Created
December 20, 2016 07:57
-
-
Save DollarAkshay/55e50158a1259cb4ef5675a427bf1781 to your computer and use it in GitHub Desktop.
CartPole v1 using Genetic Algorithm and Neural Netowks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import time, math, random, bisect | |
| import gym | |
| import numpy as np | |
| def sigmoid(x): | |
| return 1.0/(1.0 + np.exp(-x)) | |
| class NeuralNet : | |
| def __init__(self, nodeCount): | |
| self.fitness = 0 | |
| self.nodeCount = nodeCount | |
| self.weights = [] | |
| self.biases = [] | |
| for i in range(len(nodeCount) - 1): | |
| self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() ) | |
| self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist()) | |
| def printWeightsandBiases(self): | |
| print("--------------------------------") | |
| print("Weights :\n[", end="") | |
| for i in range(len(self.weights)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.weights[i])): | |
| if j!=0: | |
| print("\n ", end="") | |
| print("[", end="") | |
| for k in range(len(self.weights[i][j])): | |
| print(" %5.2f," % (self.weights[i][j][k]), end="") | |
| print("\b],", end="") | |
| print("\b ],") | |
| print("\n]") | |
| print("\nBiases :\n[", end="") | |
| for i in range(len(self.biases)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.biases[i])): | |
| print(" %5.2f," % (self.biases[i][j]), end="") | |
| print("\b],", end="") | |
| print("\b \n]\n--------------------------------\n") | |
| def getOutput(self, input): | |
| output = input | |
| for i in range(len(self.nodeCount)-1): | |
| output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1])) | |
| return np.argmax(sigmoid(output)) | |
| class Population : | |
| def __init__(self, populationCount, mutationRate, nodeCount): | |
| self.nodeCount = nodeCount | |
| self.popCount = populationCount | |
| self.m_rate = mutationRate | |
| self.population = [ NeuralNet(nodeCount) for i in range(populationCount)] | |
| def createChild(self, nn1, nn2): | |
| child = NeuralNet(self.nodeCount) | |
| for i in range(len(child.weights)): | |
| for j in range(len(child.weights[i])): | |
| for k in range(len(child.weights[i][j])): | |
| if random.random() < self.m_rate: | |
| child.weights[i][j][k] = random.uniform(-1, 1) | |
| else: | |
| child.weights[i][j][k] = (nn1.weights[i][j][k] + nn2.weights[i][j][k])/2.0 | |
| for i in range(len(child.biases)): | |
| for j in range(len(child.biases[i])): | |
| if random.random() < self.m_rate: | |
| child.biases[i][j] = random.uniform(-1, 1) | |
| else: | |
| child.biases[i][j] = (nn1.biases[i][j] + nn2.biases[i][j])/2.0 | |
| return child | |
| def createNewGeneration(self): | |
| nextGen = [] | |
| fitnessSum = [0] | |
| for i in range(len(self.population)): | |
| fitnessSum.append(fitnessSum[i]+self.population[i].fitness) | |
| while(len(nextGen) < self.popCount): | |
| r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| nn1 = self.population[bisect.bisect_right(fitnessSum, r1)-1] | |
| nn2 = self.population[bisect.bisect_right(fitnessSum, r2)-1] | |
| nextGen.append( self.createChild(nn1, nn2) ) | |
| self.population.clear() | |
| self.population = nextGen | |
| def replayBestBots(bestNeuralNets, steps, sleep): | |
| for i in range(len(bestNeuralNets)): | |
| if i%steps == 0 : | |
| observation = env.reset() | |
| print("Generation %3d had a best fitness of %4d" % (i, bestNeuralNets[i].fitness)) | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| time.sleep(sleep) | |
| action = bestNeuralNets[i].getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| if done: | |
| break | |
| def uploadSimulation(): | |
| #choice = input("\nDo you want to upload the simulation ?[Y/N] : ") | |
| #if choice=='Y' or choice=='y': | |
| #partialKey = input("\nEnter last 2 characters of API Key : ") | |
| partialKey = 'cQ' | |
| gym.upload('Artificial Intelligence/CartPole v1', api_key='sk_pwRfoNpISVKq3o88csB'+partialKey) | |
| MAX_GENERATIONS = 100 | |
| MAX_STEPS = 500 | |
| POPULATION_COUNT = 200 | |
| MUTATION_RATE = 0.001 | |
| env = gym.make('CartPole-v1') | |
| env.monitor.start('Artificial Intelligence/CartPole v1', force=True) | |
| observation = env.reset() | |
| in_dimen = env.observation_space.shape[0] | |
| out_dimen = env.action_space.n | |
| pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 8, 8, out_dimen]) | |
| bestNeuralNets = [] | |
| for gen in range(MAX_GENERATIONS): | |
| genAvgFit = 0.0 | |
| maxFit = 0.0 | |
| maxNeuralNet = None | |
| for nn in pop.population: | |
| totalReward = 0 | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| action = nn.getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| totalReward += reward | |
| if done: | |
| observation = env.reset() | |
| break | |
| nn.fitness = totalReward | |
| genAvgFit += nn.fitness | |
| if nn.fitness > maxFit : | |
| maxFit = nn.fitness | |
| maxNeuralNet = nn | |
| bestNeuralNets.append(maxNeuralNet) | |
| genAvgFit/=pop.popCount | |
| print("Generation : %3d | Avg Fitness : %4.0f | Max Fitness : %4.0f " % (gen+1, genAvgFit, maxFit) ) | |
| pop.createNewGeneration() | |
| env.monitor.close() | |
| uploadSimulation() | |
| #choice = input("Do you want to watch the replay ?[Y/N] : ") | |
| #if choice=='Y' or choice=='y': | |
| # replayBestBots(bestNeuralNets, int(math.ceil(MAX_GENERATIONS/10.0)), 0.0625) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment