Skip to content

Instantly share code, notes, and snippets.

@EvanZ
Last active May 9, 2016 21:09
Show Gist options
  • Save EvanZ/822cb60607feb5f5cf608daf69bb97f8 to your computer and use it in GitHub Desktop.
Save EvanZ/822cb60607feb5f5cf608daf69bb97f8 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n",
"import math\n",
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Read Draymond game logs (from basketball-reference.com)\n",
"DRAY = pd.read_csv('/home/jovyan/draymond.csv')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2 0 1 1 1 1 1 3 1 1 1 2 2 0 1 0 1 2 3 0 2 3 3 1 3 1 2 1 0 2 1 0 0 1 2 1 1\n",
" 2 1 1 2 1 0 0 3 1 2 1 2 1 0 3 1 2 1 1 0 1 2 4 0 0 1 1 1 0 1 0 1 0 0 0 1 0\n",
" 2 0 1 0 0 1 1 1]\n"
]
}
],
"source": [
"# Use the average made 3pt field goals this season as the 'lambda' in the Poisson model\n",
"average_3pt_made_field_goals = np.mean(DRAY['3P'])\n",
"\n",
"# Model Draymond made 3pt field goals as a Poisson distribution \n",
"# https://en.wikipedia.org/wiki/Poisson_distribution\n",
"fg3m = np.random.poisson(average_3pt_made_field_goals, 82) # one 82-game simulation of the model\n",
"print(fg3m)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.23456790123\n"
]
}
],
"source": [
"print(average_3pt_made_field_goals)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f74a48f4e48>"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAJPCAYAAAAKQxMrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuUV9V9N/73QUbCXS4CgwhYvDTYCpqmaVQs00bQVAJG\nGzFxQFOjz7JWY4ypaERADDF9lkatjzFPvDA+UYmXFKLxgssOXkhifyYa1ERNoyACQkBFRElkvr8/\nhG8Zuc0oCB5fr7Vmre85e++zP9/jzB+8PXufolKpBAAAAIDyabOjCwAAAABg+xD8AAAAAJSU4AcA\nAACgpAQ/AAAAACUl+AEAAAAoKcEPAAAAQEm1OPgpiqJNURS/LIpi1rrjbkVR3FcUxTNFUdxbFEXX\n7VcmAAAAAK3Vmid+zkzy9AbH5ya5v1Kp7JfkgSQTtmVhAAAAALw/LQp+iqLol+SzSX6wwenRSaav\n+zw9yZhtWxoAAAAA70dLn/i5LMk5SSobnOtdqVReTpJKpbIkSa9tXBsAAAAA78NWg5+iKP4hycuV\nSuXxJMUWula20AYAAADAB6xtC/ockuRzRVF8Nkn7JJ2LorgxyZKiKHpXKpWXi6Lok2TppgYXRSEQ\nAgAAANjGKpXKlh7QSZIUlUrLc5miKP42ydmVSuVzRVF8J8nySqVySVEU/5qkW6VSOXcTYyqtmQPY\nNiZNmpRJkybt6DLgI8ffHuw4/v5gx/C3BztGURQtCn5a81avd/t2ksOLongmyd+vOwYAAABgJ9GS\npV5VlUplTpI56z6vSPKZ7VEUAAAAAO/f+3niB9iJDR8+fEeXAB9J/vZgx/H3BzuGvz3YubVqj5/3\nNIE9fgAAAAC2qZbu8dOqpV4AAABQRgMHDsz8+fN3dBmwkQEDBuSFF154z+M98QMAAMBH3rqnJ3Z0\nGbCRzf1ufhBv9QIAAABgJyb4AQAAACgpwQ8AAABASQl+AAAAAErKW70AAABgEyZO/G4WLHh1u12/\nf//dMmXKV7fab+DAgVm6dGlqamqyyy67ZPDgwamvr88pp5ySonhnb9+TTjopN910U9q1a5ddd901\nn/jEJ3LFFVdkv/32a3atxsbG/N3f/V0uueSSnHPOOUmSt956KwcccEAuuOCC1NfXV/tOmTIls2fP\nzkMPPZThw4fnwQcfzBNPPJG//Mu/rPY5+uijM3PmzDQ2Nuawww5Lkjz99NOZMGFC5syZk0qlkr/6\nq7/K1KlT8+lPfzpJMn/+/Oy111757Gc/mzvvvLN6rfr6+uyzzz6ZOHFi5syZk7/7u79Lx44dkyS7\n7bZbPv3pT+ecc87JX/3VX23yPj333HM555xzMnfu3DQ1NeWTn/xkLr/88uy7777VPpdddlm+853v\n5M0338yxxx6bq6++OjU1NUmSq666KjfccEPmzZuXL37xi7nuuuuaXf/NN9/M2WefnVtvvTVvv/12\nhgwZksbGxq3+99vRBD8AAACwCQsWvJqBAydtt+u/8ELLrl0URe66667U1dXl9ddfz5w5c3LGGWfk\nF7/4RbNw4l//9V8zZcqUrFmzJv/rf/2vnHzyyXnooYeaXauhoSE9evRIQ0NDNfj52Mc+lmuvvTbH\nHHNMjjjiiOy+++75zW9+k8suuyyPPvpotYb99tsvDQ0N+bd/+7ckyYoVK/Lzn/88vXr1ql7/v//7\nv3PooYfm9NNPz/Tp01NTU5PrrrsuI0aMyP33359PfepT1b6/+MUv8vOf/zx/8zd/s8nvvccee2TB\nggVJkkWLFuWaa67JsGHD8tOf/jR1dXUb9X/11VczevTo3HDDDencuXMmT56c0aNH5ze/+U2S5N57\n7813vvOd/Od//mdqa2szZsyYXHjhhfnWt75Vne+CCy7IvffemzfffHOj63/lK19JU1NTnnnmmXTr\n1i2PP/74Vv7L7Rws9QIAAICd3PrXeXfu3DlHHXVUZsyYkenTp+fpp5/eqG+7du3yhS98YaNgYvXq\n1bntttty1VVX5bnnnssvf/nLatuwYcNy3HHH5fTTT0/yTshx3nnnZZ999qn2+dKXvpQZM2ZUa7n5\n5pvz+c9/Prvuumu1z6RJk3LwwQdnypQp2W233dKxY8f8y7/8S+rr6/Ov//qvzer5xje+kfPOO69F\n379v376ZPHlyTj755I2us94nP/nJnHTSSdltt92yyy675KyzzsozzzyTV155Jck7odc//dM/5c//\n/M/TtWvXTJw4Mddff311/JgxY/K5z30u3bt33+jazzzzTO688858//vfT/fu3VMURQ488MAW1b6j\nCX4AAADgQ+aTn/xk+vXrt9ETPUnyxhtv5KabbmoW2iTJ7bffns6dO+cf//EfM2LEiEyfPr1Z+7e/\n/e08+uijOeaYY/LHP/4xX//615u19+3bN4MHD859992X5J0gZdy4cdUgKEnuv//+/OM//uNGNX3h\nC1/II488kjVr1iR55wmi0047Lc8++2weeOCBFn/vz3/+8/nlL3+5ySdy3m3OnDmpra1Nt27dkiRP\nPfVUhgwZUm0fMmRIli5dWg2GtuTRRx/NgAEDMnHixOy+++4ZMmRI7rjjjhbXvSMJfgAAAOBDqG/f\nvlmxYkX1+N/+7d/SvXv3dOnSJXPnzk1DQ0Oz/g0NDRk7dmyKosgXv/jF3HLLLVm7dm21vWPHjrnq\nqqvy4x//ONddd111/6ANjRs3LtOnT88zzzyT1157rdnSrST5wx/+kNra2o3G1dbWpqmpqVm97du3\nz/nnn59vfvObrfrOlUolr7665b2XFi5cmNNPPz2XXXZZ9dyqVavStWvX6nGXLl1SqVTy+uuvb3Xe\nhQsXZt68eenWrVsWL16cK6+8MuPHj88zzzzT4tp3FMEPAAAAfAi99NJLzZYlnXPOOVmxYkXmz5+f\n9u3bNwslFi5cmP/8z//MF7/4xSTJ5z73ubz55pu56667ml1z//33T1EUGTx48CbnPProo/PAAw/k\n3//935ttBL1ez549s3jx4o3OL168OG3atKk+fbPeySefnJdffrnZJs9b+85FUWS33XbbbJ9ly5Zl\n5MiROf300/OFL3yher5Tp05ZuXJl9fi1115LURTp3LnzVudt3759dt1113zzm99M27Ztc9hhh6Wu\nrq769NPOTPADAAAAHzL/9V//lUWLFmXYsGEbtfXr1y/f/e53c8YZZ1SXVjU0NKRSqWTUqFGpra3N\noEGDsmbNmo2We21N+/btc+SRR+Z73/texo0bt1H7Zz7zmdx6660bnZ8xY0Y+/elP52Mf+1iz8zU1\nNbnwwgtzwQUXtGj+O+64IwcddFDat2+/yfZXX301I0eOzJgxY3Luuec2a9t///3zxBNPVI8ff/zx\n9O7de6MwalMOOOCAJGm2rG1TT0TtjAQ/AAAA8CHx+uuv584778zxxx+f+vr6zT6Z85nPfCZ77LFH\nvv/97yd5J/iZNGlSHn/88TzxxBN54oknctttt+Wuu+7aaI+bDcONTZk2bVrmzJmTPffcc6O2Cy+8\nMHPnzs0FF1yQV155JatWrcqVV16Z//f//l++853vbHKOE044IW+99VbuvvvuzdaxaNGiTJ48Oddd\nd12mTZu22XszYsSIHHroobn44os3ah83blyuvfba/OY3v8krr7ySqVOn5qSTTqq2r127Nm+99VbW\nrl2bt99+O2vWrKkuhTvssMPSv3//TJs2LWvXrs0jjzySxsbGjBw5cov3amcg+AEAAICd3KhRo9K1\na9dq+PD1r3+92avcN/X0yde//vV85zvfyYMPPpgFCxbktNNOS69evao/o0aNyj777JObb7652bhN\nXWvDc3369MnBBx+8yba99947Dz/8cB5//PEMHDgwffv2zY9//OPcd999zV7bvuGYNm3aZMqUKXnl\nlVeanV+8eHG6dOmSzp0756//+q/z1FNPZc6cOfn7v//7Td6jH//4x3nsscdy/fXXp3PnzuncuXO6\ndOmShQsXJklGjhyZb3zjG6mrq8tee+2VQYMGZdKkSdXxU6dOTYcOHXLJJZfkhz/8YTp06FANkNq2\nbZuZM2fmrrvuym677ZZTTz01N954Y/bdd99N1rIzKbaW5L3vCYqisr3nAAAAgPejKIqNnnSZOPG7\nWbBgy5sIvx/9+++WKVO+ut2uTzls6ndzg/NbXW8m+AEAAOAjb3P/uIYd7f0GP5Z6AQAAAJSU4AcA\nAACgpAQ/AAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAACihadOm5ZRTTtnR\nZWxXe+21Vx544IGt9ps/f37atGmTpqamD6CqnUvbHV0AAAAA7Ixmz5md5a8v327X79G5Rw7/28O3\n2m/gwIFZunRp2rZtm44dO+aII47IVVddlQ4dOmxx3IQJE7ZVqe/biSeemIaGhsycOTOjRo2qnj/r\nrLNy+eWX54Ybbsi4ceO2aw1FUWy2bcN73KlTp4wcObJF9/i9eOqpp3L22Wfnsccey4oVK7J27dpt\nPseGBD8AAACwCctfX54+f9Fnu11/yZNLWtSvKIrcddddqaury+LFizNixIhMnTo13/rWt7Zbbdta\nURTZb7/90tDQUA1+1q5dm1tvvTV77733Dq6u+T1eunRpRowYkWnTpuWiiy7a5nPV1NTkuOOOyz//\n8z9nzJgx2/z672apFwAAAOzkKpVKkqS2tjZHHnlknnzyySTJ4sWLM3r06PTo0SP77rtvfvCDH1TH\nTJ48OfX19UmSNWvWpL6+Pj179ky3bt3yqU99KsuWLUuS3HDDDRk0aFC6dOmSQYMG5eabb67OOXXq\n1AwcODB9+vTJiSeemJUrVyb5n6VTDQ0NGTBgQHr16rXVIOqoo47Kww8/nNdeey1Jcs8992TIkCHp\n0+d/wrUtzZkkN954YwYOHJjdd999o/kqlUq+/e1vZ++9987uu++esWPH5tVXX231Pe7Vq1dGjhyZ\nxx9/vNpWV1eX6667rno8ffr0DBs2rHrcpk2bXHPNNdl3333TvXv3nH766ZudZ999981JJ52UwYMH\nt7i290PwAwAAAB8SL774Yn7605/moIMOSpIcd9xx6d+/f5YsWZJbb7015513XhobG6v91y9vmj59\nelauXJmXXnopK1asyPe+9720b98+q1evzplnnpl77703K1euzNy5czN06NAkyfXXX5+GhobMmTMn\nv//97/P6669vFGg88sgjee6553L//fdnypQpeeaZZzZbe/v27TN69OjccsstSZKGhoaMGzeuGrhs\nbc6nn346p512Wn74wx9m0aJFWb58eV566aXq2CuuuCKzZs3KQw89lEWLFqVbt2457bTTWn2PFy5c\nmLvvvjv77LPPFvu9e+nYXXfdlcceeyxPPPFEfvSjH+W+++5r9dzbg+AHAAAAdnJjxoxJ9+7dc9hh\nh6Wuri4TJkzIwoUL87Of/SyXXHJJampqMmTIkJx88slpaGjYaHxNTU2WL1+eZ599NkVR5MADD0yn\nTp2SJLvsskvmzZuXt956K717987HP/7xJMlNN92Ur33taxkwYEA6dOiQadOm5ZZbbqlukFwURSZN\nmpRdd901BxxwQIYMGZInnnhii9+jvr4+06dPz2uvvZYHH3xwo6VOm5pzxowZaWpqyu23355Ro0bl\nkEMOSU1NTS666KJm4cs111yTiy++OLW1tampqcnEiRNz2223tXhD5zFjxqRLly7p379/evfunUmT\nJrVo3HoTJkxI586ds+eee6aurq7ZE0M7kuAHAAAAdnIzZ87MihUr8vzzz+fKK69Mu3btsmjRonTv\n3r3ZBsQDBgxo9hTMevX19Rk5cmTGjh2bfv365dxzz83atWvToUOHzJgxI1dffXVqa2szatSoPPvs\ns0mSRYsWZcCAAc2u/fbbb+fll1+unuvdu3f1c4cOHbJq1aotfo9DDjkky5Yty8UXX5yjjjoq7dq1\na9a+pTkXLVqUPffcs9l8PXr0qB7Pnz8/Rx99dLp3757u3btn8ODBqampaVbvlsycOTMrV67MnDlz\n8tvf/jZ/+MMfWjRuvdbeiw+K4AcAAAB2chsuh1qvb9++WbFiRd54443quQULFmSPPfbYqG/btm1z\nwQUX5KmnnsrcuXPzk5/8pPpk0OGHH5777rsvS5YsyX777ZevfOUr1evPnz+/eo358+enpqamWcDx\nXpxwwgm59NJLM378+E1+p3fP2bZt2/Tu3Tu1tbV58cUXq22rV6/O8uX/89a1/v375+67786KFSuy\nYsWKvPLKK3njjTdSW1vborrW3+Nhw4Zl/PjxOfvss6ttHTt2zOrVq6vHS5a0bGPunYHgBwAAAD6E\n+vXrl4MPPjgTJkzImjVr8utf/zrXXnttdUPnDTU2NubJJ59MU1NTOnXqlJqamrRp0yZLly7NrFmz\nsnr16tTU1KRTp05p0+adqOD444/PZZddlhdeeCGrVq3K+eefn7Fjx1bbNxVGtcQZZ5yR2bNn59BD\nD92obUtzHnvssbnzzjszd+7c/OlPf8rEiROb1XDqqafmvPPOy4IFC5Iky5Yty6xZs6rtran3q1/9\nambPnp158+YlSYYOHZo77rgjb775Zn73u9/l2muvfU/ffb01a9ZkzZo1qVQqWbNmTf74xz++r+tt\nieAHAAAAdmLv3kR4QzfffHOef/759O3bN8ccc0wuuuii1NXVbdRvyZIlOfbYY9O1a9fsv//+qaur\nS319fZqamnLppZdmjz32SM+ePfPggw/m6quvTpJ8+ctfTn19fQ477LAMGjQoHTp0yBVXXLHZurZU\n54Zt3bp1a1bjhm1bmnPw4MG56qqrcvzxx6dv377p0aNH+vXrVx175plnZvTo0RkxYkS6du2agw8+\nOI8++mir60uSnj17Zvz48ZkyZUqS5KyzzkpNTU369OmTk046KSeccMIWx29prvnz56d9+/b5y7/8\nyxRFkfbt2+fP//zPN9v//Srea0LX4gmKorK95wAAAID3oyiKjZ4ImT1ndpa/vnwzI96/Hp175PC/\nPXy7XZ9y2NTv5gbnN58wre8n+AEAAOCjbnP/uIYd7f0GP223S1VQQts77cf/8QAAANjWBD/QQstf\nX54+f9FnR5dRakue/PDsjA8AAPBhYHNnAAAAgJIS/AAAAACUlOAHAAAAoKQEPwAAAAAlJfgBAAAA\nKCnBDwAAAJTQtGnTcsopp+zoMrarvfbaKw888MBW+82fPz9t2rRJU1PTB1DVzsXr3AEAAGATfj57\ndt5avny7Xf9jPXrkbw4/fKv9Bg4cmKVLl6Zt27bp2LFjjjjiiFx11VXp0KHDFsdNmDBhW5X6vp14\n4olpaGjIzJkzM2rUqOr5s846K5dffnluuOGGjBs3brvWUBTFZts2vMedOnXKyJEjW3SP34uGhoZc\nccUVee6559K1a9ccf/zxmTZtWtq02T7P5gh+AAAAYBPeWr48w/v02W7Xb1yypEX9iqLIXXfdlbq6\nuixevDgjRozI1KlT861vfWu71batFUWR/fbbLw0NDdXgZ+3atbn11luz99577+Dqmt/jpUuXZsSI\nEZk2bVouuuiibT7Xm2++mcsvvzyf+tSnsmzZsowaNSr/+3//73zjG9/Y5nMllnoBAADATq9SqSRJ\namtrc+SRR+bJJ59MkixevDijR49Ojx49su++++YHP/hBdczkyZNTX1+fJFmzZk3q6+vTs2fPdOvW\nrRo6JMkNN9yQQYMGpUuXLhk0aFBuvvnm6pxTp07NwIED06dPn5x44olZuXJlkv9ZOtXQ0JABAwak\nV69eWw2ijjrqqDz88MN57bXXkiT33HNPhgwZkj4bhGtbmjNJbrzxxgwcODC77777RvNVKpV8+9vf\nzt57753dd989Y8eOzauvvtrqe9yrV6+MHDkyjz/+eLWtrq4u1113XfV4+vTpGTZsWPW4TZs2ueaa\na7Lvvvume/fuOf300zc7z6mnnppDDjkkbdu2TW1tbb70pS/lkUceaXGdrSX4AQAAgA+JF198MT/9\n6U9z0EEHJUmOO+649O/fP0uWLMmtt96a8847L42NjdX+65c3TZ8+PStXrsxLL72UFStW5Hvf+17a\nt2+f1atX58wzz8y9996blStXZu7cuRk6dGiS5Prrr09DQ0PmzJmT3//+93n99dc3CjQeeeSRPPfc\nc7n//vszZcqUPPPMM5utvX379hk9enRuueWWJO8seRo3blw1cNnanE8//XROO+20/PCHP8yiRYuy\nfPnyvPTSS9WxV1xxRWbNmpWHHnooixYtSrdu3XLaaae1+h4vXLgwd999d/bZZ58t9nv30rG77ror\njz32WJ544on86Ec/yn333dei+R588MHsv//+ra6zpQQ/AAAAsJMbM2ZMunfvnsMOOyx1dXWZMGFC\nFi5cmJ/97Ge55JJLUlNTkyFDhuTkk09OQ0PDRuNramqyfPnyPPvssymKIgceeGA6deqUJNlll10y\nb968vPXWW+ndu3c+/vGPJ0luuummfO1rX8uAAQPSoUOHTJs2Lbfcckt1g+SiKDJp0qTsuuuuOeCA\nAzJkyJA88cQTW/we9fX1mT59el577bU8+OCDGTNmTLP2Tc05Y8aMNDU15fbbb8+oUaNyyCGHpKam\nJhdddFGz8OWaa67JxRdfnNra2tTU1GTixIm57bbbWryh85gxY9KlS5f0798/vXv3zqRJk1o0br0J\nEyakc+fO2XPPPVNXV9fsiaHNue666/LYY4/l61//eqvmag3BDwAAAOzkZs6cmRUrVuT555/PlVde\nmXbt2mXRokXp3r17sw2IBwwY0OwpmPXq6+szcuTIjB07Nv369cu5556btWvXpkOHDpkxY0auvvrq\n1NbWZtSoUXn22WeTJIsWLcqAAQOaXfvtt9/Oyy+/XD3Xu3fv6ucOHTpk1apVW/wehxxySJYtW5aL\nL744Rx11VNq1a9esfUtzLlq0KHvuuWez+Xr06FE9nj9/fo4++uh079493bt3z+DBg1NTU9Os3i2Z\nOXNmVq5cmTlz5uS3v/1t/vCHP7Ro3HqtvRf/8R//kfPPPz/33HNPunfv3qq5WkPwAwAAADu5DZdD\nrde3b9+sWLEib7zxRvXcggULsscee2zUt23btrngggvy1FNPZe7cufnJT35SfTLo8MMPz3333Zcl\nS5Zkv/32y1e+8pXq9efPn1+9xvz581NTU9Ms4HgvTjjhhFx66aUZP378Jr/Tu+ds27Ztevfundra\n2rz44ovVttWrV2f5Bm9d69+/f+6+++6sWLEiK1asyCuvvJI33ngjtbW1Lapr/T0eNmxYxo8fn7PP\nPrva1rFjx6xevbp6vKSFG3Nvzj333JNTTz01d955ZwYPHvy+rrU1gh8AAAD4EOrXr18OPvjgTJgw\nIWvWrMmvf/3rXHvttdUNnTfU2NiYJ598Mk1NTenUqVNqamrSpk2bLF26NLNmzcrq1atTU1OTTp06\nVV8rfvzxx+eyyy7LCy+8kFWrVuX888/P2LFjq+2bCqNa4owzzsjs2bNz6KGHbtS2pTmPPfbY3Hnn\nnZk7d27+9Kc/ZeLEic1qOPXUU3PeeedlwYIFSZJly5Zl1qxZ1fbW1PvVr341s2fPzrx585IkQ4cO\nzR133JE333wzv/vd73Lttde+p++eJA888EBOOOGE3H777fnEJz7xnq/TUoIfAAAA2Im9exPhDd18\n8815/vnn07dv3xxzzDG56KKLUldXt1G/JUuW5Nhjj03Xrl2z//77p66uLvX19Wlqasqll16aPfbY\nIz179syDDz6Yq6++Okny5S9/OfX19TnssMMyaNCgdOjQIVdcccVm69pSnRu2devWrVmNG7Ztac7B\ngwfnqquuyvHHH5++ffumR48e6devX3XsmWeemdGjR2fEiBHp2rVrDj744Dz66KOtri9JevbsmfHj\nx2fKlClJkrPOOis1NTXp06dPTjrppJxwwglbHL+luaZOnZqVK1fms5/9bDp37pwuXbrkH/7hHzbb\n//0q3mtC1+IJiqKyveeAD8Itd96SPn/RZ+sdec+WPLkkY48au6PLAADgI6goio2eCPn57Nl5a4Ol\nRNvax3r0yN8cfvh2uz7lsKnfzQ3Obz5hWqftdqkKAAAAPuSEMpSBpV4AAAAAJSX4AQAAACgpwQ8A\nAABASQl+AAAAAEpqq8FPURTtiqL4RVEUvyqKYl5RFBeuO39hURQLi6L45bqfI7Z/uQAAAAC01Fbf\n6lWpVNYURVFXqVRWF0WxS5JHiqK4e13zpZVK5dLtWyIAAAAA70WLlnpVKpXV6z62yzth0foXyG/1\nffEAAAAA7BgtCn6KomhTFMWvkixJMrtSqfzXuqbTi6J4vCiKHxRF0XW7VQkAAAC0yrRp03LKKafs\n6DK2q7322isPPPDAVvvNnz8/bdq0SVNT0wdQ1c5lq0u9kqRSqTQlObAoii5JflwUxeAk/yfJlEql\nUimKYmqSS5P80/YrFQAAAD44sx9+OMvfeGO7Xb9Hx445/NBDt9pv4MCBWbp0adq2bZuOHTvmiCOO\nyFVXXZUOHTpscdyECRO2Vanv24knnpiGhobMnDkzo0aNqp4/66yzcvnll+eGG27IuHHjtmsNRbH5\nRUsb3uNOnTpl5MiRLbrH78WMGTNy4YUXZvHixWnfvn2OPPLIXHnllenUqdM2nytpYfCzXqVSWVkU\nRWOSI961t8//TfKTzY2bNGlS9fPw4cMzfPjwVhUJAAAAH7Tlb7yRPn/919vt+ksefbRF/YqiyF13\n3ZW6urosXrw4I0aMyNSpU/Otb31ru9W2rRVFkf322y8NDQ3V4Gft2rW59dZbs/fee+/g6prf46VL\nl2bEiBGZNm1aLrroom0+1yGHHJIHH3wwvXr1yurVq3PKKafkm9/8Zr773e9ucVxjY2MaGxtbPV9L\n3urVc/0yrqIo2ic5PMlvi6Los0G3zyd5cnPXmDRpUvVH6AMAAACtU6m8s9VubW1tjjzyyDz55Dv/\nBF+8eHFGjx6dHj16ZN99980PfvCD6pjJkyenvr4+SbJmzZrU19enZ8+e6datWz71qU9l2bJlSZIb\nbrghgwZyJWzyAAAgAElEQVQNSpcuXTJo0KDcfPPN1TmnTp2agQMHpk+fPjnxxBOzcuXKJP+zdKqh\noSEDBgxIr169thpEHXXUUXn44Yfz2muvJUnuueeeDBkyJH36/E+8sKU5k+TGG2/MwIEDs/vuu280\nX6VSybe//e3svffe2X333TN27Ni8+uqrrb7HvXr1ysiRI/P4449X2+rq6nLddddVj6dPn55hw4ZV\nj9u0aZNrrrkm++67b7p3757TTz99s/P069cvvXr1SpI0NTVll112ye9+97ut1jd8+PBm+UpLtWSP\nn9ok/1kUxeNJfpHk3kql8tMk3ymK4tfrzv9tkrNaPCsAAADQai+++GJ++tOf5qCDDkqSHHfccenf\nv3+WLFmSW2+9Needd16zp0LWL2+aPn16Vq5cmZdeeikrVqzI9773vbRv3z6rV6/OmWeemXvvvTcr\nV67M3LlzM3To0CTJ9ddfn4aGhsyZMye///3v8/rrr28UaDzyyCN57rnncv/992fKlCl55plnNlt7\n+/btM3r06Nxyyy1JkoaGhowbN64auGxtzqeffjqnnXZafvjDH2bRokVZvnx5XnrpperYK664IrNm\nzcpDDz2URYsWpVu3bjnttNNafY8XLlyYu+++O/vss88W+7176dhdd92Vxx57LE888UR+9KMf5b77\n7tvs2EceeSS77bZbunTpkjvuuCNnnbX9IpWtBj+VSmVepVI5qFKpDK1UKgdUKpWL150ft+54aKVS\nGVOpVF7eblUCAADAR9iYMWPSvXv3HHbYYamrq8uECROycOHC/OxnP8sll1ySmpqaDBkyJCeffHIa\nGho2Gl9TU5Ply5fn2WefTVEUOfDAA6t7yuyyyy6ZN29e3nrrrfTu3Tsf//jHkyQ33XRTvva1r2XA\ngAHp0KFDpk2blltuuaW6QXJRFJk0aVJ23XXXHHDAARkyZEieeOKJLX6P+vr6TJ8+Pa+99loefPDB\njBkzpln7puacMWNGmpqacvvtt2fUqFE55JBDUlNTk4suuqhZ+HLNNdfk4osvTm1tbWpqajJx4sTc\ndtttLd7QecyYMenSpUv69++f3r17t+qpmuSdPZU6d+6cPffcM3V1dc2eGHq3Qw45JK+++mpeeuml\nnHPOOenfv3+r5mqNFr3VCwAAANhxZs6cmRUrVuT555/PlVdemXbt2mXRokXp3r17sw2IBwwY0Owp\nmPXq6+szcuTIjB07Nv369cu5556btWvXpkOHDpkxY0auvvrq1NbWZtSoUXn22WeTJIsWLcqAAQOa\nXfvtt9/Oyy//z3MfvXv3rn7u0KFDVq1atcXvccghh2TZsmW5+OKLc9RRR6Vdu3bN2rc056JFi7Ln\nnns2m69Hjx7V4/nz5+foo49O9+7d07179wwePDg1NTXN6t2SmTNnZuXKlZkzZ05++9vf5g9/+EOL\nxq3X2nuRvLN0b/1/l+1F8AMAAAA7uQ2XQ63Xt2/frFixIm9s8OaxBQsWZI899tiob9u2bXPBBRfk\nqaeeyty5c/OTn/yk+mTQ4Ycfnvvuuy9LlizJfvvtl6985SvV68+fP796jfnz56empqZZwPFenHDC\nCbn00kszfvz4TX6nd8/Ztm3b9O7dO7W1tXnxxRerbatXr87y5curx/3798/dd9+dFStWZMWKFXnl\nlVfyxhtvpLa2tkV1rb/Hw4YNy/jx43P22WdX2zp27JjVq1dXj5csWdLyL7wVf/rTn/L73/9+m13v\n3QQ/AAAA8CHUr1+/HHzwwZkwYULWrFmTX//617n22murGzpvqLGxMU8++WSamprSqVOn1NTUpE2b\nNlm6dGlmzZqV1atXp6amJp06dUqbNu9EBccff3wuu+yyvPDCC1m1alXOP//8jB07ttq+qTCqJc44\n44zMnj07h27iVfZbmvPYY4/NnXfemblz5+ZPf/pTJk6c2KyGU089Needd14WLFiQJFm2bFlmzZpV\nbW9NvV/96lcze/bszJs3L0kydOjQ3HHHHXnzzTfzu9/9Ltdee+17+u7JO8vZ1gdY8+fPzze/+c18\n5jOfec/X2xrBDwAAAOzE3r2J8IZuvvnmPP/88+nbt2+OOeaYXHTRRamrq9uo35IlS3Lsscema9eu\n2X///VNXV5f6+vo0NTXl0ksvzR577JGePXvmwQcfzNVXX50k+fKXv5z6+vocdthhGTRoUDp06JAr\nrrhis3Vtqc4N27p169asxg3btjTn4MGDc9VVV+X4449P375906NHj/Tr16869swzz8zo0aMzYsSI\ndO3aNQcffHAeffTRVteXJD179sz48eMzZcqUJMlZZ52Vmpqa9OnTJyeddFJOOOGELY7f0lxPP/10\nDj744HTu3DnDhg3Lxz/+8Xz/+9/fbP/3q3ivCV2LJyiKyvaeAz4It9x5S/r8RZ+td+Q9W/Lkkow9\navutbQUAgM0pimKjJ0JmP/xwlm+wjGpb69GxYw7fxFMvsKFN/W5ucH7zCdM6bbdLVQAAAPAhJ5Sh\nDCz1AgAAACgpwQ8AAABASQl+AAAAAErKHj/QQr/+7e/y9KtLdnQZpfb2klUZe9SOrgIAAKA8BD/Q\nQqv+9Hb+7BNDd3QZpfb7/2jc0SUAAACUiuAHAACAj7wBAwakKLb6Zmz4wA0YMOB9jRf8AAAA8JH3\nwgsv7OgSYLuwuTMAAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAAoKQEPwAA\nAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACgpAQ/\nAAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCk\nBD8AAAAAJSX4AQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAA\noKQEPwAAAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcA\nAACgpAQ/AAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTg\nBwAAAKCkBD8AAAAAJSX4AQAAACiprQY/RVG0K4riF0VR/KooinlFUVy47ny3oijuK4rimaIo7i2K\nouv2LxcAAACAltpq8FOpVNYkqatUKgcmGZrkyKIo/jrJuUnur1Qq+yV5IMmE7VopAAAAAK3SoqVe\nlUpl9bqP7ZK0TVJJMjrJ9HXnpycZs82rAwAAAOA9a9uSTkVRtEnyWJJBSa6qVCr/VRRF70ql8nKS\nVCqVJUVR9Nrc+GeffXabFMsHq1OnTunbt++OLgMAAAB4j1oU/FQqlaYkBxZF0SXJj4ui2D/vPPXT\nrNvmxo8dMbb6uXa32vTtJkz4MFjdbnWu/Y9r87GPfWxHlwIAAAAfaY2NjWlsbGz1uBYFP+tVKpWV\nRVE0Jjkiycvrn/opiqJPkqWbG3fG8EtbXRg73n3PX52mpqYdXQYAAAB85A0fPjzDhw+vHk+ePLlF\n41ryVq+e69/YVRRF+ySHJ/lNkllJTlzXbXySma0pGAAAAIDtqyVP/NQmmb5un582SWZUKpWfFkXx\n8yQ/Koriy0nmJ/nCdqwTAAAAgFbaavBTqVTmJTloE+dXJPnM9igKAAAAgPevRa9zBwAAAODDR/AD\nAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCkBD8AAAAAJSX4AQAAACgpwQ8AAABASbX9ICZZ/cdV\nH8Q0H1m77tIubXep2dFlAAAAADuZDyT4mddmyQcxzUdSU9Pb6f3GrvmzLn+2o0thJ7PgyWfS9Pob\nO7qMVnn5N8+m8ZZbdnQZO4WP9eiRvzn88B1dBgAA8CH3gQQ/Xfvt/UFM85H01luv5+0FL+/oMtgJ\nNb3+Rv5ity47uoxW6dSpQ4b36bOjy9gpNC4RmAMAAO+fPX4AAAAASkrwAwAAAFBSgh8AAACAkhL8\nAAAAAJSU4AcAAACgpAQ/AAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICS\nEvwAAAAAlJTgBwAAAKCkBD8AAAAAJSX4AQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQUoIfAAAA\ngJIS/AAAAACUlOAHAAAAoKQEPwAAAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8A\nAACAkhL8AAAAAJSU4AcAAACgpAQ/AAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKC\nHwAAAICSEvwAAAAAlJTgBwAAAKCkBD8AAAAAJSX4AQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQ\nUoIfAAAAgJIS/AAAAACUlOAHAAAAoKQEPwAAAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASmqrwU9R\nFP2KonigKIqniqKYVxTFv6w7f2FRFAuLovjlup8jtn+5AAAAALRU2xb0eTvJ1yqVyuNFUXRK8lhR\nFLPXtV1aqVQu3X7lAQAAAPBebTX4qVQqS5IsWfd5VVEUv0myx7rmYjvWBgAAAMD70Ko9foqiGJhk\naJJfrDt1elEUjxdF8YOiKLpu49oAAAAAeB9aHPysW+Z1W5IzK5XKqiT/J8mfVSqVoXnniSBLvgAA\nAAB2Ii3Z4ydFUbTNO6HPjZVKZWaSVCqVZRt0+b9JfrK58Q8/fEP1c//+Q9O//9D3UisAAADAR1Jj\nY2MaGxtbPa5FwU+S65I8XalULl9/oiiKPuv2/0mSzyd5cnODDz30xFYXBgAAAMA7hg8fnuHDh1eP\nJ0+e3KJxWw1+iqI4JMmXkswriuJXSSpJzkvyxaIohiZpSvJCklNbWzQAAAAA209L3ur1SJJdNtF0\nz7YvBwAAAIBtpVVv9QIAAADgw0PwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACgpAQ/AAAAACUl\n+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCkBD8AAAAA\nJSX4AQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAAoKQEPwAA\nAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACgpAQ/\nAAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCk\nBD8AAAAAJdV2RxcAAGUyceJ3s2DBqzu6DN6j/v13y5QpX93RZQAAbDOCHwDYhhYseDUDB07a0WXw\nHr3wwqQdXQIAwDZlqRcAAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAAoKQE\nPwAAAAAlJfgBAAAAKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACg\npAQ/AAAAACUl+AEAAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlNRWg5+i\nKPoVRfFAURRPFUUxryiKM9ad71YUxX1FUTxTFMW9RVF03f7lAgAAANBSLXni5+0kX6tUKvsn+XSS\nfy6K4s+TnJvk/kqlsl+SB5JM2H5lAgAAANBaWw1+KpXKkkql8vi6z6uS/CZJvySjk0xf1216kjHb\nq0gAAAAAWq9Ve/wURTEwydAkP0/Su1KpvJy8Ew4l6bWtiwMAAADgvWtx8FMURacktyU5c92TP5V3\ndXn3MQAAAAA7UNuWdCqKom3eCX1urFQqM9edfrkoit6VSuXloij6JFm6ufEPP3xD9XP//kPTv//Q\n914xAAAAwEdMY2NjGhsbWz2uRcFPkuuSPF2pVC7f4NysJCcmuSTJ+CQzNzEuSXLooSe2ujAAAAAA\n3jF8+PAMHz68ejx58uQWjdtq8FMUxSFJvpRkXlEUv8o7S7rOyzuBz4+KovhykvlJvtDqqgEAAADY\nbrYa/FQqlUeS7LKZ5s9s23IAAAAA2FZa9VYvAAAAAD48BD8AAAAAJSX4AQAAACgpwQ8AAABASQl+\nAAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAAoKTafhCTrFj53x/ENB9Ja9a8keKtt5Iu\nO7oSAAAAYGfzgQQ/b7d/64OY5iNpzdrX89YfV+3oMtgJ/epXT2fJ2g/XQ32v/n+/ybd/f8OOLmOn\nsKBDU4aPHbujywAAAD7kPpDgp21Nuw9imo+kNrvU7OgS2EmtXv2ndNl92I4uo1X+1LEpffqcsKPL\n2Cn86vl/39ElAAAAJfDhehwAAAAAgBYT/AAAAACUlOAHAAAAoKQEPwAAAAAlJfgBAAAAKCnBDwAA\nAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACgpAQ/AAAAACUl+AEAAAAoKcEP\nAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCkBD8AAAAAJSX4AQAAACgp\nwQ8AAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJIS/AAAAACUlOAHAAAAoKQEPwAAAAAlJfgBAAAA\nKCnBDwAAAEBJCX4AAAAASkrwAwAAAFBSgh8AAACAkhL8AAAAAJSU4AcAAACgpAQ/AAAAACUl+AEA\nAAAoKcEPAAAAQEkJfgAAAABKSvADAAAAUFKCHwAAAICSEvwAAAAAlJTgBwAAAKCkBD8AAAAAJSX4\nAQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQUoIfAAAAgJLaavBTFMW1RVG8XBTFrzc4d2FRFAuL\novjlup8jtm+ZAAAAALRWS574uT7JyE2cv7RSqRy07ueebVwXAAAAAO/TVoOfSqXycJJXNtFUbPty\nAAAAANhW3s8eP6cXRfF4URQ/KIqi6zarCAAAAIBt4r0GP/8nyZ9VKpWhSZYkuXTblQQAAADAttD2\nvQyqVCrLNjj8v0l+sqX+jz08q/q5tv9+6dt/v/cyLQAAAMBHUmNjYxobG1s9rqXBT5EN9vQpiqJP\npVJZsu7w80me3NLgTxz6uVYXBgAAAMA7hg8fnuHDh1ePJ0+e3KJxWw1+iqK4KcnwJD2KoliQ5MIk\ndUVRDE3SlOSFJKe2tmAAAAAAtq+tBj+VSuWLmzh9/XaoBQAAAIBt6P281QsAAACAnZjgBwAAAKCk\nBD8AAAAAJSX4AQAAACgpwQ8AAABASQl+AAAAAEpK8AMAAABQUoIf/v/27i/W77uu4/jrPQ4iYw7c\nGDvAUicaZhTNpMskGcYjWFg02bwcalQuuJJgvDCgF7je4ZWacCkoqLgYEsI0CiuMQzKXjTE2J2zd\nYHSUsbWOs822K39K+/GiP5eNbe3pOb/T7+H9ezySZr/f6e98f6+b5nTPfr/fHwAAANCU8AMAAADQ\n1NLUAwCgk0e+/WCO5IapZ7T30qUL8zOX7Jp6BgDAtif8AMAcfW98J+ddujz1jPaOPHRg6gkAAD8S\nXOoFAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU\n8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTw\nAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPAD\nAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMA\nAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0NTS1AMA\noJPHvrU/3z/+j1PP6O+Jp7J8ZP6HPXTowfkfFABgQsIPAMxTjfzi5W+aekV7a7fflivOW577cf/j\nse/M/ZgAAFNyqRcAAABAU8IPAAAAQFPCDwAAAEBTwg8AAABAU8IPAAAAQFPCDwAAAEBTwg8AAABA\nU8IPAAAAQFOnDT9V9aGqOlhV9zzjaz9ZVTdV1f1V9emqevnWzgQAAADgTK3njJ+/S/L2H/ra+5J8\nZoxxWZKbk/zZvIcBAAAAsDmnDT9jjFuSPPFDX742yUdmjz+S5LfnvAsAAACATdroPX5eNcY4mCRj\njANJXjW/SQAAAADMw9KcjjNO9Zt33nLj049fveOyvGbHZXN6WwAAOOm2PXvy3bW1qWewAT9+4YV5\n065dU88A2NZWV1ezurp6xt+30fBzsKouHmMcrKrlJP9zqhfvfPM1G3wbAABYn++urWVleXnqGWzA\n6oEDU08A2PZWVlaysrLy9PPdu3ev6/vWe6lXzX79vxuT/OHs8R8k+eQ6jwMAAADAWbKej3P/WJJb\nk7y+qvZX1TuTfCDJrqq6P8lbZ88BAAAA2EZOe6nXGON3XuC3fmPOWwAAAACYo41+qhcAAAAA25zw\nAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQ1NLU\nAwAA2H72fH5P1g6vTT3jjHz9zltz4oJXTD1j3c5/6fm54vIrpp4BQHPCDwAAz7F2eC3Lb1ieesYZ\neXzfK3LBRRdMPWPdHt/3+NQTAFgALvUCAAAAaEr4AQAAAGhK+AEAAABoSvgBAAAAaEr4AQAAAGhK\n+AEAAABoSvgBAAAAaEr4AQAAAGhK+AEAAABoSvgBAAAAaEr4AQAAAGhK+AEAAABoSvgBAAAAaEr4\nAQAAAGhK+AEAAABoSvgBAAAAaEr4AQAAAGhK+AEAAABoSvgBAAAAaEr4AQAAAGhK+AEAAABoSvgB\nAAAAaEr4AQAAAGhK+AEAAABoSvgBAAAAaEr4AQAAAGhqaeoBAABsP/fs/VruffLA1DPOyMP7Hsmh\ntUNTz1i3Fz32VN4y9QgA2hN+AAB4jiPHfpDX7bx86hln5ND3T+SVrzh/6hnr9tBnbpt6AgALwKVe\nAAAAAE0JPwAAAABNCT8AAAAATQk/AAAAAE0JPwAAAABNCT8AAAAATQk/AAAAAE0JPwAAAABNCT8A\nAAAATQk/AAAAAE0JPwAAAABNCT8AAAAATS1NPQAAAObhrrvuzYHjPzr/rvnkF+/LB77+91PP2Bb2\nn3siK9ddN/UMgJaEHwAAWjh69FjOv+hXp56xbsdediLLy7839Yxt4a59H5x6AkBbPzr/JAIAAADA\nGRF+AAAAAJoSfgAAAACaEn4AAAAAmhJ+AAAAAJoSfgAAAACaEn4AAAAAmlrazDdX1UNJ/jfJiSTH\nxhhXzmMUAAAAAJu3qfCTk8FnZYzxxDzGAAAAADA/m73Uq+ZwDAAAAAC2wGajzUiyp6ruqKp3zWMQ\nAAAAAPOx2Uu9rhpjPFpVF+VkALpvjHHLPIYBAAAAsDmbCj9jjEdn/32sqj6R5Mokzwk/d95y49OP\nX73jsrxmx2WbeVsAAACAhbK6uprV1dUz/r4Nh5+qOjfJOWOMI1X1siRvS7L7+V67883XbPRtAAAA\nABbeyspKVlZWnn6+e/fzJpjn2MwZPxcn+URVjdlx/mmMcdMmjgcAAADAHG04/Iwx9iW5fI5bAAAA\nAJgjH8UOAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAA\nANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA\n0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQlPADAAAA0JTwAwAAANCU8AMAAADQ\n1NLUAwAAALbCns/vydrhtalntHfhT1yYXb+2a+oZbMD73//X2b//yalnsMWEHwAAoKW1w2tZfsPy\n1DPaO/DlA1NPYIP2738yl156/dQz2LDd63qVS70AAAAAmhJ+AAAAAJoSfgAAAACaEn4AAAAAmhJ+\nAAAAAJoSfgAAAACaEn4AAAAAmhJ+AAAAAJoSfgAAAACaEn4AAAAAmhJ+AAAAAJoSfgAAAACaWpp6\nAAAAAHD2HXrkwXz7yA1Tz2CLCT8AAACwgF78ve/kivOWp57BFnOpFwAAAEBTwg8AAABAU8IPAAAA\nQFPCDwAAAEBTwg8AAABAU8IPAAAAQFPCDwAAAEBTwg8AAABAU8IPAAAAQFPCDwAAAEBTwg8AAABA\nU8IPAAAAQFNLUw8AAADYCvfs/VruffLA1DPa++y/3JxPfXzv1DPYgH37Hk5+euoVbDXhBwAAaOnI\nsR/kdTsvn3pGe49/+FO59I3XTz2DDbjre/829QTOApd6AQAAADQl/AAAAAA0JfwAAAAANCX8AAAA\nADQl/AAAAAA0JfwAAAAANCX8AAAAADS1qfBTVVdX1d6qeqCq3juvUQAAAABs3obDT1Wdk+SDSd6e\n5BeSvKOqfm5ew4DNOfTogaknwEJ66vChqSfAwvKzD6bx1BOPTz0BOIXNnPFzZZKvjjG+McY4luSG\nJNfOZxawWYf95RcmcfTI4aknwMLysw+mcfRJ4Qe2s82En9cm+eYznj88+xoAAAAA28DS2XiTe754\n49l4m4V0/PjxXPDEiZxz/Mjcjz1enFTV3I8LAAAAnB01xtjYN1a9Kcn1Y4yrZ8/fl2SMMf7yh163\nsTcAAAAA4AWNMU57tsZmws+Lktyf5K1JHk3yhSTvGGPct6EDAgAAADBXG77Ua4xxvKreneSmnLxX\n0IdEHwAAAIDtY8Nn/AAAAACwvW3mU71Oqaqurqq9VfVAVb13q94HeLaq+lBVHayqe6beAoukqi6p\nqm6yHBMAAALQSURBVJur6itV9d9V9Z6pN8EiqKqXVNXtVXXX7M/eX0y9CRZJVZ1TVV+qKp/oA2dR\nVT1UVf81+/n3hVO+divO+Kmqc5I8kJP3/3kkyR1Jrhtj7J37mwHPUlVvTnIkyUfHGL809R5YFFW1\nnGR5jHF3VZ2X5M4k1/rZB1uvqs4dYxyd3YPyP5O8Z4xxyr8EA/NRVX+SZGeS88cY10y9BxZFVX09\nyc4xxhOne+1WnfFzZZKvjjG+McY4luSGJNdu0XsBzzDGuCXJaf/wA/M1xjgwxrh79vhIkvuSvHba\nVbAYxhhHZw9fkpP3sHQvAzgLquqSJL+Z5G+n3gILqLLOprNV4ee1Sb75jOcPx19+AVgQVXVpksuT\n3D7tElgMs0tN7kpyIMmeMcYdU2+CBfFXSf40YitMYSTZU1V3VNW7TvXCLbvHDwAsotllXh9P8sez\nM3+ALTbGODHG+OUklyT5lar6+ak3QXdV9VtJDs7Odq3ZL+DsuWqM8cacPOvuj2a3/HheWxV+vpVk\nxzOeXzL7GgC0VVVLORl9/mGM8cmp98CiGWMcSvK5JFdPvQUWwFVJrpndZ+Sfk/x6VX104k2wMMYY\nj87++1iST+TkLXee11aFnzuS/GxV/VRV/ViS65K4yzucPf7VBabx4ST3jjH+ZuohsCiq6pVV9fLZ\n45cm2ZXETdVhi40x/nyMsWOM8bqc/P+9m8cYvz/1LlgEVXXu7CzzVNXLkrwtyZdf6PVbEn7GGMeT\nvDvJTUm+kuSGMcZ9W/FewLNV1ceS3Jrk9VW1v6reOfUmWARVdVWS303yltnHan6pqpx1AFvv1Uk+\nV1V35+R9tT49xvj3iTcBwFa6OMkts/vb3ZbkX8cYN73Qi7fk49wBAAAAmJ6bOwMAAAA0JfwAAAAA\nNCX8AAAAADQl/AAAAAA0JfwAAAAANCX8AAAAADQl/AAAAAA0JfwAAAAANPV/iaQnThhoG2UAAAAA\nSUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f74b3c53390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Set figure size\n",
"plt.figure(figsize=(20,10))\n",
"\n",
"# Plot the histogram of the model for a couple of samples and the histogram of Draymond's actual 3pt makes this season\n",
"plt.hist(DRAY['3P'], alpha=0.5, label='DRAYMOND 2016')\n",
"plt.hist(np.random.poisson(average_3pt_made_field_goals, 82), alpha=0.25, label='Poisson Model Run 1')\n",
"plt.hist(np.random.poisson(average_3pt_made_field_goals, 82), alpha=0.25, label='Poisson Model Run 2')\n",
"plt.hist(np.random.poisson(average_3pt_made_field_goals, 82), alpha=0.25, label='Poisson Model Run 3')\n",
"plt.legend(loc='upper right')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks like a pretty reasonable model to me!"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f74a478c828>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJPCAYAAAD8JlT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XvwXXV9//vXGxKQlIuBSMDkS2JFKHgBmQ4q+PN8cSRA\njwJeKmAL3ksHqVbw9ABWSVSMtoKKF2ilQsKggNUesA1yKfNVKygXUZAwEq2JBAhyE0Qq18/5I5tP\nv4GEfHOBRHk8ZjKs/Vnrs/dn7+z8wXPWWrtaawEAAACAJNlgXS8AAAAAgPWHWAQAAABAJxYBAAAA\n0IlFAAAAAHRiEQAAAACdWAQAAABAN+ZYVFUbVNUPq+r8weOJVXVRVf20qi6sqi1GHXtsVS2oqhuq\nasao8d2q6tqqurGqPrN23woAAAAAa2pVzix6X5L5ox4fk+SS1tqOSS5NcmySVNXOSd6cZKck+yX5\nYlXVYM4pSd7ZWtshyQ5Vtc8arh8AAACAtWhMsaiqpib5sySnjRo+IMmcwfacJAcOtvdPcnZr7eHW\n2sIkC5LsXlXbJNmstXbl4Li5o+YAAAAAsB4Y65lFn07y/yRpo8Ymt9ZuS5LW2pIkWw/GpyS5adRx\nNw/GpiRZPGp88WAMAAAAgPXESmNRVf3fSW5rrf0oST3Joe1J9gEAAADwe2DcGI7ZM8n+VfVnSTZJ\nsllVnZlkSVVNbq3dNrjE7FeD429OMjRq/tTB2IrGn6CqhCcAAACAtay19mQnAiVJqrWxd5mq+r+S\nHN1a27+q/iHJna21T1bV/5tkYmvtmMENrs9K8rIsvczs4iQvaK21qvp+kvcmuTLJfyQ5ubX2reW8\nTluVdfHMNXPmzMycOXNdL4PfE74vjJXvCqvC94Wx8l1hVfi+MFa+K6yKqhpTLBrLmUUr8okk51bV\nO5IsytJfQEtrbX5VnZulv5z2UJIjRpWf9yQ5I8mzksxbXigCAAAAYN1ZpVjUWvt2km8Ptu9K8poV\nHDc7yezljF+d5MWrvkwAAAAAng5j/TU0WC8NDw+v6yXwe8T3hbHyXWFV+L4wVr4rrArfF8bKd4Wn\nwirds+jp4p5FAAAAAGvX03HPIgAAAHhS06dPz6JFi9b1MuAZZdq0aVm4cOFqz3dmEQAAAE+ZwZkM\n63oZ8Iyyon93Yz2zyD2LAAAAAOjEIgAAAAA6sQgAAACATiwCAACAVTR79uz81V/91bpexlPqec97\nXi699NKVHrdo0aJssMEGefTRR5+GVf3h+rM/+7OceeaZ63oZSfwaGgAAAE+zo48+IYsW3f2UPf+0\naRNz4okfHNOx06dPz69+9auMGzcuf/RHf5R99903X/jCFzJhwoQnnXfssceujaWuFW9729syd+7c\nnHfeeXnd617Xx9///vfns5/9bM4444wcdthhT+kaqlZ8z+QvfOELOeOMM3LdddflLW95S7785S8v\ns/8///M/c+SRR+amm27Ky172spx++unZbrvtkiRvf/vbMzQ0lI985CNJkuuvvz577713PvCBD+So\no45a7ut9/vOfz5e+9KX87Gc/yxZbbJE/+ZM/yeGHH56DDjpoLb3b1ffxj388p512Wu644448+9nP\nzp577pmvfvWrSZJ58+at49X9L7EIAACAp9WiRXdn+vRPPWXPv3DhB8Z8bFXlP/7jP7LXXnvl1ltv\nzYwZM/Kxj30sH//4x5+y9a1tVZUdd9wxc+fO7bHokUceyde+9rVsv/3263h1yZQpU/KhD30oF154\nYf7nf/5nmX133nln3vjGN+bLX/5yXvva1+bv//7vc9BBB+Xyyy9/wvNcc8012XfffTNr1qz89V//\n9XJf62/+5m9y4YUX5tRTT82ee+6ZjTbaKJdffnlOO+20dR6L5syZk7POOiuXXnppj5Tnn3/+Ol3T\nirgMDQAAgGe0x35ifNttt81+++2Xn/zkJ0mSW2+9NQcccEC22mqr7LDDDjnttNP6nFmzZuXQQw9N\nkjzwwAM59NBDM2nSpEycODEve9nLcvvttydJzjjjjDz/+c/P5ptvnuc///n9LJLWWj72sY9l+vTp\n2WabbfK2t70t9957b5L/vaxr7ty5mTZtWrbeeuuVxqvXvva1+a//+q/cc889SZJvfetb2WWXXbLN\nNtss8z5X9JpJcuaZZ2b69Ol5znOe84TXa63lE5/4RLbffvs85znPycEHH5xf//rXY/p8DzzwwOy/\n//7Zcsstn7DvG9/4Rl70ohflDW94QzbaaKPMnDkzP/7xj3PjjTcuc9yVV16ZGTNm5BOf+MQKQ9GC\nBQtyyimn5JxzzsmrX/3qbLzxxqmq7LHHHsuczXTGGWdk5513zuabb57tt98+//zP/9z3ffvb387Q\n0FD+8R//MZMnT86UKVNy3nnn5YILLsiOO+6YSZMmZfbs2av1uVx11VXZZ599Mn369CTJ1ltvnXe9\n6119/1577dXXOWfOnLzyla/MUUcdlYkTJ2b77bfP5Zdfnjlz5mS77bbLNttsk7lz567kk199YhEA\nAAAkuemmmzJv3rzstttuSZKDDjoo2223XZYsWZKvfe1rOe644zIyMtKPf+zSqzlz5uTee+/NzTff\nnLvuuiunnnpqNtlkk9x///153/velwsvvDD33ntvLrvssuy6665JktNPPz1z587Nt7/97fz3f/93\nfvOb3+TII49cZj3f+973smDBglxyySX5yEc+kp/+9KcrXPsmm2ySAw44IGeffXaSZO7cuTnssMN6\nCFvZa86fPz9HHHFEzjrrrNxyyy258847c/PNN/e5J598cs4///x897vfzS233JKJEyfmiCOOWINP\ne6nrr78+u+yyS388YcKEbL/99rn++uv72A9+8IPsu++++exnP5u3v/3tK3yuSy+9NNttt11e+tKX\nPulrTp48OfPmzcu9996b008/Pe9///vzox/9qO9fsmRJHnzwwdxyyy2ZNWtW3v3ud+ess87KNddc\nk+985zv56Ec/mkWLFiVZtc/l5S9/eebOnZtPfepTufrqq1d6j6crrrgiu+66a+66664ccsghOfjg\ng3PVVVfl5z//ec4888wceeSRuf/++5/0OVaXWAQAAMAz2oEHHpgtt9wyr3rVq7LXXnvl2GOPzeLF\ni3P55Zfnk5/8ZMaPH59ddtkl73rXu5Z7Nsf48eNz55135sYbb0xV5aUvfWk23XTTJMmGG26Y6667\nLr/73e8yefLk7LTTTkmSr3zlKznqqKMybdq0TJgwIbNnz87ZZ5/dA0JVZebMmdloo43ykpe8JLvs\nskt+/OMfP+n7OPTQQzNnzpzcc889+c53vpMDDzxwmf3Le81zzjknjz76aL7+9a/nda97Xfbcc8+M\nHz8+H/3oR5e5D9E//dM/5YQTTsi2226b8ePH58Mf/nD+9V//dY1van3fffdliy22WGZs8803z29+\n85v++Pvf/36e/exnZ999933S57rjjjuWOZMqSYaGhjJx4sRssskmuemmm5Ik++23Xz+75//8n/+T\nGTNm5Lvf/W6fs9FGG+W4447LhhtumIMPPjh33HFH/vZv/zYTJkzIzjvvnJ133rn/XazK5/IXf/EX\n+dznPpeLLroow8PDmTx5cv7hH/5hhe/nec97Xg477LBUVQ466KAsXrw4xx9/fMaPH5+99947G220\nUX72s5896WeyusQiAAAAntHOO++83HXXXfnFL36Rz33uc9l4441zyy23ZMstt1zmRtfTpk1b5myb\nxxx66KHZZ599cvDBB2fq1Kk55phj8sgjj2TChAk555xzcsopp2TbbbfN6173un551S233JJp06Yt\n89wPP/xwbrvttj42efLkvj1hwoTcd999T/o+9txzz9x+++054YQT8trXvjYbb7zxMvuf7DVvueWW\nDA0NLfN6W221VX+8aNGivP71r8+WW26ZLbfcMjvvvHPGjx+/zHpXx6abbrrMpXBJcs8992SzzTbr\nj4888sj86Z/+aV7zmtf0y+yWZ6uttsqtt966zNhNN92UO+64Iw8++GA/y+qCCy7IK17ximy11VaZ\nOHFiLrjggtxxxx3LPM9joWyTTTZJsvSSscdssskm/e9iVT+XQw45JBdddFF+/etf59RTT82HPvSh\nXHzxxcs9dvTf/2PrmDRp0nLXsbaJRQAAADyjjb5U6zHPfe5zc9ddd+W3v/1tH/vlL3+ZKVOmPOHY\ncePG5UMf+lCuv/76XHbZZfnmN7/Zz0Dae++9c9FFF2XJkiXZcccd8+53v7s//2OXMiVLo8P48eOX\nCQSr4y//8i9z0kkn5a1vfety39PjX3PcuHGZPHlytt12237mTZLcf//9ufPOO/vj7bbbLhdccEHu\nuuuu3HXXXbn77rvz29/+Nttuu+0arfeFL3zhMpeA/fa3v83Pf/7zvOhFL+pjG264Yb7yla9ku+22\ny4wZM1YYSF796ldn8eLF+eEPf/iEfY/9HT/44IN505velL/7u7/L7bffnrvvvjv77bffcr8DY7G6\nn8uGG26YN77xjXnJS17S75G1PhGLAAAA4HGmTp2aPfbYI8cee2weeOCBXHvttfmXf/mXflPr0UZG\nRvKTn/wkjz76aDbddNOMHz8+G2ywQf+1q/vvvz/jx4/Ppptumg02WPq/4Yccckg+/elPZ+HChbnv\nvvvywQ9+MAcffHDfv7rx4r3vfW8uvvjivPKVr3zCvid7zTe96U3593//91x22WV56KGH8uEPf3iZ\nNRx++OE57rjj8stf/jJJcvvtty/zS15Ptt5HHnkkv/vd7/LII4/k4YcfzgMPPJBHHnkkSfL6178+\n119/ff7t3/4tDzzwQGbNmpVdd901L3jBC5Z5jg033DBf+9rXMmnSpOy3337LvVfPDjvskMMPPzwH\nH3xwLrnkkvzud7/Lo48+mu9973v9TKEHH3wwDz74YCZNmpQNNtggF1xwQS666KJV+ISXtbLPZbQ5\nc+Zk3rx5ue+++9JaywUXXJD58+fn5S9/+Zhea3W/E6tDLAIAAOAZa/R9eR7vq1/9an7xi1/kuc99\nbt74xjfmox/9aPbaa68nHLdkyZK86U1vyhZbbJEXvvCF2WuvvXLooYfm0UcfzUknnZQpU6Zk0qRJ\n+c53vpNTTjklSfKOd7wjhx56aF71qlfl+c9/fiZMmJCTTz55het6snWO3jdx4sRl1jh635O95s47\n75wvfOELOeSQQ/Lc5z43W221VaZOndrnvu9978sBBxyQGTNmZIsttsgee+yRK664Ykzr+9jHPpYJ\nEybkk5/8ZM4666xMmDAhJ5xwQpKll1V9/etfz3HHHZctt9wyV111Vb9J9+Ofd/z48fnGN76RTTbZ\nJPvvv38eeOCBJ7zW5z//+bz3ve/NUUcdla222ipDQ0M5/vjjc+6552a77bbLpptumpNPPjl//ud/\nni233DJnn312DjjggBWufXnvbfTjlX0uo22++eb5+Mc/nmnTpmXixIk55phjcuqpp+YVr3jFSj/D\nla1jbauns0yNVVW19XFdAAAArJqqesIZEUcffUIWLbr7KXvNadMm5sQTP/iUPT+s75b3727U+Eor\nk1gEAADAU2ZF/9MKPHXWNBa5DA0AAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACAbty6XgAA\nAAB/uKZNm5aqlf74ErAWTZs2bY3m1/r4E4ZV1dbHdQEAAAD8vqqqtNZWWm9dhgYAAABAJxYBAAAA\n0IlFAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlF\nAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAA\nAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAAAHRi\nEQAAAADduHW9AFgTRx99QhYtuntdL2O1TJs2MSee+MF1vQwAAABYhljE77VFi+7O9OmfWtfLWC0L\nF35gXS8BAAAAnsBlaAAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0K41FVbVxVf2gqq6p\nquuq6vjB+PFVtbiqfjj4s++oOcdW1YKquqGqZowa362qrq2qG6vqM0/NWwIAAABgdY1b2QGttQeq\naq/W2v1VtWGS71XVBYPdJ7XWThp9fFXtlOTNSXZKMjXJJVX1gtZaS3JKkne21q6sqnlVtU9r7cK1\n+5YAAAAAWF1jugyttXb/YHPjLA1MbfC4lnP4AUnObq093FpbmGRBkt2rapskm7XWrhwcNzfJgau7\ncAAAAADWvjHFoqraoKquSbIkycWjgs+RVfWjqjqtqrYYjE1JctOo6TcPxqYkWTxqfPFgDAAAAID1\nxFjPLHq0tfbSLL2sbPeq2jnJF5P8cWtt1yyNSCc+dcsEAAAA4Omw0nsWjdZau7eqRpLs+7h7FX0p\nyTcH2zcnGRq1b+pgbEXjyzVz5sy+PTw8nOHh4VVZKgAAAMAz2sjISEZGRlZ53kpjUVVNSvJQa+2e\nqtokyd5JPlFV27TWlgwOe0OSnwy2z09yVlV9OksvM9s+yRWttVZV91TV7kmuTHJYkpNX9LqjYxEA\nAAAAq+bxJ9/MmjVrTPPGcmbRtknmVNUGWXrZ2jmttXlVNbeqdk3yaJKFSQ5Pktba/Ko6N8n8JA8l\nOWLwS2hJ8p4kZyR5VpJ5rbVvjWmVAAAAADwtVhqLWmvXJdltOeOHPcmc2UlmL2f86iQvXsU1AgAA\nAPA0GdMNrgEAAAB4ZhCLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgA\nAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACA\nTiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwC\nAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAA\noBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOL\nAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAA\nAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjE\nIgAAAAA6sQgAAACATiwCAAAAoFtpLKqqjavqB1V1TVVdV1XHD8YnVtVFVfXTqrqwqrYYNefYqlpQ\nVTdU1YxR47tV1bVVdWNVfeapeUsAAAAArK6VxqLW2gNJ9mqtvTTJrkn2q6rdkxyT5JLW2o5JLk1y\nbJJU1c5J3pxkpyT7JfliVdXg6U5J8s7W2g5Jdqiqfdb2GwIAAABg9Y3pMrTW2v2DzY2TjEvSkhyQ\nZM5gfE6SAwfb+yc5u7X2cGttYZIFSXavqm2SbNZau3Jw3NxRcwAAAABYD4wpFlXVBlV1TZIlSS4e\nBJ/JrbXbkqS1tiTJ1oPDpyS5adT0mwdjU5IsHjW+eDAGAAAAwHpi3FgOaq09muSlVbV5kn+rqhdm\n6dlFyxy2Nhc2c+bMvj08PJzh4eG1+fQAAAAAf9BGRkYyMjKyyvPGFIse01q7t6pGkuyb5Laqmtxa\nu21widmvBofdnGRo1LSpg7EVjS/X6FgEAAAAwKp5/Mk3s2bNGtO8sfwa2qTHfumsqjZJsneSG5Kc\nn+Rtg8PemuS8wfb5SQ6uqo2q6nlJtk9yxeBStXuqavfBDa8PGzUHAAAAgPXAWM4s2jbJnKraIEvj\n0jmttXlV9f0k51bVO5IsytJfQEtrbX5VnZtkfpKHkhzRWnvsErX3JDkjybOSzGutfWutvhsAAAAA\n1shKY1Fr7bokuy1n/K4kr1nBnNlJZi9n/OokL171ZQIAAADwdBjTr6EBAAAA8MwgFgEAAADQiUUA\nAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdOPW9QJW5KqrrlrXS1hl06dPz6RJk9b1MgAA\nAABW23obi/7xHxes6yWskt/97tfZa6/r8rd/+/Z1vRQAAACA1bbexqKhoUPW9RJWyZ13zs/DD39/\nXS8DAAAAYI24ZxEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJ\nRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAA\nAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0\nYhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEA\nAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAA\nnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgE\nAAAAQLfSWFRVU6vq0qq6vqquq6q/GYwfX1WLq+qHgz/7jppzbFUtqKobqmrGqPHdquraqrqxqj7z\n1LwlAAAAAFbXuDEc83CSo1prP6qqTZNcXVUXD/ad1Fo7afTBVbVTkjcn2SnJ1CSXVNULWmstySlJ\n3tlau7Kq5lXVPq21C9fe2wEAAABgTaz0zKLW2pLW2o8G2/cluSHJlMHuWs6UA5Kc3Vp7uLW2MMmC\nJLtX1TZJNmutXTk4bm6SA9dw/QAAAACsRat0z6Kqmp5k1yQ/GAwdWVU/qqrTqmqLwdiUJDeNmnbz\nYGxKksWjxhfnf6MTAAAAAOuBMceiwSVo/5rkfYMzjL6Y5I9ba7smWZLkxKdmiQAAAAA8XcZyz6JU\n1bgsDUVnttbOS5LW2u2jDvlSkm8Otm9OMjRq39TB2IrGl+uyy2b27aGh4QwNDY9lqQAAAAAkGRkZ\nycjIyCrPG1MsSvLlJPNba599bKCqtmmtLRk8fEOSnwy2z09yVlV9OksvM9s+yRWttVZV91TV7kmu\nTHJYkpNX9IJ77DFzld4IAAAAAP9reHg4w8PD/fGsWbPGNG+lsaiq9kzyF0muq6prkrQkxyV5S1Xt\nmuTRJAuTHJ4krbX5VXVukvlJHkpyxOCX0JLkPUnOSPKsJPNaa98a0yoBAAAAeFqsNBa11r6XZMPl\n7Fph6GmtzU4yeznjVyd58aosEAAAAICnzyr9GhoAAAAAf9jEIgAAAAA6sQgAAACATiwCAAAAoBOL\nAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAA\nAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjE\nIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAA\nAAA6sQgAAACATiwCAAAAoBOLAAAAAOjEIgAAAAA6sQgAAACATiwCAAAAoBu3rhcA8HQ5+ugTsmjR\n3et6Gats2rSJOfHED67rZQAAAM8QYhHwjLFo0d2ZPv1T63oZq2zhwg+s6yUAAADPIC5DAwAAAKAT\niwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAA\nAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADo\nxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAupXGoqqaWlWXVtX1VXVdVb13MD6xqi6q\nqp9W1YVVtcWoOcdW1YKquqGqZowa362qrq2qG6vqM0/NWwIAAABgdY3lzKKHkxzVWnthklckeU9V\n/UmSY5Jc0lrbMcmlSY5NkqraOcmbk+yUZL8kX6yqGjzXKUne2VrbIckOVbXPWn03AAAAAKyRlcai\n1tqS1tqPBtv3JbkhydQkBySZMzhsTpIDB9v7Jzm7tfZwa21hkgVJdq+qbZJs1lq7cnDc3FFzAAAA\nAFgPrNI9i6pqepJdk3w/yeTW2m3J0qCUZOvBYVOS3DRq2s2DsSlJFo8aXzwYAwAAAGA9MeZYVFWb\nJvnXJO8bnGHUHnfI4x8DAAAA8Htm3FgOqqpxWRqKzmytnTcYvq2qJrfWbhtcYvarwfjNSYZGTZ86\nGFvR+HJddtnMvj00NJyhoeGxLBUAAACAJCMjIxkZGVnleWOKRUm+nGR+a+2zo8bOT/K2JJ9M8tYk\n540aP6uqPp2ll5ltn+SK1lqrqnuqavckVyY5LMnJK3rBPfaYuQpvAwAAAIDRhoeHMzw83B/PmjVr\nTPNWGouqas8kf5Hkuqq6JksvNzsuSyPRuVX1jiSLsvQX0NJam19V5yaZn+ShJEe01h67RO09Sc5I\n8qwk81pr3xrTKgEAAAB4Wqw0FrXWvpdkwxXsfs0K5sxOMns541cnefGqLBAAAACAp88q/RoaAAAA\nAH/YxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADo\nxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIA\nAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAA\nOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEI\nAAAAgE7B2z/hAAARR0lEQVQsAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADo\nxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIA\nAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAAOrEIAAAAgE4sAgAAAKATiwAAAADoxCIAAAAA\nOrEIAAAAgE4sAgAAAKATiwAAAADoVhqLqupfquq2qrp21NjxVbW4qn44+LPvqH3HVtWCqrqhqmaM\nGt+tqq6tqhur6jNr/60AAAAAsKbGcmbR6Un2Wc74Sa213QZ/vpUkVbVTkjcn2SnJfkm+WFU1OP6U\nJO9sre2QZIeqWt5zAgAAALAOrTQWtdb+K8ndy9lVyxk7IMnZrbWHW2sLkyxIsntVbZNks9balYPj\n5iY5cPWWDAAAAMBTZU3uWXRkVf2oqk6rqi0GY1OS3DTqmJsHY1OSLB41vngwBgAAAMB6ZHVj0ReT\n/HFrbdckS5KcuPaWBAAAAMC6Mm51JrXWbh/18EtJvjnYvjnJ0Kh9UwdjKxpfocsum9m3h4aGMzQ0\nvDpLBQAAAHhGGhkZycjIyCrPG2ssqoy6R1FVbdNaWzJ4+IYkPxlsn5/krKr6dJZeZrZ9kitaa62q\n7qmq3ZNcmeSwJCc/2QvuscfMMb8JAAAAAJY1PDyc4eHh/njWrFljmrfSWFRVX0kynGSrqvplkuOT\n7FVVuyZ5NMnCJIcnSWttflWdm2R+koeSHNFaa4Onek+SM5I8K8m8x35BDQAAAID1x0pjUWvtLcsZ\nPv1Jjp+dZPZyxq9O8uJVWh0AAAAAT6s1+TU0AAAAAP7AiEUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEA\nAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQ\niUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUA\nAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAA\ndGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIR\nAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAA\nAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1Y\nBAAAAEAnFgEAAADQiUUAAAAAdGIRAAAAAJ1YBAAAAEAnFgEAAADQrTQWVdW/VNVtVXXtqLGJVXVR\nVf20qi6sqi1G7Tu2qhZU1Q1VNWPU+G5VdW1V3VhVn1n7bwUAAACANTWWM4tOT7LP48aOSXJJa23H\nJJcmOTZJqmrnJG9OslOS/ZJ8sapqMOeUJO9sre2QZIeqevxzAgAAALCOrTQWtdb+K8ndjxs+IMmc\nwfacJAcOtvdPcnZr7eHW2sIkC5LsXlXbJNmstXbl4Li5o+YAAAAAsJ5Y3XsWbd1auy1JWmtLkmw9\nGJ+S5KZRx908GJuSZPGo8cWDMQAAAADWI+PW0vO0tfQ83WWXzezbQ0PDGRoaXtsvAQAAAPAHa2Rk\nJCMjI6s8b3Vj0W1VNbm1dtvgErNfDcZvTjI06ripg7EVja/QHnvMXM2lAQAAADA8PJzh4eH+eNas\nWWOaN9bL0Grw5zHnJ3nbYPutSc4bNX5wVW1UVc9Lsn2SKwaXqt1TVbsPbnh92Kg5AAAAAKwnVnpm\nUVV9Jclwkq2q6pdJjk/yiSRfq6p3JFmUpb+Altba/Ko6N8n8JA8lOaK19tglau9JckaSZyWZ11r7\n1tp9KwAAAACsqZXGotbaW1aw6zUrOH52ktnLGb86yYtXaXUAAAAAPK1W99fQAAAAAPgDJBYBAAAA\n0IlFAAAAAHRiEQAAAACdWAQAAABAJxYBAAAA0IlFAAAAAHTj1vUCAGB9c/TRJ2TRorvX9TJWy7Rp\nE3PiiR9c18sAAOD3mFgEAI+zaNHdmT79U+t6Gatl4cIPrOslAADwe85laAAAAAB0YhEAAAAAnVgE\nAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAA\nQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcW\nAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAA\nANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJ\nRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAA\nAAB0YhEAAAAAnVgEAAAAQCcWAQAAANCJRQAAAAB0YhEAAAAAnVgEAAAAQLdGsaiqFlbVj6vqmqq6\nYjA2saouqqqfVtWFVbXFqOOPraoFVXVDVc1Y08UDAAAAsHat6ZlFjyYZbq29tLW2+2DsmCSXtNZ2\nTHJpkmOTpKp2TvLmJDsl2S/JF6uq1vD1AQAAAFiL1jQW1XKe44Akcwbbc5IcONjeP8nZrbWHW2sL\nkyxIsnsAAAAAWG+saSxqSS6uqiur6l2DscmttduSpLW2JMnWg/EpSW4aNffmwRgAAAAA64lxazh/\nz9barVX1nCQXVdVPszQgjfb4xwAAAACsp9YoFrXWbh389/aq+v+y9LKy26pqcmvttqraJsmvBoff\nnGRo1PSpg7HluuyymX17aGg4Q0PDa7JUAAAAgGeUkZGRjIyMrPK81Y5FVTUhyQattfuq6o+SzEgy\nK8n5Sd6W5JNJ3prkvMGU85OcVVWfztLLz7ZPcsWKnn+PPWau7tIAAAAAnvGGh4czPDzcH8+aNWtM\n89bkzKLJSf6tqtrgec5qrV1UVVclObeq3pFkUZb+Alpaa/Or6twk85M8lOSI1ppL1AAAAADWI6sd\ni1prv0iy63LG70rymhXMmZ1k9uq+JgAAAABPrTX9NTQAAAAA/oCIRQAAAPD/t3d3oZaVdRjAn/84\naX6gSUHmiDNFiBREKag0BYZWVqCXaUHQRd0khmj4dWEEXgQOEdSNpJZhKkpSVISGTWAXan6k5piS\nzNHxC6PJEsnM/l2c5WIw53iOH3ut0d8PDnvvw17s5+Jl7bWf/b7vBkbKIgAAAABGyiIAAAAARsoi\nAAAAAEbKIgAAAABGyiIAAAAARsoiAAAAAEbKIgAAAABGyiIAAAAARsoiAAAAAEbKIgAAAABGyiIA\nAAAARsoiAAAAAEbKIgAAAABGyiIAAAAARsoiAAAAAEbKIgAAAABGyiIAAAAARsoiAAAAAEbKIgAA\nAABGyiIAAAAARsoiAAAAAEbKIgAAAABGyiIAAAAARuunDgAAsCc766yLsrS0c+oYa7Zx48HZsuWC\nqWMAADOkLAIAeA2WlnZm06aLp46xZtu3nz11BABgpixDAwAAAGCkLAIAAABgpCwCAAAAYKQsAgAA\nAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCkLAIAAABgpCwCAAAA\nYKQsAgAAAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCkLAIAAABg\npCwCAAAAYKQsAgAAAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCkLAIAAABgpCwCAAAAYKQsAgAAAGCk\nLAIAAABgtH7qAAAA8FZw1lkXZWlp59QxXpWNGw/Oli0XTB0DgAVRFgEAwAIsLe3Mpk0XTx3jVdm+\n/eypIwCwQJahAQAAADBSFgEAAAAwUhYBAAAAMFp4WVRVJ1XV/VX1QFWds+jXBwAAAGD3FloWVdW6\nJN9L8ukkH0xyWlUducgMvLk89dQjU0dgD2K8sFrGCmthvLBaxgprsXXr1qkjsIcwVngjLPrX0I5J\n8mB3LyVJVV2d5JQk9y84B28SLrpYC+OF1TJWWAvjhdUyVliL8877VjZs+MXUMdZs48aDs2XLBVPH\neEvZunVrjj/++Klj8Caz6LJoQ5Jd3yV3ZLlAAgAAYPD00//K5s0XTx1jzbZvP3vqCMDrYNFl0art\n2HHZ1BHW5Lnn/pm99z5o6hgAAAAAr0l19+JerOq4JN/s7pOGx+cm6e7+9kuet7hQAAAAAG8R3V2v\n9JxFl0V7JflzkhOSPJ7k1iSndfe2hYUAAAAAYLcWugytu1+oqtOT3JDlX2K7VFEEAAAAMB8LnVkE\nAAAAwLytmzrArqrqpKq6v6oeqKpzps7DfFXVpVX1ZFXdPXUW5q2qDquqm6rqT1V1T1WdMXUm5quq\n9qmqW6rqzmG8XDh1JuatqtZV1R1V9fOpszBvVbW9qv44nF9unToP81VVB1XVtVW1bbh+OXbqTMxT\nVR0xnFPuGG6fdq3L7lTVmVV1b1XdXVVXVtXeKz5/LjOLqmpdkgeyvJ/RY0luS3Jqd98/aTBmqao+\nluSZJFd094emzsN8VdUhSQ7p7ruq6oAktyc5xbmF3amq/br72WGfvd8nOaO7fbDjZVXVmUmOTnJg\nd588dR7mq6oeSnJ0d++cOgvzVlU/TPK77r68qtYn2a+7/zFxLGZu+Dy9I8mx3f3I1HmYl6o6NMnN\nSY7s7n9X1TVJftndV+zumDnNLDomyYPdvdTdzye5OskpE2diprr75iQutnhF3f1Ed9813H8mybYk\nG6ZNxZx197PD3X2yvLffPL5VYXaq6rAkn03yg6mzsEeozOvamxmqqgOTfLy7L0+S7v6PoohVOjHJ\nXxRFrGCvJPu/WEJneZLObs3pDWtDkl0H9o74QAe8jqpqU5IPJ7ll2iTM2bCs6M4kTyS5sbtvmzoT\ns/WdJN+IQpHV6SQ3VtVtVfWVqcMwW+9N8tequnxYWnRJVe07dSj2CJ9PctXUIZin7n4syZYkDyd5\nNMnfu/s3Kx0zp7II4A0zLEG7LsnXhxlG8LK6+7/d/ZEkhyU5tqo+MHUm5qeqPpfkyWHmYg1/sJLN\n3X1UlmejfW1YUg8vtT7JUUm+P4yXZ5OcO20k5q6q3pbk5CTXTp2Feaqqd2R55dbGJIcmOaCqvrDS\nMXMqix5Ncvgujw8b/gfwmgxTLa9L8uPu/tnUedgzDNP+f5vkpKmzMEubk5w87ENzVZJPVNVu1/1D\ndz8+3D6V5Posb8EAL7UjySPd/Yfh8XVZLo9gJZ9JcvtwfoGXc2KSh7r7b939QpKfJvnoSgfMqSy6\nLcn7q2rjsCv3qUn8sggr8U0uq3VZkvu6+7tTB2HequpdVXXQcH/fJJ9MYjN0/k93n9/dh3f3+7J8\nzXJTd39p6lzMU1XtN8xwTVXtn+RTSe6dNhVz1N1PJnmkqo4Y/nVCkvsmjMSe4bRYgsbKHk5yXFW9\nvaoqy+eWbSsdsH4hsVahu1+oqtOT3JDlEuvS7l4xPG9dVfWTJMcneWdVPZzkwhc3AoRdVdXmJF9M\ncs+wD00nOb+7fz1tMmbqPUl+NPyiyLok13T3rybOBOz53p3k+qrqLF9/X9ndN0ycifk6I8mVw9Ki\nh5J8eeI8zFhV7ZflWSNfnToL89Xdt1bVdUnuTPL8cHvJSsdUtz0ZAQAAAFg2p2VoAAAAAExMWQQA\nAADASFkEAAAAwEhZBAAAAMBIWQQAAADASFkEAAAAwEhZBAAAAMBIWQQAAADA6H8OMXqOIMc5xAAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f74a478ccc0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(20,10))\n",
"model = np.random.poisson(average_3pt_made_field_goals, 10000)\n",
"plt.hist(model, alpha=0.55, label='Poisson Model 10K Game Sim',bins=24)\n",
"plt.legend(loc='upper right')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's count how many times Draymond made 8+ 3pt shots in this simulation. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2908 3582 2211 917 289 71 19 2 1]\n"
]
}
],
"source": [
"print(np.bincount(model))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once! So it's pretty unlikely with lambda=1.2(ish)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, so let's now address the elephant in the room. The \"average\" we used to calculate mostly involves games played with Steph. Using nbawowy.com (at this point long pause, while you cheer), we see that Draymond shoots about 4 3's per 100 possessions when Steph is on the court, but that increases to about 6.5 when Steph is off the court. So, let's just do the simple thing here and increase lambda from the \"with Steph\" scenario to the \"without Steph\" scenario by multiplying it by this ratio."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f74a4594b70>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAJPCAYAAAD8JlT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuwXXV9///XBxIwMRJzkQC5nPglhRIvINNBBescHAnQ\nAYJCBbQg3koHqVZgOgSKJAJGWi6KIrSikDBRLmp/YBvkUuaICspFFCQORGuOJBAEEkGgXPP5/ZHN\nxxNIyDlJ4AR5PGYy7P3Za+393js7f/CctdYutdYAAAAAQJJsMtgDAAAAALDxEIsAAAAAaMQiAAAA\nABqxCAAAAIBGLAIAAACgEYsAAAAAaNYai0opm5dSflpKua2Uckcp5aTO+qhSytWllLtKKVeVUkb2\n2WdGKWVhKeVXpZRpfdZ3LqXcXkq5u5TyxZfmLQEAAACwrtYai2qtTybZvdb6tiQ7Jdm7lLJLkuOS\nXFtr3T7JdUlmJEkpZWqSDyTZIcneSb5aSimdpzs3ycdqrdsl2a6UsueGfkMAAAAArLt+nYZWa328\nc3PzJEOS1CTTk8zprM9Jsn/n9n5JLq61PlNrXZRkYZJdSilbJXldrfXmznZz++wDAAAAwEagX7Go\nlLJJKeW2JEuTXNMJPuNqrfcnSa11aZItO5uPT3JPn92XdNbGJ1ncZ31xZw0AAACAjUR/jyxa0TkN\nbUJWHiX0pqw8umiVzTb0cAAAAAC8vIYMZONa6yOllJ4keyW5v5QyrtZ6f+cUs993NluSZGKf3SZ0\n1ta0/gKlFOEJAAAAYAOrtZa1bbPWWFRKGZvk6Vrrw6WUYUn2SPKFJFckOTzJaUk+nOTyzi5XJJlX\nSjkrK08zm5LkplprLaU83Lk49s1JDkty9osMv7bRIDNnzszMmTMHewxeIXxf6C/fFQbC94X+8l1h\nIHxf6C/fFQbiT78/9uL6c2TR1knmlFI2ycrT1i6ptc4vpfwkyaWllI8m6c3KX0BLrXVBKeXSJAuS\nPJ3kyPqn8vPJJBcmeU2S+bXW7/f/LQEAAADwUltrLKq13pFk59WsL0vy3jXsMzvJ7NWs35rkLQMf\nEwAAAICXQ78ucA0bq+7u7sEegVcQ3xf6y3eFgfB9ob98VxgI3xf6y3eFl0LZGK8NVEqpG+NcAAAA\nAK9UpZQNc4FrAAAAWFeTJ09Ob2/vYI8BrypdXV1ZtGjROu/vyCIAAABeMp0jGQZ7DHhVWdO/u/4e\nWeSaRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAwADNnj07f//3fz/YY7yk3vjGN+a6665b63a9vb3Z\nZJNNsmLFipdhqj9ff/M3f5OLLrposMdI4tfQAAAAeJkdc8yp6e1d/pI9f1fXqJxxxgn92nby5Mn5\n/e9/nyFDhuS1r31t9tprr5xzzjkZPnz4i+43Y8aMDTHqBnH44Ydn7ty5ufzyy7Pvvvu29c985jP5\n0pe+lAsvvDCHHXbYSzpDKWu+ZvI555yTCy+8MHfccUc++MEP5hvf+MYqj//P//xPjjrqqNxzzz15\n+9vfngsuuCCTJk1KknzkIx/JxIkT87nPfS5Jcuedd2aPPfbIsccem6OPPnq1r/eVr3wlX/va1/Lr\nX/86I0eOzF/+5V/miCOOyEEHHbSB3u26+/znP5/zzz8/Dz74YF7/+tdnt912y7e+9a0kyfz58wd5\nuj8RiwAAAHhZ9fYuz+TJp79kz79o0bH93raUkv/+7//O7rvvnvvuuy/Tpk3LKaecks9//vMv2Xwb\nWikl22+/febOndti0bPPPpvLLrssU6ZMGeTpkvHjx+fEE0/MVVddlf/7v/9b5bGHHnooBxxwQL7x\njW9kn332yb/8y7/koIMOyo033viC57ntttuy1157ZdasWfmHf/iH1b7WP/7jP+aqq67Keeedl912\n2y2bbbZZbrzxxpx//vmDHovmzJmTefPm5brrrmuR8oorrhjUmdbEaWgAAAC8qj33E+Nbb7119t57\n7/zyl79Mktx3332ZPn16xowZk+222y7nn39+22fWrFk59NBDkyRPPvlkDj300IwdOzajRo3K29/+\n9jzwwANJkgsvvDDbbrtttthii2y77bbtKJJaa0455ZRMnjw5W221VQ4//PA88sgjSf50WtfcuXPT\n1dWVLbfccq3xap999smPfvSjPPzww0mS73//+9lxxx2z1VZbrfI+1/SaSXLRRRdl8uTJecMb3vCC\n16u15gtf+EKmTJmSN7zhDTn44IPzhz/8oV+f7/7775/99tsvo0ePfsFj3/3ud/PmN78573//+7PZ\nZptl5syZ+cUvfpG77757le1uvvnmTJs2LV/4whfWGIoWLlyYc889N5dcckne8573ZPPNN08pJbvu\nuusqRzNdeOGFmTp1arbYYotMmTIl//Ef/9Ee+8EPfpCJEyfm3/7t3zJu3LiMHz8+l19+ea688sps\nv/32GTt2bGbPnr1On8stt9ySPffcM5MnT06SbLnllvn4xz/eHt99993bnHPmzMm73vWuHH300Rk1\nalSmTJmSG2+8MXPmzMmkSZOy1VZbZe7cuWv55NedWAQAAABJ7rnnnsyfPz8777xzkuSggw7KpEmT\nsnTp0lx22WU5/vjj09PT07Z/7tSrOXPm5JFHHsmSJUuybNmynHfeeRk2bFgef/zxfPrTn85VV12V\nRx55JDfccEN22mmnJMkFF1yQuXPn5gc/+EH+93//N3/84x9z1FFHrTLPj3/84yxcuDDXXnttPve5\nz+Wuu+5a4+zDhg3L9OnTc/HFFydJ5s6dm8MOO6yFsLW95oIFC3LkkUdm3rx5uffee/PQQw9lyZIl\nbd+zzz47V1xxRX74wx/m3nvvzahRo3LkkUeux6e90p133pkdd9yx3R8+fHimTJmSO++8s6399Kc/\nzV577ZUvfelL+chHPrLG57ruuusyadKkvO1tb3vR1xw3blzmz5+fRx55JBdccEE+85nP5Oc//3l7\nfOnSpXnqqady7733ZtasWfnEJz6RefPm5bbbbsv111+fk08+Ob29vUkG9rm84x3vyNy5c3P66afn\n1ltvXes1nm666abstNNOWbZsWQ455JAcfPDBueWWW/Kb3/wmF110UY466qg8/vjjL/oc60osAgAA\n4FVt//33z+jRo/Pud787u+++e2bMmJHFixfnxhtvzGmnnZahQ4dmxx13zMc//vHVHs0xdOjQPPTQ\nQ7n77rtTSsnb3va2jBgxIkmy6aab5o477sgTTzyRcePGZYcddkiSfPOb38zRRx+drq6uDB8+PLNn\nz87FF1/cAkIpJTNnzsxmm22Wt771rdlxxx3zi1/84kXfx6GHHpo5c+bk4YcfzvXXX5/9999/lcdX\n95qXXHJJVqxYke985zvZd999s9tuu2Xo0KE5+eSTV7kO0b//+7/n1FNPzdZbb52hQ4fms5/9bL79\n7W+v90WtH3300YwcOXKVtS222CJ//OMf2/2f/OQnef3rX5+99trrRZ/rwQcfXOVIqiSZOHFiRo0a\nlWHDhuWee+5Jkuy9997t6J6//uu/zrRp0/LDH/6w7bPZZpvl+OOPz6abbpqDDz44Dz74YP7pn/4p\nw4cPz9SpUzN16tT2dzGQz+VDH/pQvvzlL+fqq69Od3d3xo0bl3/9139d4/t54xvfmMMOOyyllBx0\n0EFZvHhxTjrppAwdOjR77LFHNttss/z6179+0c9kXYlFAAAAvKpdfvnlWbZsWX7729/my1/+cjbf\nfPPce++9GT169CoXuu7q6lrlaJvnHHroodlzzz1z8MEHZ8KECTnuuOPy7LPPZvjw4bnkkkty7rnn\nZuutt86+++7bTq+6995709XVtcpzP/PMM7n//vvb2rhx49rt4cOH59FHH33R97HbbrvlgQceyKmn\nnpp99tknm2+++SqPv9hr3nvvvZk4ceIqrzdmzJh2v7e3N+973/syevTojB49OlOnTs3QoUNXmXdd\njBgxYpVT4ZLk4Ycfzute97p2/6ijjspf/dVf5b3vfW87zW51xowZk/vuu2+VtXvuuScPPvhgnnrq\nqXaU1ZVXXpl3vvOdGTNmTEaNGpUrr7wyDz744CrP81woGzZsWJKVp4w9Z9iwYe3vYqCfyyGHHJKr\nr746f/jDH3LeeeflxBNPzDXXXLPabfv+/T83x9ixY1c7x4YmFgEAAPCq1vdUredss802WbZsWR57\n7LG29rvf/S7jx49/wbZDhgzJiSeemDvvvDM33HBDvve977UjkPbYY49cffXVWbp0abbffvt84hOf\naM//3KlMycroMHTo0FUCwbr4u7/7u5x55pn58Ic/vNr39PzXHDJkSMaNG5ett966HXmTJI8//nge\neuihdn/SpEm58sors2zZsixbtizLly/PY489lq233nq95n3Tm960yilgjz32WH7zm9/kzW9+c1vb\ndNNN881vfjOTJk3KtGnT1hhI3vOe92Tx4sX52c9+9oLHnvs7fuqpp3LggQfmn//5n/PAAw9k+fLl\n2XvvvVf7HeiPdf1cNt100xxwwAF561vf2q6RtTERiwAAAOB5JkyYkF133TUzZszIk08+mdtvvz1f\n//rX20Wt++rp6ckvf/nLrFixIiNGjMjQoUOzySabtF+7evzxxzN06NCMGDEim2yy8n/DDznkkJx1\n1llZtGhRHn300Zxwwgk5+OCD2+PrGi8+9alP5Zprrsm73vWuFzz2Yq954IEH5r/+679yww035Omn\nn85nP/vZVWY44ogjcvzxx+d3v/tdkuSBBx5Y5Ze8XmzeZ599Nk888USeffbZPPPMM3nyySfz7LPP\nJkne97735c4778x//ud/5sknn8ysWbOy00475S/+4i9WeY5NN900l112WcaOHZu99957tdfq2W67\n7XLEEUfk4IMPzrXXXpsnnngiK1asyI9//ON2pNBTTz2Vp556KmPHjs0mm2ySK6+8MldfffUAPuFV\nre1z6WvOnDmZP39+Hn300dRac+WVV2bBggV5xzve0a/XWtfvxLoQiwAAAHjV6ntdnuf71re+ld/+\n9rfZZpttcsABB+Tkk0/O7rvv/oLtli5dmgMPPDAjR47Mm970puy+++459NBDs2LFipx55pkZP358\nxo4dm+uvvz7nnntukuSjH/1oDj300Lz73e/Otttum+HDh+fss89e41wvNmffx0aNGrXKjH0fe7HX\nnDp1as4555wccsgh2WabbTJmzJhMmDCh7fvpT38606dPz7Rp0zJy5Mjsuuuuuemmm/o13ymnnJLh\nw4fntNNOy7x58zJ8+PCceuqpSVaeVvWd73wnxx9/fEaPHp1bbrmlXaT7+c87dOjQfPe7382wYcOy\n33775cknn3zBa33lK1/Jpz71qRx99NEZM2ZMJk6cmJNOOimXXnppJk2alBEjRuTss8/O3/7t32b0\n6NG5+OKLM3369DXOvrr31vf+2j6XvrbYYot8/vOfT1dXV0aNGpXjjjsu5513Xt75zneu9TNc2xwb\nWnk5y1R/lVLqxjgXAAAAA1NKecEREcccc2p6e5e/ZK/Z1TUqZ5xxwkv2/LCxW92/uz7ra61MYhEA\nAAAvmTX9Tyvw0lnfWOQ0NAAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAACaIYM9AAAAAH++\nurq6Uspaf3wJ2IC6urrWa/+yMf6EYSmlboxzAQAAALxSlVJSa11rvXUaGgAAAACNWAQAAABAIxYB\nAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA\n0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhF\nAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0AwZ7AEAXi7HHHNqenuXD/YYA9bVNSpnnHHCYI8BAAC8\nSohFwKtGb+/yTJ58+mCPMWCLFh072CMAAACvIk5DAwAAAKARiwAAAABoxCIAAAAAGtcs4hXtlXrB\n4sRFiwEAANg4iUW8or1SL1icuGgxAAAAGyenoQEAAADQiEUAAAAANGIRAAAAAI1YBAAAAEAjFgEA\nAADQiEUAAAAANGIRAAAAAI1YBAAAAEAjFgEAAADQiEUAAAAANGIRAAAAAI1YBAAAAEAjFgEAAADQ\niEUAAAAANGIRAAAAAI1YBAAAAEAjFgEAAADQiEUAAAAANGIRAAAAAI1YBAAAAEAjFgEAAADQiEUA\nAAAANGIRAAAAAI1YBAAAAEAjFgEAAADQiEUAAAAANGIRAAAAAI1YBAAAAECz1lhUSplQSrmulHJn\nKeWOUso/dtZPKqUsLqX8rPNnrz77zCilLCyl/KqUMq3P+s6llNtLKXeXUr740rwlAAAAANbVkH5s\n80ySo2utPy+ljEhyaynlms5jZ9Zaz+y7cSllhyQfSLJDkglJri2l/EWttSY5N8nHaq03l1Lml1L2\nrLVeteHeDgAAAADrY61HFtVal9Zaf965/WiSXyUZ33m4rGaX6UkurrU+U2tdlGRhkl1KKVsleV2t\n9ebOdnOT7L+e8wMAAACwAQ3omkWllMlJdkry087SUaWUn5dSzi+ljOysjU9yT5/dlnTWxidZ3Gd9\ncf4UnQAAAADYCPQ7FnVOQft2kk93jjD6apL/V2vdKcnSJGe8NCMCAAAA8HLpzzWLUkoZkpWh6KJa\n6+VJUmt9oM8mX0vyvc7tJUkm9nlsQmdtTeurNXPmzHa7u7s73d3d/RkVAAAAgCQ9PT3p6ekZ8H79\nikVJvpFkQa31S88tlFK2qrUu7dx9f5Jfdm5fkWReKeWsrDzNbEqSm2qttZTycClllyQ3Jzksydlr\nesG+sQgAAACAgXn+wTezZs3q135rjUWllN2SfCjJHaWU25LUJMcn+WApZackK5IsSnJEktRaF5RS\nLk2yIMnTSY7s/BJaknwyyYVJXpNkfq31+/2aEgAAAICXxVpjUa31x0k2Xc1Daww9tdbZSWavZv3W\nJG8ZyIAAAAAAvHwG9GtoAAAAAPx5E4sAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQi\nAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAA\nABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqx\nCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAA\nAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBG\nLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIA\nAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACg\nEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsA\nAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAA\naMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQi\nAAAAABqxCAAAAIBmrbGolDKhlHJdKeXOUsodpZRPddZHlVKuLqXcVUq5qpQyss8+M0opC0spvyql\nTOuzvnMp5fZSyt2llC++NG8JAAAAgHXVnyOLnklydK31TUnemeSTpZS/THJckmtrrdsnuS7JjCQp\npUxN8oEkOyTZO8lXSyml81znJvlYrXW7JNuVUvbcoO8GAAAAgPWy1lhUa11aa/155/ajSX6VZEKS\n6UnmdDabk2T/zu39klxca32m1rooycIku5RStkryulrrzZ3t5vbZBwAAAICNwICuWVRKmZxkpyQ/\nSTKu1np/sjIoJdmys9n4JPf02W1JZ218ksV91hd31gAAAADYSPQ7FpVSRiT5dpJPd44wqs/b5Pn3\nAQAAAHiFGdKfjUopQ7IyFF1Ua728s3x/KWVcrfX+zilmv++sL0kysc/uEzpra1pfrZkzZ7bb3d3d\n6e7u7s+oAAAAACTp6elJT0/PgPfrVyxK8o0kC2qtX+qzdkWSw5OcluTDSS7vsz6vlHJWVp5mNiXJ\nTbXWWkp5uJSyS5KbkxyW5Ow1vWDfWAQAAADAwDz/4JtZs2b1a7+1xqJSym5JPpTkjlLKbVl5utnx\nWRmJLi2lfDRJb1b+AlpqrQtKKZcmWZDk6SRH1lqfO0Xtk0kuTPKaJPNrrd/v15QAAAAAvCzWGotq\nrT9OsukaHn7vGvaZnWT2atZvTfKWgQwIAAAAwMtnQL+GBgAAAMCfN7EIAAAAgEYsAgAAAKARiwAA\nAABoxCIAAAAAGrEIAAAAgEYsAgAAAKARiwAAAABoxCIAAAAAGrEIAAAAgEYsAgAAAKARiwAAAABo\nxCIAAAAAGrEIAAAAgEYsAgAAAKARiwAAAABoxCIAAAAAGrEIAAAAgEYsAgAAAKARiwAAAABoxCIA\nAAAAGrEIAAAAgEYsAgAAAKARiwAAAABoxCIAAAAAGrEIAAAAgEYsAgAAAKARiwAAAABoxCIAAAAA\nGrEIAAAAgEYsAgAAAKARiwAAAABoxCIAAAAAGrEIAAAAgEYsAgAAAKAZMtgDAMDG5phjTk1v7/LB\nHmOddHWNyhlnnDDYYwAA8AomFgHA8/T2Ls/kyacP9hjrZNGiYwd7BAAAXuGchgYAAABAIxYBAAAA\n0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhF\nAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAA\nADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRi\nEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAA\nAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACN\nWAQAAABAIxYBAAAA0IhFAAAAADRrjUWllK+XUu4vpdzeZ+2kUsriUsrPOn/26vPYjFLKwlLKr0op\n0/qs71xKub2Ucncp5Ysb/q0AAAAAsL76c2TRBUn2XM36mbXWnTt/vp8kpZQdknwgyQ5J9k7y1VJK\n6Wx/bpKP1Vq3S7JdKWV1zwkAAADAIFprLKq1/ijJ8tU8VFazNj3JxbXWZ2qti5IsTLJLKWWrJK+r\ntd7c2W5ukv3XbWQAAAAAXirrc82io0opPy+lnF9KGdlZG5/knj7bLOmsjU+yuM/64s4aAAAAABuR\ndY1FX03y/2qtOyVZmuSMDTcSAAAAAINlyLrsVGt9oM/dryX5Xuf2kiQT+zw2obO2pvU1mjlzZrvd\n3d2d7u7udRkVAAAA4FWpp6cnPT09A96vv7GopM81ikopW9Val3buvj/JLzu3r0gyr5RyVlaeZjYl\nyU211lpKebiUskuSm5McluTsF3vBvrEIAAAAgIF5/sE3s2bN6td+a41FpZRvJulOMqaU8rskJyXZ\nvZSyU5IVSRYlOSJJaq0LSimXJlmQ5OkkR9Zaa+epPpnkwiSvSTL/uV9QAwAAAGDjsdZYVGv94GqW\nL3iR7Wcnmb2a9VuTvGVA0wEAAADwslqfX0MDAAAA4M+MWAQAAABAIxYBAAAA0IhFAAAAADRiEQAA\nAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACN\nWAQAAABAM2SwB1iTj31s5mCPMGD77POOvO99ew32GAAAAADrbKONRa997bGDPcKALF9+V37zm18M\n9hgAAAAA62WjjUWbbTZisEcYkCFDhg32CAAAAADrzTWLAAAAAGjEIgAAAAAasQgAAACARiwCAAAA\noBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGL\nAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAA\nAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjE\nIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAA\nAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAa\nsQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgA\nAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACA\nRiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACAZq2xqJTy9VLK/aWU2/usjSqlXF1KuauUclUpZWSf\nx2aUUhaWUn5VSpnWZ33nUsrtpZS7Sylf3PBvBQAAAID11Z8jiy5Isufz1o5Lcm2tdfsk1yWZkSSl\nlKlJPpBkhyR7J/lqKaV09jk3ycdqrdsl2a6U8vznBAAAAGCQrTUW1Vp/lGT585anJ5nTuT0nyf6d\n2/slubjW+kytdVGShUl2KaVsleR1tdabO9vN7bMPAAAAABuJdb1m0Za11vuTpNa6NMmWnfXxSe7p\ns92SztrQliARAAANm0lEQVT4JIv7rC/urAEAAACwEdlQF7iuG+h5AAAAABhEQ9Zxv/tLKeNqrfd3\nTjH7fWd9SZKJfbab0Flb0/oa3XDDzHZ74sTuTJzYvY6jAgAAALz69PT0pKenZ8D79TcWlc6f51yR\n5PAkpyX5cJLL+6zPK6WclZWnmU1JclOttZZSHi6l7JLk5iSHJTn7xV5w111n9nM0AAAAAJ6vu7s7\n3d3d7f6sWbP6td9aY1Ep5ZtJupOMKaX8LslJSb6Q5LJSykeT9GblL6Cl1rqglHJpkgVJnk5yZK31\nuVPUPpnkwiSvSTK/1vr9fk0IAAAAwMtmrbGo1vrBNTz03jVsPzvJ7NWs35rkLQOaDgAAAICX1Ya6\nwDUAAAAAfwbEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGL\nAAAAAGjEIgAAAAAasQgAAACARiwCAAAAoBGLAAAAAGjEIgAAAACaIYM9AADAK9kxx5ya3t7lgz3G\ngHV1jcoZZ5ww2GMAABshsQgAYD309i7P5MmnD/YYA7Zo0bGDPQIAsJFyGhoAAAAAjVgEAAAAQCMW\nAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAA\nANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCI\nRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAA\nAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0\nYhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEA\nAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAA\njVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgE\nAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAAQCMWAQAAANCIRQAAAAA06xWLSimLSim/KKXc\nVkq5qbM2qpRydSnlrlLKVaWUkX22n1FKWVhK+VUpZdr6Dg8AAADAhrW+RxatSNJda31brXWXztpx\nSa6ttW6f5LokM5KklDI1yQeS7JBk7yRfLaWU9Xx9AAAAADag9Y1FZTXPMT3JnM7tOUn279zeL8nF\ntdZnaq2LkixMsksAAAAA2GisbyyqSa4ppdxcSvl4Z21crfX+JKm1Lk2yZWd9fJJ7+uy7pLMGAAAA\nwEZiyHruv1ut9b5SyhuSXF1KuSsrA1Jfz78PAAAAwEZqvWJRrfW+zn8fKKX8f1l5Wtn9pZRxtdb7\nSylbJfl9Z/MlSSb22X1CZ221brhhZrs9cWJ3Jk7sXp9RAQAAAF5Venp60tPTM+D91jkWlVKGJ9mk\n1vpoKeW1SaYlmZXkiiSHJzktyYeTXN7Z5Yok80opZ2Xl6WdTkty0puffddeZ6zoaAAAAwKted3d3\nuru72/1Zs2b1a7/1ObJoXJL/LKXUzvPMq7VeXUq5JcmlpZSPJunNyl9AS611QSnl0iQLkjyd5Mha\nq1PUAAAAADYi6xyLaq2/TbLTataXJXnvGvaZnWT2ur4mAAAAAC+t9f01NAAAAAD+jIhFAAAAADRi\nEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAA\nAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACN\nWAQAAABAIxYBAAAA0IhFAAAAADRiEQAAAACNWAQAAABAM2SwBwAAgFeDY445Nb29ywd7jHXS1TUq\nZ5xxwmCPAcDLRCwCAICXQW/v8kyefPpgj7FOFi06drBHAOBl5DQ0AAAAABqxCAAAAIBGLAIAAACg\nEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsA\nAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAA\naMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQi\nAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAAABqxCAAAAIBGLAIAAACgEYsAAAAAaMQiAAAA\nABqxCAAAAIBGLAIAAACgEYsAAAAAaIYM9gAAAACs6phjTk1v7/LBHmPAurpG5YwzThjsMYD1JBYB\nAABsZHp7l2fy5NMHe4wBW7To2MEeAdgAnIYGAAAAQCMWAQAAANCIRQAAAAA0YhEAAAAAjVgEAAAA\nQCMWAQAAANCIRQAAAP9/e/cXenddx3H8+Zpr5hRXFGRuuBUhUhCl4KQVFFqtgu0yZxB0UTfJQiwS\nu7CbLoJGBXUjzZWxVBxJQREzjMAu3NKZmjOlsd/2889YZH9kYGu9uzhfD2Ptdzy/2c7n85vPB/w4\nfzhfzuvizff3Pe/z+byPJGnMZpEkSZIkSZLGbBZJkiRJkiRpzGaRJEmSJEmSxmwWSZIkSZIkacxm\nkSRJkiRJksZsFkmSJEmSJGnMZpEkSZIkSZLGbBZJkiRJkiRpbHnrAJIkSZIk6czcfPM3mJt7sXWM\nM7J27ZvZtu1rrWPoNGbeLEqyEfgOo1VN26vqm7POIEmSJEnSuWBu7kXWrftW6xhn5ODBL7eOoAXM\ndBtakmXA94CPA+8BtiS5YpYZdG45evRw6whaQqwXTcta0WJYL5qWtaLFsF40LWtFZ8OsZxZdDTxT\nVXNVdRy4G9g84ww6h3hi1GJYL5qWtaLFsF40LWtFi2G9aFrWis6GWW9DWw2cXMnzjBpIkiRJkiRJ\n3VvKc6Km1e2A6/n5O1pHWJSXX/4nK1asah1DkiRJkiSdRUt5ThRsm+pVqaqzHOSkN0uuAb5eVRuH\nx7cAdeqQ6ySzCyVJkiRJkvQ6UVV5tdfMull0HvAn4FrgeWAPsKWq9s8shCRJkiRJkhY0021oVXUi\nyY3AbkbDtbfbKJIkSZIkSerHTFcWSZIkSZIkqW/LWgc4WZKNSZ5K8nSSr7bOo34l2Z7kSJLHWmdR\n35KsSfJAkj8meTzJ1taZ1K8k5yd5KMm+oV5ua51JfUuyLMkjSX7eOov6luRgkj8M55c9rfOoX0lW\nJbk3yf7h+mV960zqU5LLh3PKI8Pt373W1UKS3JTkiSSPJdmZZMXE1/eysijJMuBpRvOMngP2AtdX\n1VNNg6lLST4IvATcWVXvbZ1H/UpyCXBJVT2a5CLgYWCz5xYtJMnKqjo2zNn7HbC1qvxgp9NKchNw\nFXBxVW1qnUf9SnIAuKqqzu3fWtZrluSHwG+rakeS5cDKqvpH41jq3PB5eh5YX1WHW+dRX5JcCjwI\nXFFV/0pyD/CLqrpzoWN6Wll0NfBMVc1V1XHgbmBz40zqVFU9CHixpVdVVS9U1aPD/ZeA/cDqtqnU\ns6o6Ntw9n9Fsvz6+VVF3kqwBPgn8oHUWLQmhr2tvdSjJxcCHqmoHQFX920aRpnQd8GcbRZrgPODC\nV5rQjBbpLKinf1irgZMLex4/0En6P0qyDngf8FDbJOrZsK1oH/ACcH9V7W2dSd36NvAVbChqOgXc\nn2Rvks+3DqNuvQP4S5Idw9ai25Nc0DqUloRPA3e1DqE+VdVzwDbgEPAs8Leq+vWkY3pqFknSWTNs\nQdsFfGlYYSSdVlX9p6reD6wB1id5d+tM6k+STwFHhpWLGf6kSTZU1ZWMVqN9cdhSL51qOXAl8P2h\nXo4Bt7SNpN4leQOwCbi3dRb1KcmbGO3cWgtcClyU5IZJx/TULHoWuOykx2uG5yTpNRmWWu4CflxV\nP2udR0vDsOz/N8DG1lnUpQ3ApmEOzV3AR5IsuO9fqqrnh9ujwH2MRjBIp5oHDlfV74fHuxg1j6RJ\nPgE8PJxfpNO5DjhQVX+tqhPAT4EPTDqgp2bRXuBdSdYOU7mvB/xlEU3iN7ma1h3Ak1X13dZB1Lck\nb02yarh/AfBRwGHo+h9VdWtVXVZV72R0zfJAVX22dS71KcnKYYUrSS4EPgY80TaVelRVR4DDSS4f\nnroWeLJhJC0NW3ALmiY7BFyT5I1Jwujcsn/SActnEmsKVXUiyY3AbkZNrO1VNTG8Xr+S/AT4MPCW\nJIeA214ZBCidLMkG4DPA48McmgJurapftU2mTr0d+NHwiyLLgHuq6peNM0la+t4G3JekGF1/76yq\n3Y0zqV9bgZ3D1qIDwOca51HHkqxktGrkC62zqF9VtSfJLmAfcHy4vX3SMalyJqMkSZIkSZJGetqG\nJkmSJEmSpMZsFkmSJEmSJGnMZpEkSZIkSZLGbBZJkiRJkiRpzGaRJEmSJEmSxmwWSZIkSZIkacxm\nkSRJkiRJksZsFkmSJEmSJGnsvxhoWroWOU/dAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f74a4594ba8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(20,10))\n",
"model = np.random.poisson(average_3pt_made_field_goals*(6.5/4), 10000)\n",
"plt.hist(model, alpha=0.55, label='Poisson Model 10K Game Sim',bins=24)\n",
"plt.legend(loc='upper right')"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1399 2686 2714 1787 903 348 124 32 7]\n"
]
}
],
"source": [
"print(np.bincount(model))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, so now it's a bit more likely (7 out of 10K simulations!). Yay statistics! Of course, as I said last time (writing up the CLE game), a Poisson model is about the simplest thing we can do. It likely underestimates the true probabilities in some ways I haven't thought of. But still, it gives you an idea of the game Draymond had."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment