Skip to content

Instantly share code, notes, and snippets.

@Erlemar
Created August 2, 2017 10:51
Show Gist options
  • Save Erlemar/aba3278a08ff4a9684f4bef7a9910050 to your computer and use it in GitHub Desktop.
Save Erlemar/aba3278a08ff4a9684f4bef7a9910050 to your computer and use it in GitHub Desktop.
Gini index
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = pd.DataFrame({'Working': [7979, 260], 'On pension': [1334, 39], 'Unknown': [3806, 30]}).T"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>On pension</th>\n",
" <td>1334</td>\n",
" <td>39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Unknown</th>\n",
" <td>3806</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Working</th>\n",
" <td>7979</td>\n",
" <td>260</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1\n",
"On pension 1334 39\n",
"Unknown 3806 30\n",
"Working 7979 260"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Suppose we have a variable about people occupation and frequencies for some target.\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Calculate target rate and sort.\n",
"data['s'] = data[1] / np.sum(data.values, axis=1)\n",
"data = data.sort_values('s', axis=0, ascending=False)\n",
"#Renaming columns for easier reference.\n",
"data.columns = ['n', 'y', 's']\n",
"#Calculate cummulative percent.\n",
"data['cum_perc_n'] = data.n.cumsum()/data.n.sum()\n",
"data['cum_perc_y'] = data.y.cumsum()/data.y.sum()\n",
"#Rolling mean for X is calculated. First value should be simply half of itself, it is calculated separately, as this is easier.\n",
"data['x'] = data.cum_perc_y.rolling(2, min_periods=1).mean()\n",
"data.iloc[0, 5] = data.iloc[0, 5] / 2\n",
"#Y is calculated as difference between the value in the current and the previous row.\n",
"data['Y'] = data.cum_perc_n - data.cum_perc_n.shift(1).fillna(0)\n",
"#Simple element-wise multiplication.\n",
"data['g'] = data.x * data.Y"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>n</th>\n",
" <th>y</th>\n",
" <th>s</th>\n",
" <th>cum_perc_n</th>\n",
" <th>cum_perc_y</th>\n",
" <th>x</th>\n",
" <th>Y</th>\n",
" <th>g</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Working</th>\n",
" <td>7979</td>\n",
" <td>260</td>\n",
" <td>0.031557</td>\n",
" <td>0.608202</td>\n",
" <td>0.790274</td>\n",
" <td>0.395137</td>\n",
" <td>0.608202</td>\n",
" <td>0.240323</td>\n",
" </tr>\n",
" <tr>\n",
" <th>On pension</th>\n",
" <td>1334</td>\n",
" <td>39</td>\n",
" <td>0.028405</td>\n",
" <td>0.709886</td>\n",
" <td>0.908815</td>\n",
" <td>0.849544</td>\n",
" <td>0.101685</td>\n",
" <td>0.086386</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Unknown</th>\n",
" <td>3806</td>\n",
" <td>30</td>\n",
" <td>0.007821</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.954407</td>\n",
" <td>0.290114</td>\n",
" <td>0.276887</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" n y s cum_perc_n cum_perc_y x Y \\\n",
"Working 7979 260 0.031557 0.608202 0.790274 0.395137 0.608202 \n",
"On pension 1334 39 0.028405 0.709886 0.908815 0.849544 0.101685 \n",
"Unknown 3806 30 0.007821 1.000000 1.000000 0.954407 0.290114 \n",
"\n",
" g \n",
"Working 0.240323 \n",
"On pension 0.086386 \n",
"Unknown 0.276887 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20.718992454156492\n"
]
}
],
"source": [
"#This is Gini. Sum g, multiply by 2 and subtract 1.\n",
"print((np.sum(data['g']) * 2 - 1) * 100)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment