This gist shows how to create a GIF screencast using only free OS X tools: QuickTime, ffmpeg, and gifsicle.
To capture the video (filesize: 19MB), using the free "QuickTime Player" application:
package main | |
import ( | |
"log" | |
"net/http" | |
) | |
func redirect(w http.ResponseWriter, r *http.Request) { | |
http.Redirect(w, r, "http://www.google.com", 301) |
import scala.concurrent.Await | |
import scala.concurrent.ExecutionContext | |
import scala.concurrent.Future | |
import scala.concurrent.blocking | |
import scala.concurrent.duration.Deadline | |
import scala.concurrent.duration.Duration | |
import scala.concurrent.duration.DurationInt | |
import scala.concurrent.duration.DurationLong | |
import scala.concurrent.future | |
import scala.concurrent.promise |
/* | |
glog-example | |
------------ | |
background | |
--- | |
You probably want to read the source code comments at the top of the glog.go file in | |
the golang/glog repository on github.com. Located here: https://github.com/golang/glog/blob/master/glog.go | |
setup |
object MergeSort { | |
// recursive merge of 2 sorted lists | |
def merge(left: List[Int], right: List[Int]): List[Int] = | |
(left, right) match { | |
case(left, Nil) => left | |
case(Nil, right) => right | |
case(leftHead :: leftTail, rightHead :: rightTail) => | |
if (leftHead < rightHead) leftHead::merge(leftTail, right) | |
else rightHead :: merge(left, rightTail) |
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
import numpy as np | |
import cPickle as pickle | |
import gym | |
# hyperparameters | |
H = 200 # number of hidden layer neurons | |
batch_size = 10 # every how many episodes to do a param update? | |
learning_rate = 1e-4 | |
gamma = 0.99 # discount factor for reward |
Install Scala 2.11.8
$ sudo apt-get remove scala-library scala
$ sudo wget www.scala-lang.org/files/archive/scala-2.11.8.deb
$ sudo dpkg -i scala-2.11.8.deb
Check Scala version
$ scala -version
--- | |
- name: Create Instance in AWS | |
hosts: localhost | |
connection: local | |
gather_facts: false | |
vars: | |
aws_access_key: "xxxxxx" | |
aws_secret_key: "xxxxxx" | |
security_token: "xxxxxx" |
node { | |
stage 'Checkout and Build' | |
createVirtualEnv 'env' | |
executeIn 'env', 'pip install -r requirements.txt' | |
executeIn 'env', './manage.py test' | |
executeIn 'env', './manage.py integration-test' | |
virtualEnv('true') | |
runCmd('pip install -r requirements.txt') |
import numpy as np | |
import tensorflow as tf | |
import keras as k | |
from keras.applications.resnet50 import ResNet50 | |
from keras import backend as K | |
from keras.layers.core import Flatten, Dense, Dropout, Lambda | |
from keras.models import Model | |
from keras.preprocessing import image |