Skip to content

Instantly share code, notes, and snippets.

View Diyago's full-sized avatar
🎯
Focusing

Insaf Ashrapov Diyago

🎯
Focusing
View GitHub Profile
test_generator = DataGeneratorFolder(root_dir = './data/road_segmentation_ideal/training',
image_folder = 'input/',
mask_folder = 'output/',
nb_y_features = 1)
train_generator = DataGeneratorFolder(root_dir = './data/road_segmentation_ideal/training',
image_folder = 'input/',
mask_folder = 'output/',
batch_size=4,
image_size=512,
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard
# reduces learning rate on plateau
lr_reducer = ReduceLROnPlateau(factor=0.1,
cooldown= 10,
patience=10,verbose =1,
min_lr=0.1e-5)
# model autosave callbacks
mode_autosave = ModelCheckpoint("./weights/road_crop.efficientnetb0imgsize.h5",
monitor='val_iou_score',
model = Unet(backbone_name = 'efficientnetb0', encoder_weights='imagenet', encoder_freeze = False)
model.compile(optimizer = Adam(), loss=bce_jaccard_loss, metrics=[iou_score])
history = model.fit_generator(train_generator, shuffle =True,
epochs=50, workers=4, use_multiprocessing=True,
validation_data = test_generator,
verbose = 1, callbacks=callbacks)
def aug_with_crop(image_size = 256, crop_prob = 1):
return Compose([
RandomCrop(width = image_size, height = image_size, p=crop_prob),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
RandomRotate90(p=0.5),
Transpose(p=0.5),
ShiftScaleRotate(shift_limit=0.01, scale_limit=0.04, rotate_limit=0, p=0.25),
RandomBrightnessContrast(p=0.5),
RandomGamma(p=0.25),
augmented = aug_with_crop(image_size = 1024)(image=img, mask=mask)
image_aug = augmented['image']
mask_aug = augmented['mask']
class SimpleGNN(torch.nn.Module):
"""Original from http://pages.di.unipi.it/citraro/files/slides/Landolfi_tutorial.pdf"""
def __init__(self, dataset, hidden=64, layers=6):
super(SimpleGNN, self).__init__()
self.dataset = dataset
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(in_channels=dataset.num_node_features,
out_channels=hidden))
for _ in range(1, layers):
@Diyago
Diyago / Tabm_benchmark.py
Last active August 19, 2025 19:06
Tabm benchmark
"""
LightGBM vs TabM binary-classification benchmark with optimized training
Requirements: pip install lightgbm tabm torch pandas scikit-learn tqdm
!git clone https://github.com/Diyago/Tabular-data-generation.git
!mv Tabular-data-generation/Research/data/* data/
"""
"""
LightGBM vs TabM vs RealMLP binary-classification benchmark with optimized training
Requirements: pip install lightgbm tabm torch pandas scikit-learn tqdm "pytabkit[models]"