The code should run as is with the following dependencies:
pip install transformers datasets baal matplotlib tqdm
The code should run as is with the following dependencies:
pip install transformers datasets baal matplotlib tqdm
FROM python:3.7 | |
WORKDIR /tmp | |
COPY requirements.txt . | |
RUN pip install --no-cache \ | |
-r requirements.txt \ | |
uwsgi==2.0.19.1 \ | |
supervisor==4.2.2 \ | |
label-studio==1.0.2 \ |
import numpy as np | |
import torch | |
from ignite.engine import Engine, Events, create_supervised_trainer | |
from pydantic import BaseModel | |
from torch.utils.data import DataLoader | |
from torchvision.datasets import CIFAR10 | |
from torchvision.models import vgg16 | |
from torchvision.transforms import transforms | |
from tqdm import tqdm |
from typing import Optional | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, TensorDataset | |
from baal.active import ActiveLearningDataset | |
class AlternateIterator: |
import gc | |
import os | |
import shutil | |
import tracemalloc | |
from pathlib import Path | |
import numpy as np | |
from keras import backend as K | |
from keras import callbacks |
#!/usr/bin/env python | |
import subprocess | |
import sys | |
def get_staged(): | |
proc = subprocess.Popen(['git', 'diff', '--name-only', '--cached'], stdout=subprocess.PIPE) | |
staged_files = proc.stdout.readlines() | |
staged_files = [f.decode('utf-8') for f in staged_files] | |
staged_files = [f.strip() for f in staged_files] | |
staged_files = [f for f in staged_files if f.endswith('.py')] |
import keras.backend as K | |
import tensorflow as tf | |
from tensorflow.keras.layers import Layer | |
"""Not tested, I'll play around with GANs soon with it.""" | |
from tensorflow.keras.layers import Conv2D | |
import numpy as np | |
class CoordConv2D(Layer): |
import cv2 | |
import numpy as np | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.utils import Sequence | |
class MySequence(Sequence): | |
def __init__(self): | |
self.path = '~/Images/cat.jpg' | |
self.imgaug = ImageDataGenerator(rotation_range=20, |
import os | |
from collections import defaultdict | |
import h5py | |
import numpy as np | |
pjoin = os.path.join | |
def convert_multi_to_single(multipath, fp): |
"""Good example""" | |
def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0, | |
fill_mode='nearest', cval=0., tx=None, ty=None): | |
"""Performs a random spatial shift of a Numpy image tensor. | |
# Arguments | |
x: Input tensor. Must be 3D. | |
wrg: Width shift range, as a float fraction of the width. | |
hrg: Height shift range, as a float fraction of the height. | |
row_axis: Index of axis for rows in the input tensor. | |
col_axis: Index of axis for columns in the input tensor. |