Created
December 21, 2016 15:52
-
-
Save DollarAkshay/14059981d90c98607339d3ee17d2f0e9 to your computer and use it in GitHub Desktop.
CartPole v0 using Genetic Algorithm and Neural Netowks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import time, math, random, bisect | |
| import gym | |
| import numpy as np | |
| def sigmoid(x): | |
| return 1.0/(1.0 + np.exp(-x)) | |
| class NeuralNet : | |
| def __init__(self, nodeCount): | |
| self.fitness = 0 | |
| self.nodeCount = nodeCount | |
| self.weights = [] | |
| self.biases = [] | |
| for i in range(len(nodeCount) - 1): | |
| self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() ) | |
| self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist()) | |
| def printWeightsandBiases(self): | |
| print("--------------------------------") | |
| print("Weights :\n[", end="") | |
| for i in range(len(self.weights)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.weights[i])): | |
| if j!=0: | |
| print("\n ", end="") | |
| print("[", end="") | |
| for k in range(len(self.weights[i][j])): | |
| print(" %5.2f," % (self.weights[i][j][k]), end="") | |
| print("\b],", end="") | |
| print("\b ],") | |
| print("\n]") | |
| print("\nBiases :\n[", end="") | |
| for i in range(len(self.biases)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.biases[i])): | |
| print(" %5.2f," % (self.biases[i][j]), end="") | |
| print("\b],", end="") | |
| print("\b \n]\n--------------------------------\n") | |
| def getOutput(self, input): | |
| output = input | |
| for i in range(len(self.nodeCount)-1): | |
| output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1])) | |
| return np.argmax(sigmoid(output)) | |
| class Population : | |
| def __init__(self, populationCount, mutationRate, nodeCount): | |
| self.nodeCount = nodeCount | |
| self.popCount = populationCount | |
| self.m_rate = mutationRate | |
| self.population = [ NeuralNet(nodeCount) for i in range(populationCount)] | |
| def createChild(self, nn1, nn2): | |
| child = NeuralNet(self.nodeCount) | |
| for i in range(len(child.weights)): | |
| for j in range(len(child.weights[i])): | |
| for k in range(len(child.weights[i][j])): | |
| if random.random() < self.m_rate: | |
| child.weights[i][j][k] = random.uniform(-1, 1) | |
| else: | |
| child.weights[i][j][k] = (nn1.weights[i][j][k] + nn2.weights[i][j][k])/2.0 | |
| for i in range(len(child.biases)): | |
| for j in range(len(child.biases[i])): | |
| if random.random() < self.m_rate: | |
| child.biases[i][j] = random.uniform(-1, 1) | |
| else: | |
| child.biases[i][j] = (nn1.biases[i][j] + nn2.biases[i][j])/2.0 | |
| return child | |
| def createNewGeneration(self): | |
| nextGen = [] | |
| fitnessSum = [0] | |
| for i in range(len(self.population)): | |
| fitnessSum.append(fitnessSum[i]+self.population[i].fitness) | |
| while(len(nextGen) < self.popCount): | |
| r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| nn1 = self.population[bisect.bisect_right(fitnessSum, r1)-1] | |
| nn2 = self.population[bisect.bisect_right(fitnessSum, r2)-1] | |
| nextGen.append( self.createChild(nn1, nn2) ) | |
| self.population.clear() | |
| self.population = nextGen | |
| def replayBestBots(bestNeuralNets, steps, sleep): | |
| choice = input("\nDo you want to watch the replay ?[Y/N] : ") | |
| if choice=='Y' or choice=='y': | |
| for i in range(1, len(bestNeuralNets)): | |
| if i%steps == 0 : | |
| observation = env.reset() | |
| totalReward = 0 | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| time.sleep(sleep) | |
| action = bestNeuralNets[i].getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| totalReward+=reward | |
| if done: | |
| observation = env.reset() | |
| break | |
| print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i, bestNeuralNets[i].fitness, totalReward)) | |
| def recordBestBots(bestNeuralNets): | |
| print("\n Recording Best Bots ") | |
| print("---------------------") | |
| env.monitor.start('Artificial Intelligence/'+GAME, force=True) | |
| observation = env.reset() | |
| for i in range(1, len(bestNeuralNets)): | |
| totalReward = 0 | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| action = bestNeuralNets[i].getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| totalReward+=reward | |
| if done: | |
| observation = env.reset() | |
| break | |
| print("Generation %3d | Expected Fitness of %4d | Actual Fitness = %4d" % (i, bestNeuralNets[i].fitness, totalReward)) | |
| env.monitor.close() | |
| def uploadSimulation(): | |
| choice = input("\nDo you want to upload the simulation ?[Y/N] : ") | |
| if choice=='Y' or choice=='y': | |
| API_KEY = open('/home/dollarakshay/Documents/API Keys/Open AI Key.txt', 'r').read().rstrip() | |
| gym.upload('Artificial Intelligence/'+GAME, api_key=API_KEY) | |
| GAME = 'CartPole-v0' | |
| MAX_GENERATIONS = 150 | |
| MAX_STEPS = 200 | |
| POPULATION_COUNT = 50 | |
| MUTATION_RATE = 0.001 | |
| env = gym.make(GAME) | |
| observation = env.reset() | |
| in_dimen = env.observation_space.shape[0] | |
| out_dimen = env.action_space.n | |
| pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 8, 5, out_dimen]) | |
| bestNeuralNets = [] | |
| for gen in range(1, MAX_GENERATIONS): | |
| genAvgFit = 0.0 | |
| maxFit = 0.0 | |
| maxNeuralNet = None | |
| for nn in pop.population: | |
| totalReward = 0 | |
| for step in range(MAX_STEPS): | |
| #env.render() | |
| action = nn.getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| totalReward += reward | |
| if done: | |
| observation = env.reset() | |
| break | |
| nn.fitness = totalReward | |
| genAvgFit += nn.fitness | |
| if nn.fitness > maxFit : | |
| maxFit = nn.fitness | |
| maxNeuralNet = nn | |
| bestNeuralNets.append(maxNeuralNet) | |
| genAvgFit/=pop.popCount | |
| print("Generation : %3d | Avg Fitness : %4.0f | Max Fitness : %4.0f " % (gen, genAvgFit, maxFit) ) | |
| pop.createNewGeneration() | |
| recordBestBots(bestNeuralNets) | |
| uploadSimulation() | |
| replayBestBots(bestNeuralNets, 1, 0.0625) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment