Created
December 20, 2016 09:27
-
-
Save DollarAkshay/76cd622d1e913b8af0a2f1254a2511a0 to your computer and use it in GitHub Desktop.
CartPole v0 using Genetic Algorithm and Neural Netowks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import time, math, random, bisect | |
| import gym | |
| import numpy as np | |
| def sigmoid(x): | |
| return 1.0/(1.0 + np.exp(-x)) | |
| class NeuralNet : | |
| def __init__(self, nodeCount): | |
| self.fitness = 0 | |
| self.nodeCount = nodeCount | |
| self.weights = [] | |
| self.biases = [] | |
| for i in range(len(nodeCount) - 1): | |
| self.weights.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i], nodeCount[i+1])).tolist() ) | |
| self.biases.append( np.random.uniform(low=-1, high=1, size=(nodeCount[i+1])).tolist()) | |
| def printWeightsandBiases(self): | |
| print("--------------------------------") | |
| print("Weights :\n[", end="") | |
| for i in range(len(self.weights)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.weights[i])): | |
| if j!=0: | |
| print("\n ", end="") | |
| print("[", end="") | |
| for k in range(len(self.weights[i][j])): | |
| print(" %5.2f," % (self.weights[i][j][k]), end="") | |
| print("\b],", end="") | |
| print("\b ],") | |
| print("\n]") | |
| print("\nBiases :\n[", end="") | |
| for i in range(len(self.biases)): | |
| print("\n [ ", end="") | |
| for j in range(len(self.biases[i])): | |
| print(" %5.2f," % (self.biases[i][j]), end="") | |
| print("\b],", end="") | |
| print("\b \n]\n--------------------------------\n") | |
| def getOutput(self, input): | |
| output = input | |
| for i in range(len(self.nodeCount)-1): | |
| output = np.reshape( np.matmul(output, self.weights[i]) + self.biases[i], (self.nodeCount[i+1])) | |
| return np.argmax(sigmoid(output)) | |
| class Population : | |
| def __init__(self, populationCount, mutationRate, nodeCount): | |
| self.nodeCount = nodeCount | |
| self.popCount = populationCount | |
| self.m_rate = mutationRate | |
| self.population = [ NeuralNet(nodeCount) for i in range(populationCount)] | |
| def createChild(self, nn1, nn2): | |
| child = NeuralNet(self.nodeCount) | |
| for i in range(len(child.weights)): | |
| for j in range(len(child.weights[i])): | |
| for k in range(len(child.weights[i][j])): | |
| if random.random() < self.m_rate: | |
| child.weights[i][j][k] = random.uniform(-1, 1) | |
| else: | |
| child.weights[i][j][k] = (nn1.weights[i][j][k] + nn2.weights[i][j][k])/2.0 | |
| for i in range(len(child.biases)): | |
| for j in range(len(child.biases[i])): | |
| if random.random() < self.m_rate: | |
| child.biases[i][j] = random.uniform(-1, 1) | |
| else: | |
| child.biases[i][j] = (nn1.biases[i][j] + nn2.biases[i][j])/2.0 | |
| return child | |
| def createNewGeneration(self): | |
| nextGen = [] | |
| fitnessSum = [0] | |
| for i in range(len(self.population)): | |
| fitnessSum.append(fitnessSum[i]+self.population[i].fitness) | |
| while(len(nextGen) < self.popCount): | |
| r1 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| r2 = random.uniform(0, fitnessSum[len(fitnessSum)-1] ) | |
| nn1 = self.population[bisect.bisect_right(fitnessSum, r1)-1] | |
| nn2 = self.population[bisect.bisect_right(fitnessSum, r2)-1] | |
| nextGen.append( self.createChild(nn1, nn2) ) | |
| self.population.clear() | |
| self.population = nextGen | |
| def replayBestBots(bestNeuralNets, steps, sleep): | |
| env.monitor.start('Artificial Intelligence/CartPole v0', force=True, video_callable=lambda count: count % 10 == 0) | |
| for i in range(len(bestNeuralNets)): | |
| if i%steps == 0 : | |
| observation = env.reset() | |
| print("Generation %3d had a best fitness of %4d" % (i, bestNeuralNets[i].fitness)) | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| time.sleep(sleep) | |
| action = bestNeuralNets[i].getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| if done: | |
| break | |
| env.monitor.close() | |
| def uploadSimulation(): | |
| choice = input("\nDo you want to upload the simulation ?[Y/N] : ") | |
| if choice=='Y' or choice=='y': | |
| partialKey = input("\nEnter last 2 characters of API Key : ") | |
| gym.upload('Artificial Intelligence/CartPole v0', api_key='sk_pwRfoNpISVKq3o88csB'+partialKey) | |
| MAX_GENERATIONS = 150 | |
| MAX_STEPS = 200 | |
| POPULATION_COUNT = 40 | |
| MUTATION_RATE = 0.001 | |
| env = gym.make('CartPole-v0') | |
| observation = env.reset() | |
| in_dimen = env.observation_space.shape[0] | |
| out_dimen = env.action_space.n | |
| pop = Population(POPULATION_COUNT, MUTATION_RATE, [in_dimen, 8, 5, out_dimen]) | |
| bestNeuralNets = [] | |
| for gen in range(MAX_GENERATIONS): | |
| genAvgFit = 0.0 | |
| maxFit = 0.0 | |
| maxNeuralNet = None | |
| for nn in pop.population: | |
| totalReward = 0 | |
| for step in range(MAX_STEPS): | |
| env.render() | |
| action = nn.getOutput(observation) | |
| observation, reward, done, info = env.step(action) | |
| totalReward += reward | |
| if done: | |
| observation = env.reset() | |
| break | |
| nn.fitness = totalReward | |
| genAvgFit += nn.fitness | |
| if nn.fitness > maxFit : | |
| maxFit = nn.fitness | |
| maxNeuralNet = nn | |
| bestNeuralNets.append(maxNeuralNet) | |
| genAvgFit/=pop.popCount | |
| print("Generation : %3d | Avg Fitness : %4.0f | Max Fitness : %4.0f " % (gen+1, genAvgFit, maxFit) ) | |
| pop.createNewGeneration() | |
| choice = input("Do you want to watch the replay ?[Y/N] : ") | |
| if choice=='Y' or choice=='y': | |
| replayBestBots(bestNeuralNets, 1, 0.0625) | |
| uploadSimulation() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@DollarAkshay This is a very interesting approach. I heard of people using genetic algorithm+neural net before but never see it in operation. Now I do. :) You might not want to have your API key exposed to the public though. (Not that people can make money out of your OpenAI account I guess.)
@ngundotra That's a good observation. I guess that effectively keeps the neural net linear. Maybe that's why it does a good job keeping the pole straight when it's already very straight but once it moves more than a few degrees it can no longer save it.