Last active
May 15, 2019 07:58
-
-
Save EthanRosenthal/c647d60828d16fa3591d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"np.random.seed(0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"!curl -O http://files.grouplens.org/datasets/movielens/ml-100k.zip\n", | |
"!unzip ml-100k.zip\n", | |
"!cd ml-100k/" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>user_id</th>\n", | |
" <th>item_id</th>\n", | |
" <th>rating</th>\n", | |
" <th>timestamp</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>196</td>\n", | |
" <td>242</td>\n", | |
" <td>3</td>\n", | |
" <td>881250949</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>186</td>\n", | |
" <td>302</td>\n", | |
" <td>3</td>\n", | |
" <td>891717742</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>22</td>\n", | |
" <td>377</td>\n", | |
" <td>1</td>\n", | |
" <td>878887116</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>244</td>\n", | |
" <td>51</td>\n", | |
" <td>2</td>\n", | |
" <td>880606923</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>166</td>\n", | |
" <td>346</td>\n", | |
" <td>1</td>\n", | |
" <td>886397596</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" user_id item_id rating timestamp\n", | |
"0 196 242 3 881250949\n", | |
"1 186 302 3 891717742\n", | |
"2 22 377 1 878887116\n", | |
"3 244 51 2 880606923\n", | |
"4 166 346 1 886397596" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"names = ['user_id', 'item_id', 'rating', 'timestamp']\n", | |
"df = pd.read_csv('u.data', sep='\\t', names=names)\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 5., 3., 4., ..., 0., 0., 0.],\n", | |
" [ 4., 0., 0., ..., 0., 0., 0.],\n", | |
" [ 0., 0., 0., ..., 0., 0., 0.],\n", | |
" ..., \n", | |
" [ 5., 0., 0., ..., 0., 0., 0.],\n", | |
" [ 0., 0., 0., ..., 0., 0., 0.],\n", | |
" [ 0., 5., 0., ..., 0., 0., 0.]])" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"n_users = df.user_id.unique().shape[0]\n", | |
"n_items = df.item_id.unique().shape[0]\n", | |
"ratings = np.zeros((n_users, n_items))\n", | |
"for row in df.itertuples():\n", | |
" ratings[row[1]-1, row[2]-1] = row[3]\n", | |
"ratings" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"943 users\n", | |
"1682 items\n", | |
"Sparsity: 6.30%\n" | |
] | |
} | |
], | |
"source": [ | |
"print str(n_users) + ' users'\n", | |
"print str(n_items) + ' items'\n", | |
"sparsity = float(len(ratings.nonzero()[0]))\n", | |
"sparsity /= (ratings.shape[0] * ratings.shape[1])\n", | |
"sparsity *= 100\n", | |
"print 'Sparsity: {:4.2f}%'.format(sparsity)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def train_test_split(ratings):\n", | |
" test = np.zeros(ratings.shape)\n", | |
" train = ratings.copy()\n", | |
" for user in xrange(ratings.shape[0]):\n", | |
" test_ratings = np.random.choice(ratings[user, :].nonzero()[0], \n", | |
" size=10, \n", | |
" replace=False)\n", | |
" train[user, test_ratings] = 0.\n", | |
" test[user, test_ratings] = ratings[user, test_ratings]\n", | |
" \n", | |
" # Test and training are truly disjoint\n", | |
" assert(np.all((train * test) == 0)) \n", | |
" return train, test" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"train, test = train_test_split(ratings)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment