SWrucXEyDjNoCApjjX3Fos8LyREZkvU3CwWOaYdCWVLsX37dnr16kXPasvt9ttv5+OPP64jwB9//DHz588H4Oabb2bmzJkIIc6pzZY2w2yGrl3lzROEgKoqTBUV9KiogPLyMzerVcaWV1bK/Yman0Fe3dlsckzNzWarf7PbpcGRni5/ttulidy3r9wVdDjO3Pr2hT170OxOrJqRCoKwDhqJ9YeDVBFIJYHYCMDaZxDWw8exYZZK0bE7as4pSgiTaqIGYddUzFgpIAo7Juyx8Thy87FjIpICMumCPbYLjtxC7IqK1aAQZCjktCEcW5ARu2bDYdBwGASxhp85YYzHob6A0+DEqQqcBieaqjFnonsfs9KUD+PqYcPE6cLC6pFK3fsaVFX+shob485zLu7zCwqIio4+81zNraH1nKNoWhXl5fux26OJjGy4Y4Vds/ND9g90i+hGTHDTbcYzMuT/nmH1SwA0zbFjMng5Odmt4YWFhZSUlNC9ustGfn4+5eXldDurhNv+/fvp3bs35upsgb1799K/f3+Mxvr2QV5eHqer+7RbrVaGDBni4RtoRo4fl9aim59FDQcPnsnFaIoqRxX7c/fTs0NPOgR1aHCM01lGRcUh7PZYIiM9FNn2So3eCNHgzwX5+URGRtY/3tB9cz33i593Hj/+mRDiajfei2jq5hekpKS09RLanPLyQ2LTJsS0aT0aHXOq5JRgPmLJjiUu5/vtb4UIDPRiIXffLUSPxtfwSz744AMxderU2sfvvPOOmDlzZp0xSUlJ4uTJk7WPe/bsKU6fPu1y7uDgYLfX0SLce68Q3bt7fNqFFwpxxRWuxx3IPSCYj1i9d3WjYwoL/ys2bULcfntvj9dxruIneuFKWxFC6OUodVqW+Ph4Tp7VUz0jI4O4uLhGxzgcDoqLi6UFo6NzjqMLsE6LMnz4cI4cOcKxY8ew2WysXr2aCb/opzNhwoTarrdr1qzhsssaryyno3Mu4XeJGA3hSQX7c53LLrusrZfgEUajkb/+9a9cddVVOJ1OpkyZwoABA5g3bx6pqalMmDCBqVOncvfdd9OrVy8iIyNZvXq1W3NH1+wL6DB+fOO93s432pNe6ALczmhvAgwwbtw4xo0bV+e5BQsW1P4cGBjIhx9+6PG8MQ1VlTlPGTdOF+Aa2pNe6C4IHR0dnTZCF2AdHR2dNqJdCfALL7yAoii1caDnI6tWraJfv34MGjSIiRMnUlRU1NZLanU+/fRT+vbty759+3juuefaejltxsmTJ5k16xEApk2byiuvvNLGK2p7nE4nQ4cO5dprr23rpbhFuxHgkydPsnHjxjoB/OcjyckD2bdvHz/88AN9+vTh2WefbesltSo1qc0bNmxgwIABvPfeexw4cKCtl9UmGI1GZs6cCcCrr77Ka6+9dt5+FjW88sor9O/fv62X4TbtYhMO4P/+7/94/vnnuf7669t6KW1KcvKg2gyxCy64gDVr1rTxijzH4SjHbs+louoUeWXHKCg7yumSTPKKynBUnabSfprKKiuBlKMaKjBoBhRTBRWVAVhCKnjsTxpf7RxKfnEpcxYF8fW+EWzap6I6AimyqwSZVFQicBjNmE0WzAFxRIeHEBPRhQ4hXYm19CE0KA6zuWN1Q8n2GfLWuXNngoL6sns3BAUF079/fzIzM+ukeZ9PZGRksG7dOubOnctLL73U1stxi3YhwGvXrqVLly4MHjy4rZfiVyxfvpzbbrutrZdRD6ezksrKw1RWplNe8SO5RXsoqirGUfk9JlHMyYoAeobIUqRHS6GXBcKA9EroF6pSoWkcw0Ck0YwDJ46qIGxC4HSoVFpNCAFGEYCmlVFlM2NSNQxGDYPiIDDQSocgG4FqPmazjUADHC+HSDs48+B0HnxdZGJAhKxylWGLIdLkwGiOw2IZTkxIF0JD+hIU1Jfg4D6YTK47V/sDOTnZ7Nq1i5E1BX/PQx599FGef/55SktLXQ/2E/xGgC+//HKyzy6wW82iRYv44x//yOeff94Gq2obGvosYmOtzJt35vGiRYswGo3cddddrby6utjthZSWbqei4jBFRZspKd1NpVPD4DiOVVMJUDUKbbCrwIzRYKOsuAeHTxsQ5ang6IjIsxCYFUJiYQlxpWDsFM3g3lFcnRRN8LB+snpcbGxtzY8PP/yQzz77jLfeeot3XkmlE7PZvm07r776qlxQUREcO4btwFFyt6WTvu8UpmI7G4MVCkIryYkLIFtxEBn3E5HRGRhNFcRHnaZroJOCnP0M7wBWYSJIlQIdZBlNkCmQiIixBAUlEhY2koCAuMY+jjbjmWee4eWXXybMp15W7ZdPPvmE2NhYUlJS2Lx5c1svx238RoC/+OKLBp/fu3cvx44dq7V+MzIyGDZsGNu3b6dTU3232zENfRYVFYfZvr0vACtXruSTTz7hyy+/bPXLZ4fRTvHACgqOzKao6Cvs9nxstixK6YbDkc8PheWcdnbktDWOjPxoKn4ex/ff9KZfZDLdgvuTlBjKLQmnGZH+Nol7/oUaYJJV6+8aC2PHygpZTeAytTkiAoYOxTx0KPF3QTxwSWmpLGr/wQeyOVp5OZmJl5B26VL2lfXi6//Y+MPOI/S+eC8rOu0kvutxOnTcgYETJEX8QJ9QO8bTPxClngLAYhlBcHB/orodJ8LipJGGw62C0ymL7I4dO5Ybb7yxDVfStmzZsoW1a9eyfv16qqqqKCkpYdKkSbz77rttvbQm8RsBbozk5GRyc3NrHyckJJCWlnbeZkHt2bOHP/3pP3z99dcEBwe3yms6HMXk568nJ+cdHFfuhJISSrPepJTufJMXyJcZEBnehTJHHCMjx1G6Zyz/fCmF+E4BDBkCd02SLdMTE5yw5DX46CNZe/baa2VXDw+Kr5+d2iyEYPXq1axatarpkywWuOEGecvPh1Wr6LJ+PV3WTef6AQOY++Gz5FUOYP36AXz99e18+w58ccjJbY/sI2/kJjLNB1m399+Eqwo3JPRjoFZEXMVaSoY5qRxdQuyBu7BYUoiJuZXAwHjfPmwPEELw3HPPMX483HTTza32uv7Is88+W7shvXnzZl544QW/F19oBwKsU5cVK1ZQWmrmiiuuAORG3JIlS5r9dYQQlJR8S17eGk6d+huaVkVoaApkRfLFsXIW5tkZ3FkWzHlw1FOM7HAtS1/qxNvvSL27fzI8/LDslARI4Zs4WZZw7NkTli6FHj08XtfZqc0nTpxg3rx5DBgwwP0JoqLgkUdkw9J582DtWti6lZh33+Xee/tz772yE9SbbxpYvnwwIRsH06MH/PPZ5/lJWcf7+9/nnT3fk1VazGOiC1dVOqi85Si5uavIzHyd4ODexMU9TFTUNdWtbVqOLVu28OmnnzF+PMyY8QCHD1v44x//WC/rUMePcVEuTcdPqClHmZ39j0bHNEc5Sk3TRF7ef8S+fTeLHTuGiW++iRSHD88S6VnrxNSPp4jRv+0oAn+HmPPZHLEvZ5/QNCH+8Q8hRo8WwmgUYv58IbKzfzFpZqYQffsKcdFFQrz1lhCa5uG7b5hmKTv45ZdCJCYKMXSoEDt21DlUXi7Eq68KER0tRJ8+QixaJITdLkRmcaZ4ZvMzIvXJKNHpt6oY/4/xYteJ/4j09KfFli1dRFraSPHtt4kiM/Mt4XRa671kS5SjzM/f6PFb12lR9HKUOp5RXLydXbsuYt++63A4SunceRoXXHCCreXDGPL2HezO3sNQayQn/tmNF658gcSwAUyfLtub22yykcHvf/8LN25uLoweLTsyPPssTJ3qX0X0L7sMPvtM9uu79lrZYbqa4GCYOVO6jVNS4NNP4ZprQK2IY96l89icdRVP747g25Pfcve6J1n6k50hqQfp2vU3mEyR5OSsZPv2/uTmfuhz80adcxNdgHVwOIpJT3+aXbtGoqqhomJrXQAAG1RJREFU9OmzlOTk/xDU4TYmfng7f/jmD1wQfwGrblrFSwWpxFYZKCyEK6+U3R3GjJFt8Op5AhwOmDxZNn585hkYNapN3p9LEhPlG+jfH8aPlx2qz6JjR1i1Ch54QHbYGTUKjhyBEGHioUMWDs08xIi4Efz9h79zxbtXUWQYxLBh39Gt21MYDCFkZr7GDz9cSWXliTZ6gzr+ii7A5znFxd/x/fcXc/Lki3Tr9hTJyf8mLu5+fjx9mNQ3UymoLOD/Lvg/Pp30KX2iZA+dEi2Um2+Wbt2ZM2HBAtlyrx4vvSQ7886cKRub+jPdusHixbI55R/+ULfVTDV33QV//jN07y4bVR8pjgUgOiSaZdcv483r3uTQ6UPc8+97+Oynz4iKuprU1F3Ext6Gw1HCzp1DOH36P639znT8GF2Az2MuvfQ9du8eRWBgN4YM+ZKePRdhMISw89RO7vv4PoyqkT9f9WceHvFwbbibXTPw24LH+e9/pUeh0TyQAwdg/nz49a9h0qRWe08+kZoqRfgvf4FGMgxTUuThPn3gps2PcNp5plfbNb2vYdcDuzAbzFz33nV8dPAjFMVAly4PkpT0PhERl7N//82MHft7QHdJ6OgCfF4ihCAxcSGPPjqVmJib6d//74SHXwjA/tz93PvRveSV57Hhrg2MjK+bWfX497fyRuldvP22bBTdKHPmyI7STzzRgu+kBXjoIRg6VJq6FRUNDklKguefh8MlnXikYD5O55ljXcO78smdn3Br0q3c9a+7+OjgRwAEBSWQlPQPOnacxNixC7jmmgfQNFtrvCMdP0YX4POQEycWER39Gf/7383067cSk0mGk+WU5TBu1ThURWXzvZtJjEysc97XX8OX2UnMCXuTJhPwduyQ4WbPPAPtrWi6wQAvvgjffQcrVjQ6bORIePNXy/lP5RX8suxAWEAYb1z3BoM6DuLlbS+z89ROAFTVTN++b/HZZwuJi9vOoUNTEUJrwTej4+/oAnyekZOzmuPH51NR0ZOXXnobVTUB4NSczP1qLnnlebx9/dskdEioc57dLuN6S2zBLOjw56Zf5K234MQJGWvbHhk9GoYPl1bw2ebtL5jU81uuCPwvTz8NP/1U91ioOZR/3/ZvjhYc5c5/3Um5rRwARVH4+uu5/PjjLeTkvEt6+pMt+EZ0/B1dgM8jiou3cfDgPXTseDf79i1DiDOJAq/teI1lu5bxxrVvkBKXUu/cV1+VEVqvDH+XYLWq8RcpL4f33oNbb+WxhQvdql2ckJBAcnIyQ4YMITU11ef36TOKIl0oR4/KRI0mhi2Jmsvw4dLV/Us6hXbi7xP/zpH8Izz66aN1jm3d+hRxcQ9x8uTz5OS839zvQKcN2LFjB4MGDaKqqgpFUUIURdmvKMrAps7RBfg8wW4v4scf7yQgIJ5evV5CiDNhCz8X/8xTXz7F1b2uZtKg+htm+fnS5zl+PFwXv6vpF/rwQygthalTueKKK9yuXbxp0yZ2795NWlqa1++xWZk4Ea64QkZxNEFHw2muvlrq9LZt9Y+P6TGG3170W97a9RZrD54t5gq9e/+Fjh3v4dChyVRUHG3e9eu0OsOHD2fChAn87ne/A3geeFcIsa+pc3QBPk9IT38MVQ0hKekDTKYzO/dCCB5e/zCa0Hh93OsNFvd5/XXQNPjTn9zIoVi2TIYIXHwxV155ZZ3axRkZGc35lloWoxHi4mTdChdJFLNny4Jtf/1rw8cXjFnAxH4TeebrZ3BojtrnFcVAz55/RFFMHD58v56scQ4wb948Nm7cCJCKFOEm0QX4PKC0dCdZWcuIjLySsLC6l/jfnPiGvPI85o+eT48O9WszaJrU1MGDG0i0+CWHDsH//tdgttvy5cu55pprGjxNURSuvPJKUlJSWLp0aZMvsXTpUlJTU0lNTSUvL8/Fgnxk9GiZlHFWdlxDhIZKj8WqVXDsWP3jZoOZyUMm833293yw/4M6xwICupCY+AJFRZvJynqzGRev0xYUFBRQVlYGYAECXY3XBfgcRwjBkSOPYDLFkJAwr97xxVsXc7zoOLNHzm7w/I0b5X7atGkNz3/55ZczcOBABg4cyJOXXcbBgACueustPv7449oxrmoXb9myhe+//54NGzbw/+2de2xU153HP3dmPGNj8AOMsY1xgmtexYAhDml32SpdNSkNVVOkJJBK22ibrdM20Upsuo1Wq0qVqm6Sf1pplWhXVEjZthFOsiVxoqUkYqGbNm3kugVags0jD5MYjB/hYY8f45m5+8fxGMjce+fe8Yzte/z7SJYZnzP3Htv4O7/5nt/5/Z599lnefPNN2++npaWFjo4OOjo68t+W/s471WcX9WXvv18Fyi++aD2+Y/UO1i9dz1O/fQrzEznA1dX/QFnZ5zl37p+JxfL8oiLklZaWFn74wx8CPA88nWm+CLDmXLr0PNeu/Z76+qcIhUpvGkuWvsfBswd55LZHiIQils//6U9VAbGvftX6+ocPH+bkyZOcPHmSJx98kLWBAK+fPj3VOipVu/j555+3rV2cqudbWVnJzp07aW9vz/K7zTG33qqOvbkQ4JUrVWraCzb7aQEjwBN//QR/6fsLVypu9pUNw2D16v+kqKiO8+f/bfrrFmaFn/3sZ4RCIb72ta8BPAXcbhjG3zo9RwRYY0wzycDAy5SX301VVXpKWGLLfxAMBHmk+RHL51+6BG1tKpssYq3PN9PdrY70TgrtoUOHePrpp3n11VdtaxdHo9GpFjLRaJQ33niDxkbHjeOZ5c47VQJ0MnO+7q5dcOyYcmKs2N24m7rSOnrq0zs5L1iwmuLijVy8uI94/No0Fy3MBl//+tc5cOAAAKZpJkzTvMM0zSNOzxEB1pgrV37NwMABqqr+HsO4+Vc9wQiJjfvYuXYnNYusW+y88oqqp2NnP6TR3a0ixkkee+wxhoaGuOuuu2hqauJb3/oWABcuXJiqWXvp0iW2bdvGpk2b2Lp1Kzt27GD79u3ev9l8kfKBXXQbfuAB9dpjFwUXBAv47me/y1D5b7m86Ldp47W1e0gkhrh4cd80Fy34BSnIrjG9vf9FMFhKRUV6J+nO4H6IXOaxrY/ZPv+ll2DbNlUkzBXd3dDUNPXw3Dnr1KqamhoOTqZ31dfXc+LECZc3mAVu9IEzRObLl6tKaa2t8P3vW2eMPLzlYf6l9Rd8XPa/wLabxkpKmikt3UZPz79TW/uPOVm+MLeRCFhT4vEh+vv/m8rKXQSDRWnjZ4NtGH0b+Js66xKRiQS0t8OGDS5vODqqav/eEAFrgQcfGJQN0dmpaghbsaBgAeHxanor9luO19buYWzsAwYGXsluvYKvEAHWlP7+X5JMjlh6v8OxYd4NvUbgzL22G2Odneo8xWc+4/KG58+rz7oJMHjyge+7D8JhZ70uHtrMSNEZhmPDaWMVFfdSWLiS3t7ns1+v4BtEgDWlt/c5iopWUVLy2bSxM4NnAAj0N6WNpUid6nItwN2TxcZ1FWCXPnBlJTQ0qCbMdhRf2wKGyYnedOvFMIJUV7cwONhGIj5g8WxBJ0SANaQgOcDVq/9HVdVDlhFu10AXAMbgWttrvP02lJerjvGu0FmAm5vVK9EnK+7YsGIF9PTYjxdf2wzAsV7rY92LF98NJIkN/87rSgWfIQKsISXxtwGDZcv+znK8a6ALwwxgXG6wvcbbbyvNcd2+rbtblXKssc6o8DXl5eoH0tfnavry5c4CHB5fTkFsKX+6+CfL8YULmygoWEpsOD1TQtALEWANKUq8R1nZ5yksrLMc7xrootSsx0hYJ/devarebbu2H0AJcG2tTW8in5NKgo65K6C+fLnKoY7HrccNDEqim20jYMMIUF5+N+PDbzGH2pcKeUAEWDNKQlCcOEV5+Rds53QNdLHEtLcf/vAHdazWswDraD+A2lUDTwKcTKr2cnYsim7hZN9JxuPjluOLF2/HTFxm1UKvixX8hAiwZtRNHjhbuHCT5XgimeDM4BkWJ539X4CtWz3ceD4I8Li1WH6S5cvVZycbomR4C/FknHf6rQv9KB8Ybl/sepWCDxEB1oxbJgV4wYJPW453X+1mPDHOkgwCvG4dlJW5vGk8rtRGVwEuUF1DvETA4CzAi6JqI87OBw6HKwkVruP2csthQRNEgDXjlmJIErb1fzv7OwFYbGNBmOb1DTjX9PSokxu6CnAwqD5yKMBFY/WUREo4dtG+wH144TbWl4CRtG4OKvgfEWDNuGUBxALL0mo/pEiloNlFwOfPQ0mJyrxyjc4paCkiEdcCXFGhgmYnATYI0FTVxJ96rSNggMjCbYQCEJ5wrkcs+BcRYM2oWwCxQJXteNdAF0sXLKWIJZbjH36oiop/6lOWw9bMBwEOh10LcCCgsvGcBBhgS9UWTvSeIJG0bvwZKtxAzygEE+7S3wT/IQKsEclElKpCGA9U287pGuxibYW9/xtVzXtZtMjDjVMCXGdte2hBOOx6Ew4y5wIDbK7ezGh8lNOD1vUrA8FCSgsgkJQTcboiAqwRsTF1UitTBOwkwMOT5QmKiz3cuLsbli2DwowdWPyLhwgY3AnwluotAI4+8NAEBMz0mhGCHogAa8T42FnAXoAHRgYYGBlwFQEv9JJ/qnMKWgoPHjBcF2CnPptrK9ZSGCq0zYQAGIpDICkCrCsiwBoRGztDPAkxo9Jy/PSAequblwhYZ/sBPEfANTXqxeyaQ3OLUCDExmUbbU/EAVydAEMiYG0RAdaI2NhZekYBw/o4cCoDIqcRsGmq1AndI+AsPGBw4QNXqSPJdi3ph+JiQeiMCLBGxEbP0u2QMto10EUkGOGWUnuxTEXANi3c0unrg7Gx+SHAHi0IgAsXnOdtqd7ClbErfHDlA8vxoQmxIHRGBFgTkskYsfEPOO8kwINdrF6ymmAgaDsnGlXiG3D7P8MhBe0HP/gBy5cvp6mpiaampqk2RJ/k0KFDrFmzhoaGBp56Kr1h5ZwgSwF2EwGD/Ym4q3FlQZhm5mLwgv8QAdaE0dFzQCJjBOxkP4CKgD37v2AbAe/Zs4fjx49z/PjxqUacN5JIJHj00Uf51a9+xalTp9i/fz+nXBQ+n3Gy2ISDzAK8YdkGgkbQ1gcemgADUzola4oIsCaMjKgjxnYR8Hh8nPcuv5dRgKPRLDIgIGsLor29nYaGBurr6wmHw+zevZu2trasrpVXPHrARUWqjHAmAS4MFfLppZ+2jYCHJktaxuMfu7634B9EgDUhGlVRo50An/v4HEkzyboK5xbHWUXAJSW2lXueeeYZNm7cyDe+8Q0uX76cNt7T08OKFSumHtfW1tLjoFp79+6lubmZ5uZm+vv7PSx0mni0IMBdLjAoH9guAr42KcATE4Oe7i34AxFgTRgZ6SQUrmXMxip0kwEB3iPg37W2cmZ8nMbGxps+2tra+Pa3v827777L8ePHqa6u5vHHH097vtXuv12jUICWlhY6Ojro6Ohg6dKl7hc6XfIowJurNtM73MvFoYtpY9cm1GeJgPVEw/YF85ORkU4ihauAjyzHOweURbF6yWrH6wwPexPgv6qpgbo6Tr72muO8b37zm3z5y19O+3ptbS0ffvjh1OOPPvqImrnY1sijBwxKgP/858zzpk7E9R6jetHNx8hTAjwxIQKsIxIBa4BpJhkZOU240L6DZtdAF3WldRSHnf2FaDQLC8LG/7148XpE9/LLL9PY2Jg25/bbb+fs2bO8//77xGIxWltb+cpXvuJhATOERw8YMrcmSrGpShXPt/KBxQPWGxFgDRgb6yaZHM0owJnsB/AYAV+9qj5sBPh73/seGzZsYOPGjRw9epSf/OQnAFy4cGEqIyIUCvHMM8/wxS9+kXXr1vHAAw+wfv16lwuYQbK0IDK1JgIoiZTwpYYvMRofTRsbEg9Ya8SC0IBUBkS4yLrLsWmadA108fDmhzNey1MEnCED4uc//7nl12tqam7KCb7nnnssU9TmFFkKMCgfuLbWee7F4YuELqX/OSZMSBpFYkFoikTAGpDKgIjYRMA9Qz1EJ6K5j4DnQx3gFNMU4EwUhgoZi49ZjpnGQrEgNEUEWANGRjopKFhKMGTdwdFtBkQyCSMjuYuAtSLLTThwJ8CRYITxhLXHnDQWigWhKSLAGjAy0mnbhBPcC/DoqKqt4ykCjkSg0rr6mlaEwzAxoV6lXOKmNVGKSChi26I+GZAIWFdEgH2OaZqMjHRSXGx/wKJroIuSSAlVC+0LtcP1SmiuI+DxcVizxkPhCB+Tak0/MeH6KW5bE0FmC0I8YD2ZB385ehOLXSIev8KCBc4CvK5ineMBB7heCc11BHzlinPBW51ICbBHG8KtADtaEBIBa4sIsM9JZUBkEmA3G3CeI+B4XL3Hng9EIupznk7DFYYK7S2IyQhYKqLphwiwz4nHP6a4eBORiHVHiqHxIXqGelxnQICHCDgeh9A8yWRMRcBZHMbIVBMYVARsa0EEFgJJqYimISLAPicev0o0eoJgsMhyPNVxN28R8HwT4Cwi4OHhzE5NJOScBQFyGk5HRIB9jmmqo1KGTRuivuE+Nldtpq40c882zxHwxIQIcAbcpqI5bcKlBFg24vRDBNjnZBLgq+NXOdZ7jOKCzGGteMAOTMMDhswCHAnap6EpCwLicckF1g0RYJ+TSYBjCSUY4WA447XEA3ZgGh4wuIuAE2aCeDK9co9EwPoiAuxzrguwdZ+3lAAXBDNHqp4jYLEgMuI6Ag6pCNsqCk4GxAPWFRFgn5OPCFg24SzIUoDdtiaKBCcF2GIjzjTUL0SOI+uHCLDPMc0EkBsBjkaV1elaU+eTB5ylAIO7XODCUCGA9UacESIYLBELQkNEgH1Opgh4IqmOzrqNgD015JxPEXBqE86jBwzuBNjJggAoKFgsFoSGiAD7nJQA2/0qvUbAnrphiAfsCi8RsF0ucCi0WCJgDREB9jmmGccwQrZ1HmKJGAYGQZtNuhvJKgIWCyIjbloTpTxgu1xgFQGLB6wbIsA+JyXAdsQSMcLBcMZCPJBFBDyfLIhpCnCm1kSZLIhQaIlEwBoyT/569EVZEPbRbUqA3ZBrD3jXrl2cPq2OQl+5coWysjKOHz+eNu/WW29l0aJFBINBQqEQHR0dHhYxQ2R5EAPctSbKZEGIB6wnIsA+xzQTriJgN0Sj18XCFRk84BdeeGHq348//jilpaW2c48ePUpFRYWHm88wWR7EAKiuVjXrBwbs52SyIFIesGkmMQx546oLIsA+x60F4YZ8ecCmafLiiy9y5MgRDxefY0zDgigrg74+GHSwcDNnQSwhVRGtoKDM8xqEuYm8lPqcXApwvjzg3/zmNyxbtoxVq6ybhhqGwd13381tt93G3r17PSxgBpmGAKdeo5yaaTjmAaMsCJDTcLohEbDPme0I+OXXXuP7b76ZNvSjH/2Ie++9F4D9+/fz4IMP2l7mrbfeoqamhr6+Pu666y7Wrl3L5z73Ocu5e/funRLp/v5+D4udJnkWYKeTcKAsCHWNjykqqve8BmFuIgLsc3IlwKapImBPAjwxwc7772fnj39sOyUej3PgwAH++Mc/2s6pqakBoLKykp07d9Le3m4rwC0tLbS0tADQ3NzsYbHTJBhUH1l4wF4iYKeDGCAV0XRDLAifowTYOQvCTSGe8XFIJLKwIDJ4wIcPH2bt2rXU2mz/R6NRhoaGpv79xhtv0NjY6GERM0g4nL8IOJRpE27J5DXEgtAJEWDfk5ssiFQltFwfRW5tbU2zHy5cuMA999wDwKVLl9i2bRubNm1i69at7Nixg+3bt3tYxAySTwHOYEGIB6wnYkH4nEwWxERyIj+V0EzTlQA/99xzaV+rqanh4MGDANTX13PixAmXN51lshTg1I9oOptwoVD55DVEgHVCImCfkysP2HMEnFBV2ObNUWRQhzHy5AGnfkd2HnAgUEAwuEhKUmqGCLDPyZUAZ1ULGObPUWTIOgI2DLV/5yTAhmGotkQ2FgSoXGCxIPRCBNjnzFoELALsiYICZwEGtRFnZ0GAVETTERFgn+MmCyIvEXBKTUSAXeFKgB0ac6prSEU03RAB9jm5qgWRdQQ8nzzgcDgrDxjUj8mpHCVMtqZPOEXAUhFNN0SAfY54wDNIJJJ3CyJzBCwCrBMiwD7HlQAHxAPOCXm2IApDhY6bcDdWRBP0QATY58xaBCwesCfcesBOm3DqMIaqiCbogQiwz8llFkRBwfWaMxmZrx7wrFoQ6jiy2BD6IALsc3JVC2J4OIs6EDC/IuAsD2JA7iwIkNNwOiEC7HOcsiBM0/QUAXuthAbMLwGeExaERMA6IQLsc5wsiISpjgu79YCzioDFgnBFKOQyAnawIK5HwJILrAsiwD7HSYBjCSUWeYmA56MFMcsn4cQD1g8RYJ+TKwEWD9gF0zyI4eoknKMHLBXRdEME2OfMWgQ8Hz3gPB/EyGRBSEU0/RAB9jmmGQessyBmJAIWD9gVudiEU9eRimg6IQLsc5yyIMQDzjHhsFJR0/T81FykoYFURNMNEWCfIx7wDDLNzshuN+FMB4GXehB6IQLsc+aCB/zSSy+xfv16AoEAHR0dN0178sknaWhoYM2aNbz++uuWl3r//fe54447WLVqFbt27SKW5dv8vBNRfdvyJsCTfeEmkvYTVQQsHrAuiAD7nFwI8MSE0pRsPeDGxkYOHDiQ1kr+1KlTtLa28s4773Do0CG+853vkEi1MrqBJ554gj179nD27FnKy8vZt2+fh4XMIHmOgDO1plfXEQ9YJ0SAfU4uBDjrjsgAoRDr1q1jzZo1aVPa2trYvXs3kUiElStX0tDQQHt7+yfWb3LkyBHuu+8+AB566CFeeeUVDwuZQWbAggD7xpwgFdF0QwTYxyivMGFbCyIlwAUB50wFz5XQwJUH3NPTw4oVK6Ye19bW0tPTc9OcwcFBysrKCE1ex2rOnCElwFk25nQdATv2hZOKaDphOBn+gpDCMIzDQJXF0L+aptk2OefXwHdN0+yYfPws8HvTNH8x+XgfcNA0zV/ecN2lk3MaJh+vmJyzwWYdLUDL5MNC0zQbc/H9CcJsMI+2sIXpYJrmF7J42kfAihse1wIXPjFnACgzDCNkqqRmqzk3rmMvsDeLtQjCnEMsCCGfvArsNgwjYhjGSmAVcJMJbKq3YEeB+ya/9BDQNqOrFIRZQgRYmDaGYew0DOMj4LPA/xiG8TqAaZrvAC8Cp4BDwKOmqUq0GYZx0DCMmslLPAH8k2EY54AlwBxNgxCE3CIesCAIwiwhEbAgCMIsIQIsCIIwS4gAC4IgzBIiwIIgCLOECLAgCMIsIQIsCIIwS4gAC4IgzBIiwIIgCLPE/wM88BT0K9EFSgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"_draft": { | |
"nbviewer_url": "https://gist.github.com/c34091364ef87cf7c720d973dda66548" | |
}, | |
"gist": { | |
"id": "c34091364ef87cf7c720d973dda66548", | |
"data": { | |
"description": "graphs and plots", | |
"public": true | |
} | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.7.3", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"toc": { | |
"nav_menu": {}, | |
"number_sections": true, | |
"sideBar": true, | |
"skip_h1_title": false, | |
"base_numbering": 1, | |
"title_cell": "Table of Contents", | |
"title_sidebar": "Contents", | |
"toc_cell": false, | |
"toc_position": {}, | |
"toc_section_display": true, | |
"toc_window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment