Skip to content

Instantly share code, notes, and snippets.

@DollarAkshay
Created December 20, 2016 07:57
Show Gist options
  • Save DollarAkshay/55e50158a1259cb4ef5675a427bf1781 to your computer and use it in GitHub Desktop.
Save DollarAkshay/55e50158a1259cb4ef5675a427bf1781 to your computer and use it in GitHub Desktop.
CartPole v1 using Genetic Algorithm and Neural Netowks
import time, math, random, bisect
import gym
import numpy as np
def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))
class NeuralNet :
def __init__(self, nodeCount):
self.fitness = 0
self.nodeCount = nodeCount
self.weights = []
self.biases = []
for i in range(len(nodeCount) - 1):
self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() )
self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist())
def printWeightsandBiases(self):
print("--------------------------------")
print("Weights :\n[", end="")
for i in range(len(self.weights)):
print("\n [ ", end="")
for j in range(len(self.weights[i])):
if j!=0:
print("\n ", end="")
print("[", end="")
for k in range(len(self.weights[i][j])):
print(" %5.2f," % (self.weights[i][j][k]), end="")
print("\b],", end="")
print("\b ],")
print("\n]")
print("\nBiases :\n[", end="")
for i in range(len(self.biases)):
print("\n [ ", end="")
for j in range(len(self.biases[i])):
print(" %5.2f," % (self.biases[i][j]), end="")
print("\b],", end="")
print("\b \n]\n--------------------------------\n")
def getOutput(self, input):
output = input
for i in range(len(self.nodeCount)-1):
output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1]))
return np.argmax(sigmoid(output))
class Population :
def __init__(self, populationCount, mutationRate, nodeCount):
self.nodeCount = nodeCount
self.popCount = populationCount
self.m_rate = mutationRate
self.population = [ NeuralNet(nodeCount) for i in range(populationCount)]
def createChild(self, nn1, nn2):
child = NeuralNet(self.nodeCount)
for i in range(len(child.weights)):
for j in range(len(child.weights[i])):
for k in range(len(child.weights[i][j])):
if random.random() < self.m_rate:
child.weights[i][j][k] = random.uniform(-1, 1)
else:
child.weights[i][j][k] = (nn1.weights[i][j][k] + nn2.weights[i][j][k])/2.0
for i in range(len(child.biases)):
for j in range(len(child.biases[i])):
if random.random() < self.m_rate:
child.biases[i][j] = random.uniform(-1, 1)
else:
child.biases[i][j] = (nn1.biases[i][j] + nn2.biases[i][j])/2.0
return child
def createNewGeneration(self):
nextGen = []
fitnessSum = [0]
for i in range(len(self.population)):
fitnessSum.append(fitnessSum[i]+self.population[i].fitness)
while(len(nextGen) < self.popCount):
r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] )
r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] )
nn1 = self.population[bisect.bisect_right(fitnessSum, r1)-1]
nn2 = self.population[bisect.bisect_right(fitnessSum, r2)-1]
nextGen.append( self.createChild(nn1, nn2) )
self.population.clear()
self.population = nextGen
def replayBestBots(bestNeuralNets, steps, sleep):
for i in range(len(bestNeuralNets)):
if i%steps == 0 :
observation = env.reset()
print("Generation %3d had a best fitness of %4d" % (i, bestNeuralNets[i].fitness))
for step in range(MAX_STEPS):
env.render()
time.sleep(sleep)
action = bestNeuralNets[i].getOutput(observation)
observation, reward, done, info = env.step(action)
if done:
break
def uploadSimulation():
#choice = input("\nDo you want to upload the simulation ?[Y/N] : ")
#if choice=='Y' or choice=='y':
#partialKey = input("\nEnter last 2 characters of API Key : ")
partialKey = 'cQ'
gym.upload('Artificial Intelligence/CartPole v1', api_key='sk_pwRfoNpISVKq3o88csB'+partialKey)
MAX_GENERATIONS = 100
MAX_STEPS = 500
POPULATION_COUNT = 200
MUTATION_RATE = 0.001
env = gym.make('CartPole-v1')
env.monitor.start('Artificial Intelligence/CartPole v1', force=True)
observation = env.reset()
in_dimen = env.observation_space.shape[0]
out_dimen = env.action_space.n
pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 8, 8, out_dimen])
bestNeuralNets = []
for gen in range(MAX_GENERATIONS):
genAvgFit = 0.0
maxFit = 0.0
maxNeuralNet = None
for nn in pop.population:
totalReward = 0
for step in range(MAX_STEPS):
env.render()
action = nn.getOutput(observation)
observation, reward, done, info = env.step(action)
totalReward += reward
if done:
observation = env.reset()
break
nn.fitness = totalReward
genAvgFit += nn.fitness
if nn.fitness > maxFit :
maxFit = nn.fitness
maxNeuralNet = nn
bestNeuralNets.append(maxNeuralNet)
genAvgFit/=pop.popCount
print("Generation : %3d | Avg Fitness : %4.0f | Max Fitness : %4.0f " % (gen+1, genAvgFit, maxFit) )
pop.createNewGeneration()
env.monitor.close()
uploadSimulation()
#choice = input("Do you want to watch the replay ?[Y/N] : ")
#if choice=='Y' or choice=='y':
# replayBestBots(bestNeuralNets, int(math.ceil(MAX_GENERATIONS/10.0)), 0.0625)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment