Skip to content

Instantly share code, notes, and snippets.

@DollarAkshay
Created December 21, 2016 15:52
Show Gist options
  • Save DollarAkshay/14059981d90c98607339d3ee17d2f0e9 to your computer and use it in GitHub Desktop.
Save DollarAkshay/14059981d90c98607339d3ee17d2f0e9 to your computer and use it in GitHub Desktop.
CartPole v0 using Genetic Algorithm and Neural Netowks
import time, math, random, bisect
import gym
import numpy as np
def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))
class NeuralNet :
def __init__(self, nodeCount):
self.fitness = 0
self.nodeCount = nodeCount
self.weights = []
self.biases = []
for i in range(len(nodeCount) - 1):
self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() )
self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist())
def printWeightsandBiases(self):
print("--------------------------------")
print("Weights :\n[", end="")
for i in range(len(self.weights)):
print("\n [ ", end="")
for j in range(len(self.weights[i])):
if j!=0:
print("\n ", end="")
print("[", end="")
for k in range(len(self.weights[i][j])):
print(" %5.2f," % (self.weights[i][j][k]), end="")
print("\b],", end="")
print("\b ],")
print("\n]")
print("\nBiases :\n[", end="")
for i in range(len(self.biases)):
print("\n [ ", end="")
for j in range(len(self.biases[i])):
print(" %5.2f," % (self.biases[i][j]), end="")
print("\b],", end="")
print("\b \n]\n--------------------------------\n")
def getOutput(self, input):
output = input
for i in range(len(self.nodeCount)-1):
output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1]))
return np.argmax(sigmoid(output))
class Population :
def __init__(self, populationCount, mutationRate, nodeCount):
self.nodeCount = nodeCount
self.popCount = populationCount
self.m_rate = mutationRate
self.population = [ NeuralNet(nodeCount) for i in range(populationCount)]
def createChild(self, nn1, nn2):
child = NeuralNet(self.nodeCount)
for i in range(len(child.weights)):
for j in range(len(child.weights[i])):
for k in range(len(child.weights[i][j])):
if random.random() < self.m_rate:
child.weights[i][j][k] = random.uniform(-1, 1)
else:
child.weights[i][j][k] = (nn1.weights[i][j][k] + nn2.weights[i][j][k])/2.0
for i in range(len(child.biases)):
for j in range(len(child.biases[i])):
if random.random() < self.m_rate:
child.biases[i][j] = random.uniform(-1, 1)
else:
child.biases[i][j] = (nn1.biases[i][j] + nn2.biases[i][j])/2.0
return child
def createNewGeneration(self):
nextGen = []
fitnessSum = [0]
for i in range(len(self.population)):
fitnessSum.append(fitnessSum[i]+self.population[i].fitness)
while(len(nextGen) < self.popCount):
r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] )
r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] )
nn1 = self.population[bisect.bisect_right(fitnessSum, r1)-1]
nn2 = self.population[bisect.bisect_right(fitnessSum, r2)-1]
nextGen.append( self.createChild(nn1, nn2) )
self.population.clear()
self.population = nextGen
def replayBestBots(bestNeuralNets, steps, sleep):
choice = input("\nDo you want to watch the replay ?[Y/N] : ")
if choice=='Y' or choice=='y':
for i in range(1, len(bestNeuralNets)):
if i%steps == 0 :
observation = env.reset()
totalReward = 0
for step in range(MAX_STEPS):
env.render()
time.sleep(sleep)
action = bestNeuralNets[i].getOutput(observation)
observation, reward, done, info = env.step(action)
totalReward+=reward
if done:
observation = env.reset()
break
print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i, bestNeuralNets[i].fitness, totalReward))
def recordBestBots(bestNeuralNets):
print("\n Recording Best Bots ")
print("---------------------")
env.monitor.start('Artificial Intelligence/'+GAME, force=True)
observation = env.reset()
for i in range(1, len(bestNeuralNets)):
totalReward = 0
for step in range(MAX_STEPS):
env.render()
action = bestNeuralNets[i].getOutput(observation)
observation, reward, done, info = env.step(action)
totalReward+=reward
if done:
observation = env.reset()
break
print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i, bestNeuralNets[i].fitness, totalReward))
env.monitor.close()
def uploadSimulation():
choice = input("\nDo you want to upload the simulation ?[Y/N] : ")
if choice=='Y' or choice=='y':
API_KEY = open('/home/dollarakshay/Documents/API Keys/Open AI Key.txt', 'r').read().rstrip()
gym.upload('Artificial Intelligence/'+GAME, api_key=API_KEY)
GAME = 'CartPole-v0'
MAX_GENERATIONS = 150
MAX_STEPS = 200
POPULATION_COUNT = 50
MUTATION_RATE = 0.001
env = gym.make(GAME)
observation = env.reset()
in_dimen = env.observation_space.shape[0]
out_dimen = env.action_space.n
pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 8, 5, out_dimen])
bestNeuralNets = []
for gen in range(1, MAX_GENERATIONS):
genAvgFit = 0.0
maxFit = 0.0
maxNeuralNet = None
for nn in pop.population:
totalReward = 0
for step in range(MAX_STEPS):
#env.render()
action = nn.getOutput(observation)
observation, reward, done, info = env.step(action)
totalReward += reward
if done:
observation = env.reset()
break
nn.fitness = totalReward
genAvgFit += nn.fitness
if nn.fitness > maxFit :
maxFit = nn.fitness
maxNeuralNet = nn
bestNeuralNets.append(maxNeuralNet)
genAvgFit/=pop.popCount
print("Generation : %3d | Avg Fitness : %4.0f | Max Fitness : %4.0f " % (gen, genAvgFit, maxFit) )
pop.createNewGeneration()
recordBestBots(bestNeuralNets)
uploadSimulation()
replayBestBots(bestNeuralNets, 1, 0.0625)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment