Skip to content

Instantly share code, notes, and snippets.

View EsteveSegura's full-sized avatar
❄️
Focusing

Esteve Segura EsteveSegura

❄️
Focusing
View GitHub Profile
@EsteveSegura
EsteveSegura / bot.js
Last active October 21, 2019 18:00
instagram vot
const download = require('image-downloader')
const detectFood = require('./detectFood');
//download instagram post
async function downloadPost(ig,media_id){
try {
let postToDownload = await getMediaIdInfo(ig,media_id);
let downloadedData = await downloadImageFromUrl(postToDownload.items[0].image_versions2.candidates[0].url,media_id);
return downloadedData;
} catch (error) {
@EsteveSegura
EsteveSegura / detectfood.js
Created October 21, 2019 17:34
detect food js
const spawn = require('child_process').spawn;
//create friendly js prediction
function decodePrediction(str){
let decode = str.split('-');
return {
"label" : decode[0],
"percentage" : Math.trunc(decode[1])
}
}
@EsteveSegura
EsteveSegura / vggModel.py
Created October 21, 2019 16:52
VGG predictions
import sys
import os
import numpy as np
from PIL import Image as pil_image
from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions
def predictPicture(picturePath):
mod = VGG16() #Calling VGG16 Model
img = pil_image.open(picturePath) #loading picture
@EsteveSegura
EsteveSegura / Transfer_Learning_VGG16.py
Created October 16, 2019 13:37
transfer learning VGG16
import numpy as np
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Activation
from keras.layers.core import Dense, Flatten
from keras.optimizers import Adam
from keras.metrics import categorical_crossentropy, sparse_categorical_crossentropy
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
from keras.layers.normalization import BatchNormalization
async function markovChain(){
let amazonDataSetFile = await utils.readFileLineByLine('../dataset/AmazonDataSet.txt')
let ourDataSet = await utils.readFileLineByLine('../dataset/sentences.txt')
let filteredData = amazonDataSetFile.filter((comments) => {
if(comments.includes("taste") || comments.includes("yummy") || comments.includes("good") || comments.includes("cooking") || comments.includes("delicious") || comments.includes("savory") || comments.includes("devour")){
return comments
}
})
filteredData = filteredData.slice(0,3500)
let bothDataSetsTogether = [...filteredData,...ourDataSet]
@EsteveSegura
EsteveSegura / markov.js
Created October 6, 2019 02:02
markov.js
const titlegen = require('titlegen');
const utils = require('./utils.js');
async function generate(path,howManyChain){
return new Promise(async function(resolve,reject){
let generator = titlegen.create();
let finalTextMarkov = []
let dataset = [];
@EsteveSegura
EsteveSegura / generatingSentences.js
Created October 6, 2019 01:23
generatingSentences.js expanded
const utils = require('../src/utils.js');
const generateCommentsFromHandMadeData = require('../src/generateCommentsFromHandMadeData.js')
const howManyIterations = 99999;
let allSentences = [];
let sentencesAboutPicture ={
"mainSentence": [
"I love photography, it transmits $",
"The photo talks about $",
@EsteveSegura
EsteveSegura / generatingSentences.js
Created October 6, 2019 00:50
generatingSentences.js expanded
const utils = require('../src/utils.js');
const generateCommentsFromHandMadeData = require('../src/generateCommentsFromHandMadeData.js')
let sentencesAboutPicture ={
"mainSentence": [
"I love photography, it transmits $",
"The photo talks about $",
"Just '$'",
"Beyond photography you can perceive: $",
"$!",
@EsteveSegura
EsteveSegura / generatingSentences.js
Created October 5, 2019 23:44
generatingSentences.js
const utils = require('../src/utils.js');
const generateCommentsFromHandMadeData = require('../src/generateCommentsFromHandMadeData.js')
let sentencesAboutFood = {
"mainSentence":[
"This picture looks $",
"Looks $, i love your pictures",
"I want to try that food, it looks $",
"It seems $"
],
@EsteveSegura
EsteveSegura / utils.js
Last active October 5, 2019 21:19
utils.js file
const fs = require('fs');
const readline = require('readline');
function randomInt(min,max){
return Math.round(Math.random() * (max-min)+ min)
}
function saveArrayToTxtLineByLine(arrFinal,pathOutput){
return new Promise(function(resolve,reject){
let fileToSave = deleteRepeatedValuesOnArray(arrFinal)