Last active
May 6, 2016 20:57
-
-
Save EvanZ/bacc0ac26dc01019fea90edb9f028ed1 to your computer and use it in GitHub Desktop.
Cleveland Historic 3PT Game
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import math\n", | |
"import pandas as pd\n", | |
"from matplotlib import pyplot as plt\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Read Cleveland game logs (from basketball-reference.com)\n", | |
"CLEVELAND = pd.read_csv('/home/jovyan/cle_stats.csv')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[ 5 10 9 10 9 9 13 18 9 13 12 18 5 16 17 11 11 5 10 14 13 11 13 16 11\n", | |
" 15 8 15 13 11 10 17 8 17 5 15 8 7 8 9 10 14 9 12 13 12 7 19 7 7\n", | |
" 12 6 4 11 9 9 11 12 13 9 16 10 15 6 7 16 12 15 6 19 13 7 14 7 13\n", | |
" 11 9 11 8 12 7 11]\n" | |
] | |
} | |
], | |
"source": [ | |
"# Use the average made 3pt field goals this season as the 'lambda' in the Poisson model\n", | |
"average_3pt_made_field_goals = np.mean(CLEVELAND['3P'])\n", | |
"\n", | |
"# Model Cleveland made 3pt field goals as a Poisson distribution \n", | |
"# https://en.wikipedia.org/wiki/Poisson_distribution\n", | |
"fg3m = np.random.poisson(average_3pt_made_field_goals, 82) # one 82-game simulation of the model\n", | |
"print(fg3m)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f81eae07278>" | |
] | |
}, | |
"execution_count": 56, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAJPCAYAAADrBMQ/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQ3XWd7//XN3SDaZJAOiHpsCRhQBiDI1Hvb5whwiT3\nd1lEUonKjEEJi6VShY6IWpaBEhO26PysOGAxyL2CJJQssmhYBImT2yBGxytelsDImoUQmoRuQidk\nAZLz+0PoSSBLJ+nmBD6PR1XK0+f7Pd/Pu89JFeZZ3+/3VLVaLQAAAAC8u/Wp9wAAAAAA9D4RCAAA\nAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACrDNCFRV1f5VVc2tquqRqqoerqrqn19//jtV\nVS2pqupPr/85rvfHBQAAAGBHVLVabes7VFVLkpZarfZAVVX9ktyfZEKSTydZWavVZvT+mAAAAADs\njIZt7VCr1dqStL3+eFVVVf+ZZL/XN1e9OBsAAAAAPWS77glUVdXIJKOT/MfrT325qqoHqqr6cVVV\ne/XwbAAAAAD0kG5HoNcvBbspyVm1Wm1Vkn9L8le1Wm10/nKmkMvCAAAAAHZR27wnUJJUVdWQ5PYk\nd9ZqtUs2s31EkttqtdoHNrNt2wsAAAAAsF1qtdp23aZnm/cEet1VSR7dOABVVdXy+v2CkuSTSeZv\nZajtmYl3sKlTp2bq1Kn1HoO3ic+7LD7vsvi8y+LzLovPuyw+77L4vMtSVdt/m+ZtRqCqqsYk+WyS\nh6uq+r9JaknOSfKZqqpGJ9mQZGGSM7Z7dQAAAADeFt35drDfJtltM5vu6vlxAAAAAOgN2/XtYLAt\nY8eOrfcIvI183mXxeZfF510Wn3dZfN5l8XmXxefNtnTrxtA7tUBV1dwTCAAAAKDnVFXVazeGBgAA\ngHetkSNHZtGiRfUeA95ixIgRWbhwYY8cy5lAAAAAFO/1syrqPQa8xZb+bu7ImUDuCQQAAABQABEI\nAAAAoAAiEAAAAEABRCAAAACAAvh2MAAAANiM88771yxevKLXjj98+N45//yvdmvfa6+9Nj/4wQ/y\n5z//OQMGDMjo0aNz7rnn5ogjjsi0adPy5JNP5pprrnnL60aOHJlly5aloaEhtVotVVXltNNOy6WX\nXvqWfWfNmpVLL700TzzxRPbaa6+cdNJJmT59evr0+cv5Iy+++GI+97nPZc6cOdlnn31y8cUX56ST\nTkqSvPrqq/nMZz6TP/7xj1m0aFFaW1tz1FFHbXL8P/3pTzn77LPzpz/9Kf369cs555yTf/7nf97e\nt42dIAIBAADAZixevCIjR07tteMvXNi9Y8+YMSP/8i//kiuuuCLHHHNMdt999/zqV7/KrbfemiOO\nOCLJX74panOqqsodd9yRcePGbXOdNWvW5JJLLslHPvKRLF++POPHj8/3v//9fPOb30ySnHnmmXnP\ne96T5cuX509/+lM+/vGPZ/To0Xnf+96XJDnyyCNz9tln5x//8R/fcuz29vZ87GMfyyWXXJITTzwx\n69aty5IlS7r1+9NzRCAAAADYRXV2duY73/lOZs6cmQkTJnQ9f/zxx+f444/v1jE29/Xim3PGGWd0\nPR42bFg++9nPprW1NUmyevXq3HLLLXn00UfTt2/fjBkzJhMmTMg111yTiy++OI2NjfnKV76SJF1n\nDm1sxowZOe644zJp0qQkSUNDQw499NBuzUXPcU8gAAAA2EX97ne/y7p16zJx4sS3fe177703hx12\nWJLk8ccfT2NjYw466KCu7YcffngeeeSRbh3r97//fQYOHJgxY8Zk6NChmTBhQp555plemZstE4EA\nAABgF9Xe3p7Bgwdv9uya7po4cWKam5szcODANDc358orr9zma6666qrcf//9+cY3vpEkWbVqVQYM\nGLDJPgMGDMjKlSu7NcOSJUsya9as/PCHP8wzzzyTkSNHdt1PiLePy8EAAABgFzVo0KC88MIL2bBh\nww6HoNmzZ3frnkBv+MUvfpFzzz03//7v/57m5uYkSb9+/dLZ2bnJfi+99FL69+/frWP27ds3n/jE\nJ/KhD30oSfKd73wngwcPzsqVK7t9DHaeM4EAAABgF/X3f//32WOPPfKLX/xih4/R3XsCJcldd92V\nM844I7fffntGjRrV9fwhhxyS1157LU899VTXcw8++GDX5WLb8oEPfOAtN6/e0s2s6T0iEAAAAOyi\nBgwYkGnTpuVLX/pSZs+enTVr1uS1117LnXfemW9961td+61fvz7r1q3r+vPKK69s91pz587NySef\nnJtvvjkf/vCHN9nW1NSUT37ykznvvPOyevXq3HfffbntttsyefLkrn1eeeWVrF27Nkm65njD6aef\nnp///Od56KGH8uqrr+aCCy7IRz/6UWcBvc1EIAAAANiFfe1rX8uMGTNy4YUXZsiQIRk+fHj+7d/+\nbZObRV9//fVpampKU1NT+vbtm4MPPrhr2/jx4zNgwICuP5/61Kc2u86FF16Yzs7OHH/88enfv38G\nDBiQj3/8413bL7vssqxevTpDhgzJySefnB/96EddXw+fJIceemj23HPPLF26NMcdd1yampqyePHi\nJMm4ceNy8cUX5/jjj09LS0uefvrpXHvttT39VrEN1facFrZDC1RVrbfXAAAAgJ1RVdVbLps677x/\nzeLFK3ptzeHD987553+1147Pu8Pm/m5u9Px2XVMnAgEAAFC8Lf1DG+qtJyOQy8EAAAAACiACAQAA\nABRABAIAAAAogAgEAAAAUAARCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAPAuNH369Hzxi1+s9xi9\n6sADD8zcuXO3ud+iRYvSp0+fbNiw4W2YatfVUO8BAAAAYFc05545aV/Z3mvHH9R/UI7+h6O3ud/I\nkSOzbNmyNDQ0ZM8998xxxx2Xyy67LE1NTVt93ZQpU3pq1J122mmnZdasWZk9e3bGjx/f9fzZZ5+d\nSy65JFdffXVOOeWUXp2hqqotbtv4Pe7Xr1+OPfbYbr3HO+KRRx7J17/+9dx///3p6OjI+vXre3yN\nLRGBAAAAYDPaV7an5f0tvXb8tvlt3dqvqqrccccdGTduXJ577rkcc8wxufDCC3PxxRf32mw9raqq\nHHrooZk1a1ZXBFq/fn1uvPHGHHzwwXWebtP3eNmyZTnmmGMyffr0XHDBBT2+VmNjYz796U/nS1/6\nUiZOnNjjx98al4MBAADALq5WqyVJhg0blo997GOZP39+kuS5557LhAkTMmjQoBxyyCH58Y9/3PWa\nadOmZfLkyUmSdevWZfLkyRk8eHAGDhyYj3zkI1m+fHmS5Oqrr85BBx2UAQMG5KCDDsp1113XteaF\nF16YkSNHpqWlJaeddlo6OzuT/NflVbNmzcqIESMyZMiQbUapE044Iffdd19eeumlJMldd92Vww8/\nPC0t/xXatrZmklxzzTUZOXJk9tlnn7esV6vV8t3vfjcHH3xw9tlnn0yaNCkrVqzY7vd4yJAhOfbY\nY/PAAw90bRs3blyuuuqqrp9nzpyZI488suvnPn365IorrsghhxyS5ubmfPnLX97iOoccckhOP/30\njBo1qtuz9RQRCAAAAN4hnnnmmfzyl7/Mhz70oSTJpz/96QwfPjxtbW258cYbc84556S1tbVr/zcu\ngZo5c2Y6Ozvz7LPPpqOjIz/60Y/St2/frF69OmeddVZ+9atfpbOzM/Pmzcvo0aOTJD/5yU8ya9as\n3HPPPXn66aezcuXKt8SN3/72t3niiSfy61//Oueff34ee+yxLc7et2/fTJgwIddff32SZNasWTnl\nlFO64su21nz00Udz5pln5qc//WmWLl2a9vb2PPvss12vvfTSS3PrrbfmN7/5TZYuXZqBAwfmzDPP\n3O73eMmSJbnzzjvz3ve+d6v7vfnysjvuuCP3339/HnzwwfzsZz/L3Xffvd1r9zYRCAAAAHZxEydO\nTHNzc4466qiMGzcuU6ZMyZIlS/K73/0u3/ve99LY2JjDDz88n//85zNr1qy3vL6xsTHt7e15/PHH\nU1VVPvjBD6Zfv35Jkt122y0PP/xw1q5dm6FDh+Z973tfkuTaa6/N1772tYwYMSJNTU2ZPn16rr/+\n+q6bK1dVlalTp2b33XfPBz7wgRx++OF58MEHt/p7TJ48OTNnzsxLL72Ue++99y2XQ21uzRtuuCEb\nNmzIzTffnPHjx2fMmDFpbGzMBRdcsEmIueKKK3LRRRdl2LBhaWxszHnnnZebbrqp2zeDnjhxYgYM\nGJDhw4dn6NChmTp1arde94YpU6akf//+OeCAAzJu3LhNziTaVYhAAAAAsIubPXt2Ojo6smDBgvzw\nhz/MHnvskaVLl6a5uXmTmxePGDFik7Nj3jB58uQce+yxmTRpUvbff/9861vfyvr169PU1JQbbrgh\nl19+eYYNG5bx48fn8ccfT5IsXbo0I0aM2OTYr732Wp5//vmu54YOHdr1uKmpKatWrdrq7zFmzJgs\nX748F110UU444YTssccem2zf2ppLly7NAQccsMl6gwYN6vp50aJF+cQnPpHm5uY0Nzdn1KhRaWxs\n3GTerZk9e3Y6Oztzzz335M9//nNeeOGFbr3uDdv7XtSDCAQAAAC7uI0vmXrDvvvum46Ojrz88std\nzy1evDj77bffW/ZtaGjIt7/97TzyyCOZN29ebrvttq4zho4++ujcfffdaWtry6GHHpovfOELXcdf\ntGhR1zEWLVqUxsbGTWLHjjj55JMzY8aMnHrqqZv9nd68ZkNDQ4YOHZphw4blmWee6dq2evXqtLf/\n17e3DR8+PHfeeWc6OjrS0dGRF198MS+//HKGDRvWrbneeI+PPPLInHrqqfn617/etW3PPffM6tWr\nu35ua+veTb13NSIQAAAAvAPtv//+OeKIIzJlypSsW7cuDz30UK688squm0FvrLW1NfPnz8+GDRvS\nr1+/NDY2pk+fPlm2bFluvfXWrF69Oo2NjenXr1/69PlLKjjppJPygx/8IAsXLsyqVaty7rnnZtKk\nSV3bNxemuuMrX/lK5syZk49+9KNv2ba1NU888cTcfvvtmTdvXl599dWcd955m8xwxhln5Jxzzsni\nxYuTJMuXL8+tt97atX175v3qV7+aOXPm5OGHH06SjB49OrfcckvWrFmTJ598MldeeeUO/e5vWLdu\nXdatW5darZZ169bllVde2anjdZcIBAAAALuwN9+AeGPXXXddFixYkH333Tef+tSncsEFF2TcuHFv\n2a+trS0nnnhi9tprrxx22GEZN25cJk+enA0bNmTGjBnZb7/9Mnjw4Nx77725/PLLkySf+9znMnny\n5Bx11FE56KCD0tTUlEsvvXSLc21tzo23DRw4cJMZN962tTVHjRqVyy67LCeddFL23XffDBo0KPvv\nv3/Xa88666xMmDAhxxxzTPbaa68cccQR+cMf/rDd8yXJ4MGDc+qpp+b8889Pkpx99tlpbGxMS0tL\nTj/99Jx88slbff3W1lq0aFH69u2bv/mbv0lVVenbt2/++q//eov796RqR8tdtxeoqlpvrwEAAAA7\no6qqt5wpMueeOWlf2b6FV+y8Qf0H5eh/OLrXjs+7w+b+bm70/JZr0+aOJQIBAABQui39QxvqrScj\nkMvBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAADw\nLjR9+vR88YtfrPcYverAAw/M3Llzt7nfokWL0qdPn2zYsOFtmGrX1VDvAQAAAGBX9Ps5c7K2vb3X\njv+eQYPyd0cfvc39Ro4cmWXLlqWhoSF77rlnjjvuuFx22WVpamra6uumTJnSU6PutNNOOy2zZs3K\n7NmzM378+K7nzz777FxyySW5+uqrc8opp/TqDFVVbXHbxu9xv379cuyxx3brPd4Rs2bNyqWXXpon\nnngie+21V0466aRMnz49ffr0/nk6IhAAAABsxtr29oxtaem147e2tXVrv6qqcscdd2TcuHF57rnn\ncswxx+TCCy/MxRdf3Guz9bSqqnLooYdm1qxZXRFo/fr1ufHGG3PwwQfXebpN3+Nly5blmGOOyfTp\n03PBBRf0+Fpr1qzJJZdcko985CNZvnx5xo8fn+9///v55je/2eNrvZnLwQAAAGAXV6vVkiTDhg3L\nxz72scyfPz9J8txzz2XChAkZNGhQDjnkkPz4xz/ues20adMyefLkJMm6desyefLkDB48OAMHDuwK\nEEly9dVX56CDDsqAAQNy0EEH5brrruta88ILL8zIkSPT0tKS0047LZ2dnUn+6/KqWbNmZcSIERky\nZMg2o9QJJ5yQ++67Ly+99FKS5K677srhhx+elo1C29bWTJJrrrkmI0eOzD777POW9Wq1Wr773e/m\n4IMPzj777JNJkyZlxYoV2/0eDxkyJMcee2weeOCBrm3jxo3LVVdd1fXzzJkzc+SRR3b93KdPn1xx\nxRU55JBD0tzcnC9/+ctbXOeMM87ImDFj0tDQkGHDhuWzn/1sfvvb33Z7zp0hAgEAAMA7xDPPPJNf\n/vKX+dCHPpQk+fSnP53hw4enra0tN954Y84555y0trZ27f/GJVAzZ85MZ2dnnn322XR0dORHP/pR\n+vbtm9WrV+ess87Kr371q3R2dmbevHkZPXp0kuQnP/lJZs2alXvuuSdPP/10Vq5c+Za48dvf/jZP\nPPFEfv3rX+f888/PY489tsXZ+/btmwkTJuT6669P8pfLok455ZSu+LKtNR999NGceeaZ+elPf5ql\nS5emvb09zz77bNdrL7300tx66635zW9+k6VLl2bgwIE588wzt/s9XrJkSe688868973v3ep+b768\n7I477sj999+fBx98MD/72c9y9913d2u9e++9N4cddth2z7kjRCAAAADYxU2cODHNzc056qijMm7c\nuEyZMiVLlizJ7373u3zve99LY2NjDj/88Hz+85/PrFmz3vL6xsbGtLe35/HHH09VVfngBz+Yfv36\nJUl22223PPzww1m7dm2GDh2a973vfUmSa6+9Nl/72tcyYsSINDU1Zfr06bn++uu7bq5cVVWmTp2a\n3XffPR/4wAdy+OGH58EHH9zq7zF58uTMnDkzL730Uu69995MnDhxk+2bW/OGG27Ihg0bcvPNN2f8\n+PEZM2ZMGhsbc8EFF2wSYq644opcdNFFGTZsWBobG3Peeeflpptu6vbNoCdOnJgBAwZk+PDhGTp0\naKZOndqt171hypQp6d+/fw444ICMGzdukzOJtuSqq67K/fffn2984xvbtdaOEoEAAABgFzd79ux0\ndHRkwYIF+eEPf5g99tgjS5cuTXNz8yY3Lx4xYsQmZ8e8YfLkyTn22GMzadKk7L///vnWt76V9evX\np6mpKTfccEMuv/zyDBs2LOPHj8/jjz+eJFm6dGlGjBixybFfe+21PP/8813PDR06tOtxU1NTVq1a\ntdXfY8yYMVm+fHkuuuiinHDCCdljjz022b61NZcuXZoDDjhgk/UGDRrU9fOiRYvyiU98Is3NzWlu\nbs6oUaPS2Ni4ybxbM3v27HR2duaee+7Jn//857zwwgvdet0btve9+MUvfpFzzz03d911V5qbm7dr\nrR0lAgEAAMAubuNLpt6w7777pqOjIy+//HLXc4sXL85+++33ln0bGhry7W9/O4888kjmzZuX2267\nreuMoaOPPjp333132tracuihh+YLX/hC1/EXLVrUdYxFixalsbFxk9ixI04++eTMmDEjp5566mZ/\npzev2dDQkKFDh2bYsGF55plnuratXr067Rt9e9vw4cNz5513pqOjIx0dHXnxxRfz8ssvZ9iwYd2a\n6433+Mgjj8ypp56ar3/9613b9txzz6xevbrr57Zu3tR7S+66666cccYZuf322zNq1KidOtb2EIEA\nAADgHWj//ffPEUcckSlTpmTdunV56KGHcuWVV3bdDHpjra2tmT9/fjZs2JB+/fqlsbExffr0ybJl\ny3Lrrbdm9erVaWxsTL9+/bq+qvykk07KD37wgyxcuDCrVq3Kueeem0mTJnVt31yY6o6vfOUrmTNn\nTj760Y++ZdvW1jzxxBNz++23Z968eXn11Vdz3nnnbTLDGWeckXPOOSeLFy9Okixfvjy33npr1/bt\nmferX/1q5syZk4cffjhJMnr06Nxyyy1Zs2ZNnnzyyVx55ZU79Lsnydy5c3PyySfn5ptvzoc//OEd\nPs6OEIEAAABgF/bmGxBv7LrrrsuCBQuy77775lOf+lQuuOCCjBs37i37tbW15cQTT8xee+2Vww47\nLOPGjcvkyZOzYcOGzJgxI/vtt18GDx6ce++9N5dffnmS5HOf+1wmT56co446KgcddFCamppy6aWX\nbnGurc258baBAwduMuPG27a25qhRo3LZZZflpJNOyr777ptBgwZl//3373rtWWedlQkTJuSYY47J\nXnvtlSOOOCJ/+MMftnu+JBk8eHBOPfXUnH/++UmSs88+O42NjWlpacnpp5+ek08+eauv39paF154\nYTo7O3P88cenf//+GTBgQD7+8Y9vcf+eVO1ouev2AlVV6+01AAAAYGdUVfWWM0V+P2dO1m50uVFP\ne8+gQfm7o4/utePz7rC5v5sbPb/l2rS5Y4lAAAAAlG5L/9CGeuvJCORyMAAAAIACiEAAAAAABRCB\nAAAAAAogAgEAAAAUQAQCAAAAKEBDvQcAAACAehsxYkSqaru+aAneFiNGjOixY/mKeAAAAIB3GF8R\nDwAAAMBmiUAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFE\nIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFE\nIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKEBDvQcAgLfT7+fMydr29nqPscv72c9+\nmfb21b26xqt79M2AfQ/q1TXeSYYP3zvnn//Veo8BALyLiUAAFGVte3vGtrTUe4xd3u9X98nfHvjl\nXl3jj6vaMnjkpF5d451k4cKp9R4BAHiXczkYAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEA\nAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEA\nAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgANuMQFVV7V9V1dyqqh6pqurhqqq+8vrzA6uquruqqseq\nqvpVVVV79f64AAAAAOyI7pwJ9FqSr9VqtcOS/H2SL1VV9ddJvpXk17Va7dAkc5NM6b0xAQAAANgZ\n24xAtVqtrVarPfD641VJ/jPJ/kkmJJn5+m4zk0zsrSEBAAAA2DnbdU+gqqpGJhmd5PdJhtZqteeT\nv4SiJEN6ejgAAAAAekZDd3esqqpfkpuSnFWr1VZVVVV70y5v/rnL1KlTux6PHTs2Y8eO3b4pAQAA\nAArW2tqa1tbWnTpGtyJQVVUN+UsAuqZWq81+/ennq6oaWqvVnq+qqiXJsi29fuMIBAAAAMD2efNJ\nNdOmTdvuY3T3crCrkjxaq9Uu2ei5W5Oc9vrjU5PMfvOLAAAAANg1bPNMoKqqxiT5bJKHq6r6v/nL\nZV/nJPlekp9VVfW5JIuS/FNvDgoAAADAjttmBKrVar9NstsWNv+Pnh0HAAAAgN6wXd8OBgAAAMA7\nkwgEAAAAUAARCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAo\ngAgEAAAAUAARCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAo\ngAgEAAAAUICGeg8AAPS+Pz7wx3Su6ez2/s+tWJA1mduLEyWL16xI28JeXeIdpfOFp+o9AgDwLicC\nAUABOtd0pvnA5m7vv8eQvunb3P39d0TfVUnfkS29usY7yfLla+o9AgDwLudyMAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAA\nBdhmBKqq6sqqqp6vquqhjZ77TlVVS6qq+tPrf47r3TEBAAAA2BndORPoJ0mO3czzM2q12ode/3NX\nD88FAAAAQA/aZgSq1Wr3JXlxM5uqnh8HAAAAgN6wM/cE+nJVVQ9UVfXjqqr26rGJAAAAAOhxOxqB\n/i3JX9VqtdFJ2pLM6LmRAAAAAOhpDTvyolqttnyjH/9Xktu2tv/UqVO7Ho8dOzZjx47dkWUBAAAA\nitTa2ppLmQorAAAYzUlEQVTW1tadOkZ3I1CVje4BVFVVS61Wa3v9x08mmb+1F28cgQAAAADYPm8+\nqWbatGnbfYxtRqCqqq5NMjbJoKqqFif5TpJxVVWNTrIhycIkZ2z3ygAAAAC8bbYZgWq12mc28/RP\nemEWAAAAAHrJznw7GAAAAADvECIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQC\nAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQC\nAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAEa6j0AwDvNeef9axYvXlHvMYoyfPjeOf/8r9Z7DOhV\nL3Y+n+tvv77eY7AVg/oPytH/cHS9xwCAHSYCAWynxYtXZOTIqfUeoygLF06t9wjQ616trUvL+1vq\nPQZb0Ta/rd4jAMBOcTkYAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAI\nBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAI\nBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAI\nBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAI\nBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAI\nBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABWio9wAAANTXY/f9Metf7Kz3GG+7//2/\nf5/OznXd3v+VF9bk5//fTb04UfLSyhXZq//evbpGPQ0a1JR/+qfj6z1Gt7xn0KD83dFH13sMgB4l\nAgEAFG79i505Yp/meo/xtlv4Wp807/+Jbu+/pqEjB7b8916cKJn76C357wd+slfXqKe2tqsztqWl\n3mN0S2tbW71HAOhxLgcDAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCB\nAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAAAAAABRCB\nAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAEa6j0AAFCmVc8/Xe8Rdil9\nl7fn0dvm1mXtZ//8VLJPc13WBgDePiIQAFAXu69bnQ/2Ex7esMfujTmiTiHmZ/fPr8u6AMDby+Vg\nAAAAAAUQgQAAAAAKIAIBAAAAFEAEAgAAACiACAQAAABQABEIAAAAoAAiEAAAAEABRCAAAACAAohA\nAAAAAAUQgQAAAAAKIAIBAAAAFEAEAgAAACiACAQAAABQABEIAAAAoAAiEAAAAEABRCAAAACAAmwz\nAlVVdWVVVc9XVfXQRs8NrKrq7qqqHquq6ldVVe3Vu2MCAAAAsDO6cybQT5Ic+6bnvpXk17Va7dAk\nc5NM6enBAAAAAOg524xAtVrtviQvvunpCUlmvv54ZpKJPTwXAAAAAD1oR+8JNKRWqz2fJLVarS3J\nkJ4bCQAAAICe1lM3hq710HEAAAAA6AUNO/i656uqGlqr1Z6vqqolybKt7Tx16tSux2PHjs3YsWN3\ncFmgNHPumZP2le31HmMTC5bPz6pc3+39X176UBrXrerFiepr9z790jLoA726xprl89N6ffff8615\n4qGHMralpUeOBZSl46Wnen2N9pWPZ0Hb3F5fp15WrFiQub/r3d9vQN8B+W+j/1uvrgFQD62trWlt\nbd2pY3Q3AlWv/3nDrUlOS/K9JKcmmb21F28cgQC2R/vK9rS8f9f6B3vfA/ql33ZEhN1WPZoP9vur\nXpyovta0deTAfr37GbWt6tdj4ebRefN65DhAeV6trUnfluZeXWP3jqZeX6Oe1uzeN80H9u7v17Gg\no1ePD1Avbz6pZtq0adt9jO58Rfy1SeYlOaSqqsVVVZ2e5LtJjq6q6rEk/+/rPwMAAACwi9rmmUC1\nWu0zW9j0P3p4FgAAAAB6SU/dGBoAAACAXZgIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAA\nAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFAAEQgAAACgACIQAAAAQAFEIAAAAIACiEAA\nAAAABRCBAAAAAAogAgEAAAAUQAQCAAAAKIAIBAAAAFCAhnoPAADb8sQTT+a73726R471H4seTefj\nnT1yrHeS51YsyB5D+nZ7/yVL2tLc3IsDAfSSpxY81SPH+X3HirT165FD8SaD+g/K0f9wdL3HgCKJ\nQADs8tauTVpaTuuRY/XvuCUtLZ/skWO9k6zJ3PTdjqrz9NNX9uI0AL1nzStr0nzgzlfsvfslLe9v\n6YGJeLO2+W31HgGK5XIwAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAAR\nCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAAR\nCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABSgod4DAL3j93PmZG17e73H\n2GlP3z8vHQv2rvcYm6g9uSBrXpjb7f1Xtz2VHNzcixMBAABsmwgE71Jr29sztqWl3mPstA3Ne6d5\nn10roCxs6pvmft2f6T9emd+L0wAAAHSPy8EAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAARCAAA\nAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAARCAAA\nAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAARCAAA\nAKAADfUeAOplzj1z0r6yvd5j9Jqn75+XDc1713uMnfbUwqfSfGBzvccA6HUrVqzItdfeVZe1H3h6\nUV7rWF2XtetpyZK2NPtPDAAFEYEoVvvK9rS8v6XeY/SajgV7p3mfd/7/s53/2Px6jwDwtlj/WtLc\nfFxd1t6z7d40Nx9Vl7Xr6emnr6z3CADwtnI5GAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAKIAIB\nAAAAFEAEAgAAACiACAQAAABQABEIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAKIAIB\nAAAAFEAEAgAAACiACAQAAABQABEIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAK0FDv\nAQAAAOgdV111U5YtW1XvMTax9JGncvnlN9V7jF4zaFBT/umfjq/3GDttUP9BOfofjq73GPQwEQgA\nAOBdatmyVWlpOa3eY2yi45lbcuD/88l6j9Fr2tquTsv7W+o9xk5rm99W7xHoBS4HAwAAACiACAQA\nAABQABEIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAKIAIBAAAAFEAEAgAAACiACAQA\nAABQABEIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAKIAIBAAAAFKBhZ15cVdXCJC8l\n2ZDk1Vqt9rc9MRQAAAAAPWunIlD+En/G1mq1F3tiGAAAAAB6x85eDlb1wDEAAAAA6GU7eyZQLcmc\nqqrWJ/mftVrtf/XATLxDrV27NosWLar3GN327LPP5pUBr9R7jJ223377Zbfddqv3GAAAAOzidjYC\njanVas9VVbVP/hKD/rNWq9335p2mTp3a9Xjs2LEZO3bsTi7Lrqi19b7MnPlYmpoG1nuUbnnq+QVp\nevCdfSXjunUr8qlPjcqoUaPqPQoAAAC9qLW1Na2trTt1jJ2KQLVa7bnX/3d5VVU/T/K3SbYagXj3\neu219Wlq+mAOOOCIeo/SLS+t75N+Q1rqPcZOaXv+D9mwYUO9xwAAAKCXvfmkmmnTpm33MXb4fj5V\nVTVVVdXv9cd7JjkmyfwdPR4AAAAAvWdnzgQamuTnVVXVXj/OT2u12t09MxYAAAAAPWmHI1CtVluQ\nZHQPzgIAAABAL/H17gAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAARCAAAAKAAIhAA\nAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACiACAQAAABRABAIAAAAogAgEAAAAUAARCAAAAKAAIhAA\nAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAACtBQ7wEAAADg3eKJJ57Md797db3H2GlrnlmVu276c73H\n6Jbhw/fO+ed/td5jvCOIQAAAANBD1q5NWlpOq/cYO23V2raMHDmp3mN0y8KFU+s9wjuGy8EAAAAA\nCiACAQAAABRABAIAAAAogAgEAAAAUAARCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAA\nCiACAQAAABRABAIAAAAogAgEAAAAUAARCAAAAKAAIhAAAABAAUQgAAAAgAKIQAAAAAAFEIEAAAAA\nCiACAQAAABRABAIAAAAoQEO9B3g3evHFF/P04qfrPcbb7qFHHsiSBS9nTec743fvePHBVLsfXO8x\ndsor7Uuy/In3ZHGt8S3bXu5clezTXIepAAAA2BWJQL1g+QvLM3/5/AzYe0C9R3lbPbt2cVpeeT5D\nXllX71G2qbZhQ96z4qns+9I7+zN6cdWKvHDXk3kh/2eT51959bU8tfLlLB82pE6T9Zy2BQuzpGN1\nvcfYxJIlbWnW17p0vPRUr6+xurY8C9rm9six2lc+3mPHeifpeOmp7NfiLy4AQMlEoF7St6lvBg4e\nWO8x3lZN/ZuyoWlABg0cVu9Rtmn9a69k7QvPpl/f/vUeZae8sqZvVq6sMmLEhE2eX7lmZZZlYZqb\n/6ZOk/WczmX3prn5qHqPsYmnn76y3iPsUl6trUnfXo4Luy3ZvcfW2L2jqdfn3RW9umJ+vUcAAKDO\n3BMIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAUQgQAAAAAKIAIBAAAAFEAEAgAAACiACAQAAABQ\nABEIAAAAoAAiEAAAAEABRCAAAACAAohAAAAAAAX4/9u7v1jLyrMM4M8Lw1hwUmBIWtKOCNXUNqTy\nJ6RFGyuKpkQj9cpYL2w13rRam9qoFS/wstYaU6M3RkpqIxKLhvbCVkJGS4ylSKUWbAuVoWVgmOnA\nMB0GTmGA14u9ITBzDjAze+115qzfL5nk7HXO2etJvqw133n29+2tBAIAAACYACUQAAAAwAQogQAA\nAAAmQAkEAAAAMAFKIAAAAIAJUAIBAAAATIASCAAAAGAClEAAAAAAE7Bp7AAAAADwUg7ce3tOWTkw\ndoxX5NV792blru1jxzhuT+3dn4cPHnn8kf3fzllnnLv0PC9lZe9d+ffrrx87xglBCQQAAMC6dsrK\ngVy0ZevYMV6RZzZvPmGyvpSVg8l5W84+4vj2+/8zl2y7dIREa9t9cEsuO/vIrBzJdjAAAACACVAC\nAQAAAEyAEggAAABgApRAAAAAABOgBAIAAACYACUQAAAAwAQogQAAAAAmQAkEAAAAMAFKIAAAAIAJ\nUAIBAAAATIASCAAAAGAClEAAAAAAE6AEAgAAAJgAJRAAAADABCiBAAAAACZACQQAAAAwAUogAAAA\ngAlQAgEAAABMgBIIAAAAYAKUQAAAAAATsGnsAAAAwDQ88MCDue66Lwx6jt33fTsP7HviuJ/ntp27\n8gOf/eICEo3roYf25vQ3nzN2jBc55cF7snLq9qP6nSd235v86NaBErGafd+7d9Xjjzx2T+7bfXTj\nN7T9++/L9i+tr0zrlRIIAABYiqeeSrZuvWLQcxz47i3ZuvUdx/08Z+6+JW/bdvzPM7bbd1+Ti7as\nr/LkzFedlnOPMtOXn7proDSs5VCv5NSzjxynzftOW/X4mFY2n5qt562vTOuV7WAAAAAAE6AEAgAA\nAJgAJRAAAADABCiBAAAAACZACQQAAAAwAUogAAAAgAlQAgEAAABMgBIIAAAAYAKUQAAAAAAToAQC\nAAAAmAAlEAAAAMAEKIEAAAAAJkAJBAAAADABSiAAAACACVACAQAAAEyAEggAAABgAo6rBKqqK6rq\nm1V1T1X94aJCAQAAALBYx1wCVdVJSf4qyTuTnJ/k3VX1pkUF48T04L6Hxo7AEu3Y/X9jR2CJjPe0\n7H384NgRWKK9B/aOHYElcj+fFvfzaXF983KOZyXQW5N8q7u/092Hklyf5F2LicWJateju8eOwBL5\nT2ZajPe07H388bEjsEQPP/bw2BFYIvfzaXE/nxbXNy/neEqg1yfZ+YLHD8yPAQAAALDObBo7wEZU\nVVl5dCV7VvaMHWWpDu49mAOPP5KvfPPzY0d5Wd3Jwcceyb5dK2NHOS6HDj2RJ7//ZPrgvhcdf+aZ\np5OTTh4pFQAAAOtRdfex/WLVpUn+pLuvmD/+SJLu7j897OeO7QQAAAAArKm762h+/nhKoJOT3J3k\n8iQPJbktybu7+xvH9IQAAAAADOaYt4N19zNV9TtJbsrsvYWuUQABAAAArE/HvBIIAAAAgBPH8Xw6\n2Euqqm1Vtb2q/req7qyq3x3qXKwPVXVSVf13VX1u7CwMr6pOr6rPVNU35tf528bOxDCq6kNVdVdV\nfa2q/r6qNo+dicWqqmuqak9Vfe0Fx86sqpuq6u6q+teqOn3MjCzOGuP9sfn9/KtV9U9V9eoxM7I4\nq433C7734ap6tqq2jpGNxVtrvKvqA/Nr/M6q+uhY+VisNe7nF1TVl6rqjqq6raouGTMji7FWv3Is\n87XBSqAkTyf5ve4+P8lPJPntqnrTgOdjfB9M8vWxQ7A0n0jyL9395iQXJLEddAOqqtcl+UCSi7v7\nxzPbRvyr46ZiANcmeedhxz6S5Obu/rEk25P80dJTMZTVxvumJOd394VJvhXjvZGsNt6pqm1Jfj7J\nd5aeiCEdMd5VdVmSX0rylu5+S5KPj5CLYax2fX8sydXdfVGSq5P82dJTMYS1+pWjnq8NVgJ19+7u\n/ur864OZ/YH4+qHOx7jmE4lfSPK3Y2dhePNXiH+qu69Nku5+ursPjByL4Zyc5AeralOS05LsGjkP\nC9bd/5Hk0cMOvyvJp+ZffyrJLy81FINZbby7++bufnb+8NYk25YejEGscX0nyV8k+f0lx2Fga4z3\n+5J8tLufnv/Mw0sPxiDWGO9nkzy3GuSMJA8uNRSDWKNf2ZZjmK8NuRLoeVV1bpILk3x5GedjFM9N\nJLzJ1DScl+Thqrp2vgXwb6rq1LFDsXjdvSvJnye5P7NJxP7uvnncVCzJa7p7TzKbeCR5zch5WJ7f\nTPL5sUMwnKq6MsnO7r5z7CwsxRuTvKOqbq2qf7M9aMP7UJKPV9X9ma0KsrJzg3lBv3Jrktce7Xxt\n8BKoqrYkuSHJB+eNFRtMVf1ikj3zZrLm/9jYNiW5OMlfd/fFSZ7IbCkiG0xVnZHZKww/nOR1SbZU\n1a+Nm4qRKPknoKr+OMmh7r5u7CwMY/6izVWZbRN5/vBIcViOTUnO7O5Lk/xBkn8cOQ/Del9mf3uf\nk1kh9MmR87BAq/Qrh8/PXna+NmgJNN86cEOST3f3Z4c8F6N6e5Irq2pHkn9I8jNV9XcjZ2JYD2T2\nCuLt88c3ZFYKsfH8XJId3b2vu59J8s9JfnLkTCzHnqp6bZJU1dlJvjtyHgZWVe/NbGu3ondj+5Ek\n5yb5n6q6L7PtBF+pKqv9Nq6dmf3/ne7+ryTPVtVZ40ZiQO/p7huTpLtvSPLWkfOwIGv0K0c9Xxt6\nJdAnk3y9uz8x8HkYUXdf1d3ndPcbMnvD2O3d/etj52I48yWHO6vqjfNDl8ebgm9U9ye5tKpeVVWV\n2Vh7E/CN6fCVnJ9L8t751+9J4sWcjeVF411VV2S2rfvK7n5ytFQM5fnx7u67uvvs7n5Dd5+X2Qs7\nF3W3onfjOPx+fmOSn02S+dztlO5+ZIxgDOLw8X6wqn46Sarq8iT3jJKKIazWrxz1fK26h1ndXVVv\nT3JLkjszW5LUSa7q7i8MckLWhfkN58PdfeXYWRhWVV2Q2RuBn5JkR5Lf6O7vjZuKIVTV1ZkVvIeS\n3JHkt7r70LipWKSqui7JZUnOSrIns20iNyb5TJIfyuzTg36lu/ePlZHFWWO8r0qyOclzfxje2t3v\nHyUgC7XaeD/3wQ7z7+9Ickl37xsnIYu0xvX96cw+RerCJE9mNlf/4lgZWZw1xvvuJH+Z2Qd7fD/J\n+7v7jrEyshhr9StJbstsi+crnq8NVgIBAAAAsH4s5dPBAAAAABiXEggAAABgApRAAAAAABOgBAIA\nAACYACUQAAAAwAQogQAAAAAmQAkEAAAAMAFKIAAAAIAJ+H+Y9eN0xanVXwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f81ead254a8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Set figure size\n", | |
"plt.figure(figsize=(20,10))\n", | |
"\n", | |
"# Plot the histogram of the model for a couple of samples and the histogram of Cleveland's actual 3pt makes this season\n", | |
"plt.hist(cle_data['3P'], alpha=0.5, label='CLE 2016')\n", | |
"plt.hist(np.random.poisson(average_3pt_made_field_goals, 82), alpha=0.25, label='Poisson Model Run 1')\n", | |
"plt.hist(np.random.poisson(average_3pt_made_field_goals, 82), alpha=0.25, label='Poisson Model Run 2')\n", | |
"plt.legend(loc='upper right')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"It's pretty clear (and expected, I suppose) that a Poisson model does a fairly good job of modeling this kind of phenomenon. Now let's take the model and simulate thousands of games, say 10,000(!), and see how often we would expect Cleveland to make 25 3pt field goals (according to this simple model, anyway)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 75, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f81eaa42048>" | |
] | |
}, | |
"execution_count": 75, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAJPCAYAAAAaD5+yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2UXWV9//3PBQk2KYJJkAB5mPFHCiVaQVZvVLCuwZ9E\n8FbAmkrQgmi1dlGqFWgXgaqJitGWaEURalFIWCiC2gVtQZCyxiegiA+JEm6JDxlCkAgkgjwIAtf9\nRw7jJFwhk0zCScjrtVYW51x7n72/Z5L5g/fa+5xSaw0AAAAArGuHbg8AAAAAwNZJOAIAAACgSTgC\nAAAAoEk4AgAAAKBJOAIAAACgSTgCAAAAoGmD4aiU8rlSyspSyuLGtlNKKU+UUsYPWZtdSllaSrm1\nlDJjyPqBpZTFpZTbSin/uvneAgAAAABbwnCuOLogyWvWXSylTE5yWJKBIWv7JXlTkv2SHJHkM6WU\n0tl8bpK/qrXuk2SfUspTjgkAAADA1mOD4ajW+u0kqxubPpHkH9ZZOyrJJbXWx2qty5IsTXJQKWWP\nJM+ttX63s9/CJEdv8tQAAAAAbHGb9BlHpZQjkyyvtf5onU2Tkiwf8nxFZ21SkjuGrN/RWQMAAABg\nKzVqY19QShmT5PSsuU0NAAAAgGepjQ5HSfZO0ptkUefziyYn+X4p5aCsucJo6pB9J3fWViSZ0lhv\nKqXUTZgLAAAAgKdRay0b3uv3hhuOSudPaq0/TrLH4IZSfpHkwFrr6lLKFUkuLqV8PGtuRZuW5KZa\nay2l3NeJS99NcnySszfwRjbmfQCbwZw5czJnzpxujwHbHb970B1+96B7/P5Bd/z++8uGb4OfcVRK\n+UKS67Pmm9BuL6W8bZ1dan4flZYkuTTJkiRXJjmx/r4A/W2SzyW5LcnSWuvXNnpaAAAAAJ4xG7zi\nqNb65g1s/z/rPJ+XZF5jv+8l+ZONHRAAAACA7tikb1UDnp36+vq6PQJsl/zuQXf43YPu8fsH246y\nNX6WUCmlbo1zAQAAAGyrSilb7MOxAQAAYKP19vZmYGCg22PAdqWnpyfLli3bLMdyxREAAABbTOcK\nh26PAduV9f3ebcoVRz7jCAAAAIAm4QgAAACAJuEIAAAAgCbhCAAAADbSvHnz8td//dfdHmOLesEL\nXpDrrrtug/sNDAxkhx12yBNPPPEMTPXs9drXvjYXXXRRt8d4Ct+qBgAAwDPqlFPOzMDA6i12/J6e\ncZk//4xh7dvb25tf/epXGTVqVP7wD/8whx9+eM4555yMHTv2aV83e/bszTHqZnHCCSdk4cKFufzy\ny/P6179+cP29731vPvnJT+bCCy/M8ccfv0VnKGX9n7d8zjnn5MILL8yPfvSjvPnNb87nP//5tbb/\nz//8T0466aQsX748L33pS3PBBRdk6tSpSZK3ve1tmTJlSj74wQ8mSW655ZYcdthhOfXUU3PyySc3\nz/fpT386//7v/56f/vSn2XXXXfPHf/zHede73pVjjjlmM73bTfeRj3wk559/fu65554873nPyyGH\nHJIvfvGLSZIrr7yyy9O1CUcAAAA8owYGVqe396wtdvxly04d9r6llPz3f/93Dj300Pzyl7/MjBkz\n8uEPfzgf+chHtth8m1spJfvuu28WLlw4GI4ef/zxXHbZZZk2bVqXp0smTZqU973vfbn66qvz8MMP\nr7Xt3nvvzRvf+MZ8/vOfz+te97r80z/9U4455pjccMMNTznOD37wgxx++OGZO3du/uZv/qZ5rr/7\nu7/L1VdfnfPOOy+HHHJIdtppp9xwww05//zzux6OFixYkIsvvjjXXXfdYLC84oorujrTcLhVDQAA\ngO3ak19bvueee+aII47Ij3/84yTJL3/5yxx11FGZMGFC9tlnn5x//vmDr5k7d26OO+64JMkjjzyS\n4447LrvttlvGjRuXl770pbn77ruTJBdeeGH23nvv7LLLLtl7770Hry6ptebDH/5went7s8cee+SE\nE07I/fffn+T3t34tXLgwPT092X333TcYsl73utfl29/+du67774kyde+9rXsv//+2WOPPdZ6n+s7\nZ5JcdNFF6e3tzfOf//ynnK/Wmo9+9KOZNm1anv/852fWrFn59a9/Payf79FHH50jjzwy48ePf8q2\nr371q3nRi16UP//zP89OO+2UOXPmZNGiRbntttvW2u+73/1uZsyYkY9+9KPrjUZLly7Nueeemy99\n6Ut51atelec85zkppeTggw9e6yqnCy+8MNOnT88uu+ySadOm5bOf/ezgtm984xuZMmVK/uVf/iUT\nJ07MpEmTcvnll+eqq67Kvvvum9122y3z5s3bpJ/LzTffnNe85jXp7e1Nkuy+++55xzveMbj90EMP\nHZxzwYIFecUrXpGTTz4548aNy7Rp03LDDTdkwYIFmTp1avbYY48sXLhwAz/5zUM4AgAAgCTLly/P\nlVdemQMPPDBJcswxx2Tq1Km56667ctlll+X0009Pf3//4P5P3p61YMGC3H///VmxYkVWrVqV8847\nL2PGjMlDDz2U97znPbn66qtz//335/rrr88BBxyQJLnggguycOHCfOMb38jPf/7z/OY3v8lJJ520\n1jzf+c53snTp0lx77bX54Ac/mJ/85CfrnX3MmDE56qijcskllyRJFi5cmOOPP34wim3onEuWLMmJ\nJ56Yiy++OHfeeWfuvfferFixYvC1Z599dq644op861vfyp133plx48blxBNPHMFPe41bbrkl+++/\n/+DzsWPHZtq0abnlllsG1/73f/83hx9+eD75yU/mbW9723qPdd1112Xq1Kl5yUte8rTnnDhxYq68\n8srcf//9ueCCC/Le9743P/zhDwe333XXXXn00Udz5513Zu7cuXnnO9+Ziy++OD/4wQ/yzW9+Mx/6\n0IcyMDCQZON+Li972cuycOHCnHXWWfne9763wc+Euummm3LAAQdk1apVOfbYYzNr1qzcfPPN+dnP\nfpaLLrooJ510Uh566KGnPcbmIBwBAACwXTv66KMzfvz4vPKVr8yhhx6a2bNn54477sgNN9yQj33s\nYxk9enT233//vOMd72he5TF69Ojce++9ue2221JKyUte8pLsvPPOSZIdd9wxP/rRj/Lb3/42EydO\nzH777Zck+cIXvpCTTz45PT09GTt2bObNm5dLLrlkMCaUUjJnzpzstNNOefGLX5z9998/ixYtetr3\ncdxxx2XBggW577778s1vfjNHH330Wttb5/zSl76UJ554Il/5ylfy+te/PoccckhGjx6dD33oQ2t9\nbtG//du/5cwzz8yee+6Z0aNH5/3vf3++/OUvj/gDsR944IHsuuuua63tsssu+c1vfjP4/MYbb8zz\nnve8HH744U97rHvuuWetK6ySZMqUKRk3blzGjBmT5cuXJ0mOOOKIwat+/uzP/iwzZszIt771rcHX\n7LTTTjn99NOz4447ZtasWbnnnnvy93//9xk7dmymT5+e6dOnD/5dbMzP5S1veUs+9alP5Zprrklf\nX18mTpyYf/7nf17v+3nBC16Q448/PqWUHHPMMbnjjjvygQ98IKNHj85hhx2WnXbaKT/96U+f9mey\nOQhHAAAAbNcuv/zyrFq1Kr/4xS/yqU99Ks95znNy5513Zvz48Wt9SHZPT89aV+E86bjjjstrXvOa\nzJo1K5MnT85pp52Wxx9/PGPHjs2XvvSlnHvuudlzzz3z+te/fvAWrDvvvDM9PT1rHfuxxx7LypUr\nB9cmTpw4+Hjs2LF54IEHnvZ9HHLIIbn77rtz5pln5nWve12e85znrLX96c555513ZsqUKWudb8KE\nCYPPBwYG8oY3vCHjx4/P+PHjM3369IwePXqteTfFzjvvvNbtckly33335bnPfe7g85NOOil/+qd/\nmle/+tWDt+K1TJgwIb/85S/XWlu+fHnuueeePProo4NXX1111VV5+ctfngkTJmTcuHG56qqrcs89\n96x1nCej2ZgxY5Ksua3sSWPGjBn8u9jYn8uxxx6ba665Jr/+9a9z3nnn5X3ve1++/vWvN/cd+vf/\n5By77bZbc44tSTgCAABguzb0dq4n7bXXXlm1alUefPDBwbXbb789kyZNesq+o0aNyvve977ccsst\nuf766/Of//mfg1cmHXbYYbnmmmty1113Zd9998073/nOweM/ebtTsiZAjB49eq1YsCn+8i//Mh//\n+Mfz1re+tfme1j3nqFGjMnHixOy5556DV+QkyUMPPZR777138PnUqVNz1VVXZdWqVVm1alVWr16d\nBx98MHvuueeI5n3hC1+41m1iDz74YH72s5/lRS960eDajjvumC984QuZOnVqZsyYsd5Y8qpXvSp3\n3HFHvv/97z9l25N/x48++mhmzpyZf/zHf8zdd9+d1atX54gjjmj+GxiOTf257LjjjnnjG9+YF7/4\nxYOfqbW1Eo4AAABgHZMnT87BBx+c2bNn55FHHsnixYvzuc99bvADsYfq7+/Pj3/84zzxxBPZeeed\nM3r06Oywww6D35r10EMPZfTo0dl5552zww5r/jf82GOPzSc+8YksW7YsDzzwQM4444zMmjVrcPum\nhox3v/vd+frXv55XvOIVT9n2dOecOXNm/uu//ivXX399fve73+X973//WjO8613vyumnn57bb789\nSXL33Xev9Y1gTzfv448/nt/+9rd5/PHH89hjj+WRRx7J448/niR5wxvekFtuuSX/8R//kUceeSRz\n587NAQcckD/6oz9a6xg77rhjLrvssuy222454ogjmp/ts88+++Rd73pXZs2alWuvvTa//e1v88QT\nT+Q73/nO4BVEjz76aB599NHstttu2WGHHXLVVVflmmuu2Yif8No29HMZasGCBbnyyivzwAMPpNaa\nq666KkuWLMnLXvayYZ1rU/9NjJRwBAAAwHZr6Of4rOuLX/xifvGLX2SvvfbKG9/4xnzoQx/KoYce\n+pT97rrrrsycOTO77rprXvjCF+bQQw/NcccdlyeeeCIf//jHM2nSpOy222755je/mXPPPTdJ8va3\nvz3HHXdcXvnKV2bvvffO2LFjc/bZZ693rqebc+i2cePGrTXj0G1Pd87p06fnnHPOybHHHpu99tor\nEyZMyOTJkwdf+573vCdHHXVUZsyYkV133TUHH3xwbrrppmHN9+EPfzhjx47Nxz72sVx88cUZO3Zs\nzjzzzCRrbr36yle+ktNPPz3jx4/PzTffPPgB3+sed/To0fnqV7+aMWPG5Mgjj8wjjzzylHN9+tOf\nzrvf/e6cfPLJmTBhQqZMmZIPfOADufTSSzN16tTsvPPOOfvss/MXf/EXGT9+fC655JIcddRR6529\n9d6GPt/Qz2WoXXbZJR/5yEfS09OTcePG5bTTTst5552Xl7/85Rv8GW5oji2pdKtYPZ1SSt0a5wIA\nAGDjlFKecqXEKaecmYGB1VvsnD094zJ//hlb7PiwtWv93g1Z36jiJBwBAACwxazvf2CBLWdzhiO3\nqgEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0DSq2wMAAADw7NXT05NSNupLnIAR6unp\n2WzHKlvj1yKWUurWOBcAAADAtqqUklrrRpVct6oBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQc\nAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwB\nAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANA0qtsD\nAMC27pRTzszAwOpujzEsPT3jMn/+Gd0eAwCAbYRwBAAjNDCwOr29Z3V7jGFZtuzUbo8AAMA2xK1q\nAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcA\nAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAA\nAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0bTAclVI+V0pZWUpZ\nPGTtn0spt5ZSflhK+UopZZch22aXUpZ2ts8Ysn5gKWVxKeW2Usq/bv63AgAAAMDmNJwrji5I8pp1\n1q5J8sJa6wFJliaZnSSllOlJ3pRkvyRHJPlMKaV0XnNukr+qte6TZJ9SyrrHBAAAAGArssFwVGv9\ndpLV66xdW2t9ovP0xiSTO4+PTHJJrfWxWuuyrIlKB5VS9kjy3Frrdzv7LUxy9GaYHwAAAIAtZHN8\nxtHbk1zZeTwpyfIh21Z01iYluWPI+h2dNQAAAAC2UiMKR6WUM5L8rtb6xc00DwAAAABbiVGb+sJS\nyglJXpvkVUOWVySZMuT55M7a+tbXa86cOYOP+/r60tfXt6mjAgAAAGx3+vv709/fP6JjDDcclc6f\nNU9KOTzJPyR5Za31kSH7XZHk4lLKJ7LmVrRpSW6qtdZSyn2llIOSfDfJ8UnOfroTDg1HAAAAAGyc\ndS/EmTt37kYfY4PhqJTyhSR9SSaUUm5P8oEkpyfZKcnXO1+admOt9cRa65JSyqVJliT5XZITa621\nc6i/TXJhkj9IcmWt9WsbPS0AAAAAz5gNhqNa65sbyxc8zf7zksxrrH8vyZ9s1HQAAAAAdM3m+FY1\nAAAAAJ6FhCMAAAAAmoQjAAAAAJqEIwAAAACahCMAAAAAmjb4rWoA0A2nnHJmBgZWd3uMYVm8+Nb0\n9nZ7CgAA2PyEIwC2SgMDq9Pbe1a3xxiWG2+c0e0Rhm3RosWZOfPUbo8xLD094zJ//hndHgMAYLsm\nHAHAduThh7PNBLlly7aNwAUA8GzmM44AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgS\njgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKO\nAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4A\nAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAA\nAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAAAGgSjgAAAABoEo4AAAAAaBKOAAAA\nAGgSjgAAAABoGtXtAQAAWhYtWpyZM0/t9hjD0tMzLvPnn9HtMQAANjvhCADYKj38cNLbe1a3xxiW\nZcu2jcAFALCx3KoGAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABAk3AEAAAA\nQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABA\nk3AEAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQNMGw1Ep5XOl\nlJWllMVD1saVUq4ppfyklHJ1KWXXIdtml1KWllJuLaXMGLJ+YCllcSnltlLKv27+twIAAADA5jSc\nK44uSPKaddZOS3JtrXXfJNclmZ0kpZTpSd6UZL8kRyT5TCmldF5zbpK/qrXuk2SfUsq6xwQAAABg\nK7LBcFRr/XaS1essH5VkQefxgiRHdx4fmeSSWutjtdZlSZYmOaiUskeS59Zav9vZb+GQ1wAAAACw\nFdrUzzjavda6MklqrXcl2b2zPinJ8iH7reisTUpyx5D1OzprAAAAAGylRm2m49TNdJxBc+bMGXzc\n19eXvr6+zX0KAAAAgGet/v7+9Pf3j+gYmxqOVpZSJtZaV3ZuQ/tVZ31FkilD9pvcWVvf+noNDUcA\nAAAAbJx1L8SZO3fuRh9juLeqlc6fJ12R5ITO47cmuXzI+qxSyk6llBckmZbkps7tbPeVUg7qfFj2\n8UNeAwAAAMBWaINXHJVSvpCkL8mEUsrtST6Q5KNJLiulvD3JQNZ8k1pqrUtKKZcmWZLkd0lOrLU+\neRvb3ya5MMkfJLmy1vq1zftWAAAAANicNhiOaq1vXs+mV69n/3lJ5jXWv5fkTzZqOgAAAAC6ZlO/\nVQ0AAACAZznhCAAAAIAm4QgAAACAJuEIAAAAgKYNfjg2AM8ep5xyZgYGVnd7jGFZvPjW9PZ2ewoA\nANi+CUcA25GBgdXp7T2r22MMy403zuj2CAAAsN1zqxoAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAA\nTcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABN\nwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3C\nEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIR\nAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEA\nAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAA\nAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAA\nAE2juj0AAMC2btGixZk589Ruj7FBPT3jMn/+Gd0eAwDYhghHAAAj9PDDSW/vWd0eY4OWLdv64xYA\nsHVxqxoAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAA\nAE3CEQAAAABNIwpHpZT3llJ+XEpZXEq5uJSyUyllXCnlmlLKT0opV5dSdh2y/+xSytJSyq2llBkj\nHx8AAACALWWTw1EpZa8kf5fkwFrri5OMSnJsktOSXFtr3TfJdUlmd/afnuRNSfZLckSSz5RSysjG\nBwAAAGBLGemtajsm+cNSyqgkY5KsSHJUkgWd7QuSHN15fGSSS2qtj9ValyVZmuSgEZ4fAAAAgC1k\nk8NRrfXOJPOT3J41wei+Wuu1SSbWWld29rkrye6dl0xKsnzIIVZ01gAAAADYCo3kVrXnZc3VRT1J\n9sqaK4/ekqSus+u6zwEAAADYBowawWtfneTntdZVSVJK+Y8kBydZWUqZWGtdWUrZI8mvOvuvSDJl\nyOsnd9aa5syZM/i4r68vfX19IxgVAAAAYPvS39+f/v7+ER1jJOHo9iQvK6X8QZJHkvzfJN9N8kCS\nE5J8LMlbk1ze2f+KJBeXUj6RNbeoTUty0/oOPjQcAQAAALBx1r0QZ+7cuRt9jE0OR7XWm0opX07y\ngyS/6/z3s0mem+TSUsrbkwxkzTeppda6pJRyaZIlnf1PrLW6jQ0AAABgKzWSK45Sa52bZN1ctSpr\nbmNr7T8vybyRnBMAAACAZ8Ymfzg2AAAAAM9uwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIR\nAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEA\nAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAA\nAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAA\nAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAA\nTcIRAAAAAE3CEQAAAABNo7o9AMC27pRTzszAwOpujzEsixffmt7ebk8BAABsK4QjgBEaGFid3t6z\nuj3GsNx444xujwAAAGxD3KoGAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABA\nk3AEAAAAQJNwBAAAAECTcAQAAABA06huDwAAwDNj0aLFmTnz1G6PMSw9PeMyf/4Z3R4DALZ7whEA\nwHbi4YeT3t6zuj3GsCxbtm0ELgB4tnOrGgAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAA\nTcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABN\nwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE0jCkellF1LKZeVUm4tpdxSSnlpKWVc\nKeWaUspPSilXl1J2HbL/7FLK0s7+M0Y+PgAAAABbykivOPpkkitrrfsl2T/J/5fktCTX1lr3TXJd\nktlJUkqZnuRNSfZLckSSz5RSygjPDwAAAMAWssnhqJSyS5I/q7VekCS11sdqrfclOSrJgs5uC5Ic\n3Xl8ZJJLOvstS7I0yUGben4AAAAAtqyRXHH0giT3lFIuKKV8v5Ty2VLK2CQTa60rk6TWeleS3Tv7\nT0qyfMjrV3TWAAAAANgKjSQcjUpyYJJzaq0HJnkwa25Tq+vst+5zAAAAALYBo0bw2juSLK+13tx5\n/pWsCUcrSykTa60rSyl7JPlVZ/uKJFOGvH5yZ61pzpw5g4/7+vrS19c3glEBAAAAti/9/f3p7+8f\n0TE2ORx1wtDyUso+tdbbkvzfJLd0/pyQ5GNJ3prk8s5LrkhycSnlE1lzi9q0JDet7/hDwxEAAAAA\nG2fdC3Hmzp270ccYyRVHSfLurIlBo5P8PMnbkuyY5NJSytuTDGTNN6ml1rqklHJpkiVJfpfkxFqr\n29gAAAAAtlIjCke11kVJ/p/GplevZ/95SeaN5JwAAAAAPDNG8uHYAAAAADyLCUcAAAAANAlHAAAA\nADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAA\nNAlHAABOTrRyAAAPpElEQVQAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlH\nAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcA\nAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAA\nAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAA\nADQJRwAAAAA0jer2AAAAsK5FixZn5sxTuz3GsPT0jMv8+Wd0ewwA2CKEIwAAtjoPP5z09p7V7TGG\nZdmybSNwAcCmcKsaAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAA\nAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAATcIRAAAAAE3CEQAAAABNwhEAAAAA\nTaO6PQDA+pxyypkZGFjd7TE2aPHiW9Pb2+0pAAAANj/hCNhqDQysTm/vWd0eY4NuvHFGt0cAAADY\nItyqBgAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABAk3AEAAAAQJNwBAAAAECTcAQAAABA\nk3AEAAAAQNOIw1EpZYdSyvdLKVd0no8rpVxTSvlJKeXqUsquQ/adXUpZWkq5tZQyY6TnBgAAAGDL\n2RxXHL0nyZIhz09Lcm2tdd8k1yWZnSSllOlJ3pRkvyRHJPlMKaVshvMDAAAAsAWMKByVUiYneW2S\n84csH5VkQefxgiRHdx4fmeSSWutjtdZlSZYmOWgk5wcAAABgyxnpFUefSPIPSeqQtYm11pVJUmu9\nK8nunfVJSZYP2W9FZw0AAACArdCoTX1hKeX/TbKy1vrDUkrf0+xan2bbes2ZM2fwcV9fX/r6nu4U\nAAAAAAzV39+f/v7+ER1jk8NRkkOSHFlKeW2SMUmeW0q5KMldpZSJtdaVpZQ9kvyqs/+KJFOGvH5y\nZ61paDgCAAAAYOOseyHO3LlzN/oYm3yrWq319Frr1Frr/0kyK8l1tdbjkvxnkhM6u701yeWdx1ck\nmVVK2amU8oIk05LctKnnBwAAAGDLGskVR+vz0SSXllLenmQga75JLbXWJaWUS7PmG9h+l+TEWusm\n3cYGAAAAwJa3WcJRrfUbSb7RebwqyavXs9+8JPM2xzkBAAAA2LJG+q1qAAAAADxLCUcAAAAANAlH\nAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcA\nAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAA\nAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAA\nADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAA\nNAlHAAAAADSN6vYAAACwLVu0aHFmzjy122MMS0/PuMyff0a3xwBgGyIcAQDACDz8cNLbe1a3xxiW\nZcu2jcAFwNbDrWoAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADQJRwAAAAA0CUcAAAAA\nNAlHAAAAADQJRwAAAAA0CUcAAAAANAlHAAAAADSN6vYAwDPrlFPOzMDA6m6PMSyLF9+a3t5uTwEA\nALD9Eo5gOzMwsDq9vWd1e4xhufHGGd0eAQAAYLvmVjUAAAAAmoQjAAAAAJqEIwAAAACahCMAAAAA\nmoQjAAAAAJqEIwAAAACahCMAAAAAmoQjAAAAAJqEIwAAAACahCMAAAAAmoQjAAAAAJqEIwAAAACa\nhCMAAAAAmoQjAAAAAJqEIwAAAACahCMAAAAAmoQjAAAAAJqEIwAAAACahCMAAAAAmjY5HJVSJpdS\nriul3FJK+VEp5d2d9XGllGtKKT8ppVxdStl1yGtml1KWllJuLaXM2BxvAAAAAIAtYyRXHD2W5ORa\n6wuTvDzJ35ZS/jjJaUmurbXum+S6JLOTpJQyPcmbkuyX5IgknymllJEMDwAAAMCWs8nhqNZ6V631\nh53HDyS5NcnkJEclWdDZbUGSozuPj0xySa31sVrrsiRLkxy0qecHAAAAYMsatTkOUkrpTXJAkhuT\nTKy1rkzWxKVSyu6d3SYluWHIy1Z01gAAgGfAokWLM3Pmqd0eY1h6esZl/vwzuj0GwHZvxOGolLJz\nki8neU+t9YFSSl1nl3WfAwAAXfDww0lv71ndHmNYli3bNgIXwLPdiMJRKWVU1kSji2qtl3eWV5ZS\nJtZaV5ZS9kjyq876iiRThrx8cmetac6cOYOP+/r60tfXN5JRAQAAALYr/f396e/vH9ExRnrF0eeT\nLKm1fnLI2hVJTkjysSRvTXL5kPWLSymfyJpb1KYluWl9Bx4ajgAAAADYOOteiDN37tyNPsYmh6NS\nyiFJ3pLkR6WUH2TNLWmnZ00wurSU8vYkA1nzTWqptS4ppVyaZEmS3yU5sdbqNjYAAACArdQmh6Na\n63eS7Lieza9ez2vmJZm3qecEAAAA4JmzQ7cHAAAAAGDrJBwBAAAA0CQcAQAAANAkHAEAAADQJBwB\nAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEA\nAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAA\nANAkHAEAAADQJBwBAAAA0CQcAQAAANA0qtsDAAAArGvRosWZOfPUbo8xLD094zJ//hndHgNgixCO\nAACArc7DDye9vWd1e4xhWbZs2whcAJvCrWoAAAAANAlHAAAAADQJRwAAAAA0+Ywj2AxOOeXMDAys\n7vYYw7J48a3p7e32FAAAAGwLhCPYDAYGVm8zH954440zuj0CAAAA2wi3qgEAAADQJBwBAAAA0CQc\nAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHAEAAADQJBwB\nAAAA0CQcAQAAANAkHAEAAADQJBwBAAAA0CQcAQAAANAkHP3/7d1PiF1nGQbw543BhQoShLaQxJmI\nIGQhRbEIdVERQnATkUGrG3UhLqy6SKHFLuKmYKUjLYguNEIVpaigyc4KIpJFTFAzUzV/CnaGxLax\nmhEsTEDM52Ju7TSe1Jk095775/eDYe49M8M8s/jmnfvM+c4BAAAAoJPiCAAAAIBOiiMAAAAAOu3s\nOwAAAMAkW1pazsLC/X3H2JK5uV1ZXHyo7xjABFEcAQAAvA7r68n8/KN9x9iSlZXJKLiA8WGrGgAA\nAACdFEcAAAAAdFIcAQAAANBJcQQAAABAJ8URAAAAAJ3cVY2xdfjww1ldXes7xpYsL5/N/HzfKQAA\nAODWUhwxtlZX1ybmtqYnTx7oOwIAAADccraqAQAAANBJcQQAAABAJ8URAAAAAJ1c4wgAAGBGLC0t\nZ2Hh/r5j/F9zc7uyuPhQ3zGAKI4AAABmxvp6JuIGNCsr419uwaywVQ0AAACAToojAAAAADopjgAA\nAADopDgCAAAAoJPiCAAAAIBO7qoGAADAWFlaWs7CwmTcWW1ublcWFx/qOwYMjeIIAACAsbK+nszP\nP9p3jC1ZWZmMggtulq1qAAAAAHQaeXFUVQer6lxVXaiqB0b9/QEAAADYmpFuVauqHUm+keRDSZ5L\ncrqqjrXWzo0yB9Dt4sVfZe/ee/qOATPH2oN+WHvQn2laf67HxLQb9TWO7kryTGttNUmq6skkh5Io\njkbk8OGHs7q61neMLVlePpv5+b5TzJZpGuAwSaw96Ie1B/2ZpvXnekxMu1EXR7uTXNz0/FI2yqSJ\nde3atZw4cSJXr17tO8qWnD17Kfv3f6vvGFty8uSBviMAAADATHNXtdfpypUreeyx41mbjJN4srb2\nt+zf33cKAAAARm2SttU9++z57Nv3rr5jbMkkZb0Z1Vob3Teren+Sr7TWDg6eP5iktdYeue7zRhcK\nAAAAYEa01mo7nz/q4ugNSc5n4+LYzyc5leQTrbWzIwsBAAAAwJaMdKtaa+3fVXVfkqeS7EhyVGkE\nAAAAMJ5GesYRAAAAAJNjR98BNquqg1V1rqouVNUDfeeBWVJVK1W1VFW/r6pTfeeBaVVVR6vqclUt\nbzq2q6qeqqrzVfXzqnprnxlhGt1g7R2pqktV9bvB28E+M8I0qqo9VfXLqvpjVT1dVV8cHDf7YIg6\n1t4XBse3PfvG5oyjqtqR5EI2rn/0XJLTSe5trZ3rNRjMiKr6c5L3ttYm5B6BMJmq6gNJXkryvdba\nuwfHHkny99ba1wb/ONnVWnuwz5wwbW6w9o4k+Wdr7eu9hoMpVlV3JLmjtXamqt6S5LdJDiX5TMw+\nGJrXWHsfzzZn3zidcXRXkmdaa6uttX8leTIbPxQwGpXx+p0AU6m1diLJ9QXtoSRPDB4/keQjIw0F\nM+AGay/ZmH/AkLTWXmitnRk8finJ2SR7YvbBUN1g7e0efHhbs2+cXiTuTnJx0/NLeeWHAoavJflF\nVZ2uqs/2HQZmzG2ttcvJxpBPclvPeWCW3FdVZ6rqO7bKwHBV1XySO5OcTHK72QejsWnt/WZwaFuz\nb5yKI6Bfd7fW3pPkw0k+PzilH+jHeOwjh+n3zSTvaK3dmeSFJLaswZAMtsr8JMmXBmc/XD/rzD4Y\ngo61t+3ZN07F0V+SvH3T8z2DY8AItNaeH7x/MclPs7F9FBiNy1V1e/Lf/eh/7TkPzITW2ovtlQt+\nfjvJ+/rMA9OqqnZm44Xr91trxwaHzT4Ysq61dzOzb5yKo9NJ3llVc1X1xiT3JjnecyaYCVX1pkET\nnap6c5IDSf7QbyqYapVX7y0/nuTTg8efSnLs+i8AbolXrb3Bi9WXfTRmHwzLd5P8qbX2+KZjZh8M\n3/+svZuZfWNzV7UkGdwG7vFsFFpHW2tf7TkSzISq2peNs4xakp1JfmD9wXBU1Q+T3JPkbUkuJzmS\n5GdJfpxkb5LVJB9rrf2jr4wwjW6w9j6YjWs+XEuykuRzL19zBbg1quruJL9O8nQ2/tZsSb6c5FSS\nH8Xsg6F4jbX3yWxz9o1VcQQAAADA+BinrWoAAAAAjBHFEQAAAACdFEcAAAAAdFIcAQAAANBJcQQA\nAABAJ8URAAAAAJ0URwAAAAB0UhwBAAAA0Ok/D2zKJh+XHJwAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f81eaa42198>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.figure(figsize=(20,10))\n", | |
"model = np.random.poisson(average_3pt_made_field_goals, 10000)\n", | |
"plt.hist(model, alpha=0.55, label='Poisson Model 10K Game Sim',bins=25)\n", | |
"plt.legend(loc='upper right')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's count how many times Cleveland made 25+ 3pt shots in this simulation. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 76, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[ 0 2 8 50 117 265 438 689 979 1176 1274 1174 1070 840 661\n", | |
" 481 299 205 131 68 38 19 10 2 2 2]\n" | |
] | |
} | |
], | |
"source": [ | |
"print(np.bincount(model))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Twice! That's how rare an event we're talking about. Now, sure, this model is very, very simple, and it probably vastly underrates the probability of Cleveland making 25 3pt field goals. But still this should give an appreciation how out of the ordinary that was. Now, just for fun, let's take the team that made the most 3pt shots (13.1) per game (Golden State, of course) and run the same simulation." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 79, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f81ea85c8d0>" | |
] | |
}, | |
"execution_count": 79, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAJPCAYAAAAaD5+yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuU3XV97//XJ0y0RiQdggSSwGxKKj9wHVGXR5BLGKpG\n6RGhiywKR4OUY+ta4E9bw2kJWXgSMURtAlWLUpf+MHEhF7W/BW1REOkIFCPWS0ZNymXpDDGBcEkA\ngdRy+Z4/Mo6T5BNymUz2JHk81mJ178/+Xt47a/7x2e/3u0vTNAEAAACATY1p9wAAAAAAjE7CEQAA\nAABVwhEAAAAAVcIRAAAAAFXCEQAAAABVwhEAAAAAVVsNR6WUL5VS1pRSeoesfaqUsqKU8pNSyjdK\nKfsN+Wx2KeX+gc+nD1l/Yymlt5RyXynl73b+VwEAAABgZ9qWK46uTvKOTdZuTfLapmlen+T+JLOT\npJRyVJIzkxyZ5JQknyullIF9Pp/kfzVN85okrymlbHpMAAAAAEaRrYajpmnuSrJuk7XbmqZ5ceDt\n0iRTBl6/O8l1TdM83zRNXzZEpTeXUg5K8qqmaX4wsN2SJKfvhPkBAAAAGCE74xlH5yW5eeD15CQr\nh3y2amBtcpJfDVn/1cAaAAAAAKPUsMJRKWVOkueaprl2J80DAAAAwCjRsaM7llLOTfLHSf5oyPKq\nJIcMeT9lYG1L61s6drOjcwEAAABQ1zRN2fpWv7Ot4agM/LfhTSnvTPK/k0xrmuY3Q7a7Kck1pZQr\nsuFWtKlJ7mmapimlPFlKeXOSHyQ5J8lnXuqETaMdsWebO3du5s6d2+4xYET5O2dv4O+cvYG/c/YG\n/s7ZG/zu98u23VbDUSnlq0m6k0wopTyY5P8kuTjJy5J8e+CkS5umOb9pmuWllBuSLE/yXJLzm98V\noAuSfDnJ7yW5uWmab233tAAAAADsMlsNR03T/M/K8tUvsf2CJAsq6z9M8t+2azoAAAAA2mZn/Koa\nsAO6u7vbPQKMOH/n7A38nbM38HfO3sDfOdSV0fgsoVJKMxrnAgAAANhdlVJG7OHYAAAAsEdqtVrp\n7+9v9xiw03R1daWvr2+nHMsVRwAAAOzVBq7CaPcYsNNs6W96R6448owjAAAAAKqEIwAAAACqhCMA\nAAAAqoQjAAAA2MMsWLAgf/EXf9HuMUbUYYcdlttvv32r2/X392fMmDF58cUXq5/fd999ecMb3pDx\n48fn7//+73f2mLs9v6oGAAAAQ8yaNT/9/etG7PhdXZ1ZtGjONm3barXyyCOPpKOjI6985Svzzne+\nM1deeWXGjRv3kvvNnj17Z4y6U5x77rlZsmRJbrzxxpx66qmD63/1V3+VT3/60/nyl7+cc845Z0Rn\nKGXLz4P+1Kc+lT/6oz/Kj3/84512vgceeCCXXHJJvvOd7+S//uu/MnHixLzzne/M3/zN32TSpElJ\nkssuuyxf/OIX89hjj+X3f//3c/zxx+faa6/Nddddl4997GNZvnz54PHe/va3Z9WqVRutTZ8+PW97\n29vy13/91ztt7hrhCAAAAIbo71+XVmvhiB2/r+/Cbd62lJJ/+Zd/ycknn5yHHnoo06dPz8c//vFc\ndtllIzbfzlZKyRFHHJElS5YMhqMXXnghX/va1zJ16tQ2T7fhiqSzzz57h/Z94YUXss8++2y09sAD\nD+SYY47Jeeedl5/85CeZNGlSHnvssXz1q1/NXXfdlTPPPDOLFy/ONddck9tvv30wDt50001JkmnT\npuXee+/N448/ngkTJuSFF15Ib29vXvnKV2609r3vfS+XXnrpsL//1rhVDQAAAEax3/6s+sEHH5xT\nTjklP/vZz5IkDz30UE477bRMmDAhr3nNa/LFL35xcJ958+Zl5syZSZLf/OY3mTlzZg444IB0dnbm\nmGOOyaOPPpok+fKXv5zDDz88++23Xw4//PBce+21g+f8+Mc/nlarlYMOOijnnntunnrqqSS/u/Vr\nyZIl6erqyoEHHrjVkPWud70rd911V5588skkybe+9a0cffTROeiggzb6nls6Z5J85StfSavVyqtf\n/erNztc0TT7xiU9k6tSpefWrX52zzjorTzzxxFb/bd/61rfmX//1X3PBBRdkv/32ywMPPJCnnnoq\n55xzTg488MAcdthhmT9//uD2ixcvzgknnJCPfOQjOeCAAzJv3rzNjjlv3ryccMIJ+du//dvBq4sO\nOOCAfOhDH8qZZ56ZJPn3f//3vOMd70ir1UqSHHjggXn/+9+fJJk0aVIOO+yw3HHHHUmSH/3oR3nt\na1+bk046aXDthz/8YZqmyZve9KatfsfhEo4AAABgN7By5crcfPPNeeMb35gk+dM//dMceuihefjh\nh/O1r30tF198cXp6ega3/+3tWYsXL85TTz2VVatWZe3atbnqqqvyile8Is8++2w+/OEP55ZbbslT\nTz2Vu+++O69//euTJFdffXWWLFmS7373u/nFL36RX//61/ngBz+40Tz/9m//lvvvvz+33XZbPvax\nj+Xee+/d4uyveMUrctppp+W6665LkixZsiTnnHPOYBTb2jmXL1+e888/P9dcc01Wr16dxx9/PKtW\nrRrc9zOf+Uxuuumm3HnnnVm9enU6Oztz/vnnb/Xf9Dvf+U5OPPHEXHnllXnqqacyderUfPCDH8yv\nf/3r9PX1paenJ0uWLMnVV189uM/3v//9TJ06NY888kjmzNn8lsPbbrstZ5xxxkue99hjj82SJUuy\ncOHC/PCHP9zs+UvTpk0bjER33HFHpk2blhNOOGFw7c4778yxxx672dVOI0E4AgAAgFHs9NNPz/77\n759p06bl5JNPzuzZs/OrX/0q3/ve9/LJT34yY8eOzdFHH533v//9WbJkyWb7jx07No8//njuu+++\nlFLyhje8Ifvuu2+SZJ999slPf/rT/Od//mcmTpyYI488Mkny1a9+NR/5yEfS1dWVcePGZcGCBbnu\nuusGA0cpJXPnzs3LXvayvO51r8vRRx+dZcuWveT3mDlzZhYvXpwnn3wyd9xxR04//fSNPq+d8/rr\nr8+LL76Yb3zjGzn11FNz/PHHZ+zYsbn00ks3em7RP/zDP2T+/Pk5+OCDM3bs2Hz0ox/N17/+9S0+\nEHtLXnzxxVx//fX5xCc+kXHjxqWrqyuzZs3KV77ylcFtJk+enPPPPz9jxozJy1/+8s2O8dhjj210\nJdWVV16Zzs7OvOpVr8oHPvCBJMl73vOefPazn82tt96a7u7uTJw4MZ/61KcG9xl6ddGdd96ZE088\ncbNwdNJJJ23Xd9tRwhEAAACMYjfeeGPWrl2bX/7yl/nsZz+bl7/85Vm9enX233//jR6S3dXVtdFV\nOL81c+bMvOMd78hZZ52VKVOm5KKLLsoLL7yQcePG5frrr8/nP//5HHzwwTn11FNz3333JUlWr16d\nrq6ujY79/PPPZ82aNYNrEydOHHw9bty4PP300y/5PY4//vg8+uijmT9/ft71rndtFl1e6pyrV6/O\nIYccstH5JkyYMPi+v78/f/Inf5L9998/+++/f4466qiMHTt2o3m3xWOPPZbnn38+hx566EZzDP13\nHTpHzYQJE/LQQw8Nvr/ggguybt26/OVf/mWee+65wfWzzz47t956a5544olcddVVueSSS/Ltb387\nyYYrjnp7e/PEE09k6dKlectb3pIjjjgiDz30UJ544oncddddmTZt2nZ9tx0lHAEAAMAoNvR2rt+a\nNGlS1q5dm2eeeWZw7cEHH8zkyZM327ajoyOXXHJJfv7zn+fuu+/OP/3TPw1emfT2t789t956ax5+\n+OEcccQR+fM///PB4/f39w8eo7+/P2PHjt0oFu2I9773vbn88svzvve9r/qdNj1nR0dHJk6cmIMP\nPjgrV64c/OzZZ5/N448/Pvj+0EMPzTe/+c2sXbs2a9euzbp16/LMM8/k4IMP3q75DjjggIwdO3az\nOYb+u77UL7QlG56b9I//+I/bfM599tknZ5xxRl73utcNPr/qsMMOy6RJk/KFL3xh8AqsJHnLW96S\nL3zhC3nmmWdy7LHHbs9X22HCEQAAAOxmpkyZkuOOOy6zZ8/Ob37zm/T29uZLX/rS4AOxh+rp6cnP\nfvazvPjii9l3330zduzYjBkzZvCXvJ599tmMHTs2++67b8aM2ZAJzj777FxxxRXp6+vL008/nTlz\n5uSss84a/LwWs7bFhz70oXz729/OCSecsNlnL3XOGTNm5J//+Z9z991357nnnstHP/rRjWb4wAc+\nkIsvvjgPPvhgkuTRRx8d/JWy7Zl3zJgxOfPMMzNnzpw8/fTT6e/vzxVXXFH9d92SuXPn5s4778yF\nF16Y1atXJ9lwJdOKFSsGt1m8eHFuvvnmPP3002maJt/85jezfPnyHHPMMYPbnHDCCbn88stz4okn\nDq4df/zxufzyy/OmN72pepvcSBCOAAAAYJR6qatbrr322vzyl7/MpEmTcsYZZ+TSSy/NySefvNl2\nDz/8cGbMmJHx48fnta99bU4++eTMnDkzL774Yi6//PJMnjw5BxxwQO644458/vOfT5Kcd955mTlz\nZqZNm5bDDz8848aNy2c+85ktzvVScw79rLOzc6MZh372Uuc86qijcuWVV+bss8/OpEmTMmHChEyZ\nMmVw3w9/+MM57bTTMn369IwfPz7HHXdc7rnnnu2eL9nwoO1x48blD/7gDzJt2rS8973vzZ/92Z9t\ncf9N/eEf/mG+//3vZ+XKlTn66KMzfvz4nHjiiZk8eXIuvfTSJMl+++2Xyy67LF1dXens7MxFF12U\nq666Kscdd9zgcU466aQ8+uijG4WjE088MY8++ugue75RkpQdrYQjqZTSjMa5AAAA2POUUja6ImXW\nrPnp7183Yufr6urMokWb/xoX7Cyb/k1vsv7S99ptus9oDDTCEQAAALvKlv5HNuyudmY4cqsaAAAA\nAFXCEQAAAABVwhEAAAAAVcIRAAAAAFXCEQAAAABVHe0eAAAAANqpq6srpWzXD03BqNbV1bXTjlVG\n408OllKa0TgXAAAAwO6qlJKmabarkrpVDQAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACA\nKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgKqOdg8AALuD\nWbPmp79/XbvHqOrq6syiRXPaPQYAAHsg4QgAtkF//7q0WgvbPUZVX9+F7R4BAIA9lFvVAAAAAKgS\njgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACo6mj3AADA8Cxb\n1psZMy5s9xib6erqzKJFc9o9BgAAwyAcAcBubv36pNVa2O4xNtPXN/piFgAA28etagAAAABUCUcA\nAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAA\nAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAA\nAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAA\nVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABU\nbTUclVK+VEpZU0rpHbLWWUq5tZRybynlllLK+CGfzS6l3F9KWVFKmT5k/Y2llN5Syn2llL/b+V8F\nAAAAgJ1pW644ujrJOzZZuyjJbU3THJHk9iSzk6SUclSSM5McmeSUJJ8rpZSBfT6f5H81TfOaJK8p\npWx6TAAAAABGkY6tbdA0zV2llK5Nlk9LctLA68VJerIhJr07yXVN0zyfpK+Ucn+SN5dS+pO8qmma\nHwzssyTJ6UluGf5XAABGo2XLejNjxoXtHqOqq6szixbNafcYAACj3lbD0RYc2DTNmiRpmubhUsqB\nA+uTk3xvyHarBtaeT/KrIeu/GlgHAPZQ69cnrdbCdo9R1dc3OoMWAMBos7Mejt3spOMAAAAAMErs\n6BVHa0opE5umWVNKOSjJIwPrq5IcMmS7KQNrW1rforlz5w6+7u7uTnd39w6OCsDuZNas+envX9fu\nMTbT27sirVa7pwAAgG3X09OTnp6eYR1jW8NRGfjvt25Kcm6STyZ5X5Ibh6xfU0q5IhtuRZua5J6m\naZpSypOllDcn+UGSc5J85qVOODQcAbD36O9fNypvb1q6dPrWNwIAgFFk0wtx5s2bt93H2Go4KqV8\nNUl3kgmllAeT/J8kn0jytVLKeUn6s+GX1NI0zfJSyg1Jlid5Lsn5TdP89ja2C5J8OcnvJbm5aZpv\nbfe0AAAAAOwy2/Krav9zCx+9bQvbL0iyoLL+wyT/bbumAwAAAKBtdtbDsQEAAADYwwhHAAAAAFQJ\nRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlH\nAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcA\nAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAA\nAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAA\nAFQJRwAAAABUCUcAAAAAVAlHAAAAAFR1tHsAAHa9WbPmp79/XbvHqOrtXZFWq91TAAAAiXAEsFfq\n71+XVmthu8eoWrp0ertHAAAABrhVDQAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEI\nAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgKqOdg8AALCrLVvWmxkzLmz3GFVdXZ1ZtGhOu8cAAEgi\nHAEAe6H165NWa2G7x6jq6xudQQsA2Du5VQ0AAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAA\ngCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACA\nKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq\n4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrh\nCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAICqYYWjUspflVJ+VkrpLaVcU0p5WSmls5Ryaynl3lLK\nLaWU8UO2n11Kub+UsqKUMn344wMAAAAwUnY4HJVSJiX5f5O8sWma1yXpSHJ2kouS3NY0zRFJbk8y\ne2D7o5KcmeTIJKck+VwppQxvfAAAAABGynBvVdsnyStLKR1JXpFkVZLTkiwe+HxxktMHXr87yXVN\n0zzfNE1fkvuTvHmY5wcAAABghOxwOGqaZnWSRUkezIZg9GTTNLclmdg0zZqBbR5OcuDALpOTrBxy\niFUDawAAAACMQsO5Ve33s+Hqoq4kk7LhyqP3JGk22XTT9wAAAADsBjqGse/bkvyiaZq1SVJK+f+T\nHJdkTSllYtM0a0opByV5ZGD7VUkOGbL/lIG1qrlz5w6+7u7uTnd39zBGBQAAANi79PT0pKenZ1jH\nGE44ejDJsaWU30vymyRvTfKDJE8nOTfJJ5O8L8mNA9vflOSaUsoV2XCL2tQk92zp4EPDEQAAAADb\nZ9MLcebNm7fdx9jhcNQ0zT2llK8n+XGS5wb+7xeSvCrJDaWU85L0Z8MvqaVpmuWllBuSLB/Y/vym\nadzGBgAAADBKDeeKozRNMy/JprlqbTbcxlbbfkGSBcM5JwAAAAC7xg4/HBsAAACAPZtwBAAAAECV\ncAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVw\nBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAE\nAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQA\nAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAA\nAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAVUe7BwAA4HeWLevNjBkXtnuMzXR1dWbRojnt\nHgMA2MWEIwCAUWT9+qTVWtjuMTbT1zf6YhYAMPLcqgYAAABAlXAEAAAAQJVwBAAAAECVcAQAAABA\nlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECV\ncAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVw\nBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAVUe7\nBwDYU82aNT/9/evaPUZVb++KtFrtngIAABjthCOAEdLfvy6t1sJ2j1G1dOn0do8AAADsBtyqBgAA\nAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAA\nQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAEDVsMJRKWV8KeVrpZQVpZSfl1KOKaV0llJuLaXc\nW0q5pZQyfsj2s0sp9w9sP3344wMAAAAwUoZ7xdGnk9zcNM2RSY5O8h9JLkpyW9M0RyS5PcnsJCml\nHJXkzCRHJjklyedKKWWY5wcAAABghOxwOCql7JfkxKZprk6Spmmeb5rmySSnJVk8sNniJKcPvH53\nkusGtutLcn+SN+/o+QEAAAAYWcO54uiwJI+VUq4upfyolPKFUsq4JBObplmTJE3TPJzkwIHtJydZ\nOWT/VQNrAAAAAIxCwwlHHUnemOTKpmnemOSZbLhNrdlku03fAwAAALAb6BjGvr9KsrJpmn8feP+N\nbAhHa0opE5umWVNKOSjJIwOfr0pyyJD9pwysVc2dO3fwdXd3d7q7u4cxKgAAAMDepaenJz09PcM6\nxg6Ho4EwtLKU8pqmae5L8tYkPx/479wkn0zyviQ3DuxyU5JrSilXZMMtalOT3LOl4w8NRwAAAABs\nn00vxJk3b952H2M4VxwlyYeyIQaNTfKLJH+WZJ8kN5RSzkvSnw2/pJamaZaXUm5IsjzJc0nOb5rG\nbWwAAAAAo9SwwlHTNMuS/PfKR2/bwvYLkiwYzjkBAAAA2DWG83BsAAAAAPZgwhEAAAAAVcIRAAAA\nAFXCEQAAAABVwhEAAAAAVcIRAAAAAFXCEQAAAABVwhEAAAAAVcIRAAAAAFXCEQAAAABVwhEAAAAA\nVcIRAAAAAFXCEQAAAABVwhEAAAAAVcIRAAAAAFXCEQAAAABVwhEAAAAAVR3tHgAAgNFv2bLezJhx\nYbvHqOrq6syiRXPaPQYA7JGEIwAAtmr9+qTVWtjuMar6+kZn0AKAPYFb1QAAAACoEo4AAAAAqBKO\nAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4A\nAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAA\nAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAA\nAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAA\nqBKOAAAAAKgSjgAAAACo6mj3AADDNWvW/PT3r2v3GJvp7V2RVqvdUwAAAOw44QjY7fX3r0urtbDd\nY2xm6dLp7R4BAABgWNyqBgAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVw\nBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAE\nAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAAAECVcAQA\nAABAlXAEAAAAQJVwBAAAAECVcAQAAABA1bDDUSllTCnlR6WUmwbed5ZSbi2l3FtKuaWUMn7ItrNL\nKfeXUlaUUqYP99wAAAAAjJydccXRh5MsH/L+oiS3NU1zRJLbk8xOklLKUUnOTHJkklOSfK6UUnbC\n+QEAAAAYAcMKR6WUKUn+OMkXhyyflmTxwOvFSU4feP3uJNc1TfN80zR9Se5P8ubhnB8AAACAkTPc\nK46uSPK/kzRD1iY2TbMmSZqmeTjJgQPrk5OsHLLdqoE1AAAAAEahHQ5HpZT/kWRN0zQ/SfJSt5w1\nL/EZAAAAAKNUxzD2PT7Ju0spf5zkFUleVUr5SpKHSykTm6ZZU0o5KMkjA9uvSnLIkP2nDKxVzZ07\nd/B1d3d3uru7hzEqAAB7qmXLejNjxoXtHqOqq6szixbNafcYAOylenp60tPTM6xj7HA4aprm4iQX\nJ0kp5aQks5qmmVlK+VSSc5N8Msn7ktw4sMtNSa4ppVyRDbeoTU1yz5aOPzQcAQDAlqxfn7RaC9s9\nRlVf3+gMWgDsHTa9EGfevHnbfYzhXHG0JZ9IckMp5bwk/dnwS2ppmmZ5KeWGbPgFtueSnN80jdvY\nAAAAAEapnRKOmqb5bpLvDrxem+RtW9huQZIFO+OcAAAAAIys4f6qGgAAAAB7KOEIAAAAgCrhCAAA\nAIAq4QhkS8/tAAANV0lEQVQAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq\n4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrh\nCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEI\nAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgA\nAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAA\nAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAIAq4QgAAACAKuEIAAAA\ngCrhCAAAAIAq4QgAAACAKuEIAAAAgCrhCAAAAICqjnYPAOweZs2an/7+de0eo6q3d0VarXZPAQAA\nsOcRjoBt0t+/Lq3WwnaPUbV06fR2jwAAVcuW9WbGjAvbPcZmuro6s2jRnHaPAcBuQDgCAIARsn59\nRuX/46Wvb/TFLABGJ884AgAAAKBKOAIAAACgSjgCAAAAoEo4AgAAAKBKOAIAAACgSjgCAAAAoEo4\nAgAAAKBKOAIAAACgSjgCAAAAoEo4AgAAAKBKOAIAAACgSjgCAAAAoEo4AgAAAKBKOAIAAACgSjgC\nAAAAoEo4AgAAAKBKOAIAAACgSjgCAAAAoEo4AgAAAKBKOAIAAACgSjgCAAAAoEo4AgAAAKBKOAIA\nAACgSjgCAAAAoEo4AgAAAKBKOAIAAACgSjgCAAAAoGqHw1EpZUop5fZSys9LKT8tpXxoYL2zlHJr\nKeXeUsotpZTxQ/aZXUq5v5SyopQyfWd8AQAAAABGxnCuOHo+yUeapnltkrckuaCU8v8kuSjJbU3T\nHJHk9iSzk6SUclSSM5McmeSUJJ8rpZThDA8AAADAyNnhcNQ0zcNN0/xk4PXTSVYkmZLktCSLBzZb\nnOT0gdfvTnJd0zTPN03Tl+T+JG/e0fMDAAAAMLJ2yjOOSimtJK9PsjTJxKZp1iQb4lKSAwc2m5xk\n5ZDdVg2sAQAAADAKDTsclVL2TfL1JB8euPKo2WSTTd8DAAAAsBvoGM7OpZSObIhGX2ma5saB5TWl\nlIlN06wppRyU5JGB9VVJDhmy+5SBtaq5c+cOvu7u7k53d/dwRgUAAADYq/T09KSnp2dYxxhWOEry\n/yVZ3jTNp4es3ZTk3CSfTPK+JDcOWb+mlHJFNtyiNjXJPVs68NBwBAAAAMD22fRCnHnz5m33MXY4\nHJVSjk/yniQ/LaX8OBtuSbs4G4LRDaWU85L0Z8MvqaVpmuWllBuSLE/yXJLzm6ZxGxsAAADAKLXD\n4ahpmn9Lss8WPn7bFvZZkGTBjp4TAAAAgF1np/yqGgAAAAB7HuEIAAAAgCrhCAAAAICq4f6qGgAA\nsJtZtqw3M2Zc2O4xqrq6OrNo0Zx2jwHAAOEIAAD2MuvXJ63WwnaPUdXXNzqDFsDeyq1qAAAAAFQJ\nRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlH\nAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcAAAAAVAlHAAAAAFQJRwAAAABUCUcA\nAAAAVAlHAAAAAFQJRwAAAABUdbR7AOB3Zs2an/7+de0eo6q3d0VarXZPAQAAwK4kHMEo0t+/Lq3W\nwnaPUbV06fR2jwAAAMAu5lY1AAAAAKqEIwAAAACqhCMAAAAAqoQjAAAAAKqEIwAAAACqhCMAAAAA\nqoQjAAAAAKqEIwAAAACqOto9AAAAwG8tW9abGTMubPcYVV1dnVm0aE67xwDYpYQjAABg1Fi/Pmm1\nFrZ7jKq+vtEZtABGklvVAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKO\nAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4A\nAAAAqBKOAAAAAKgSjgAAAACo6mj3AAAAALuDZct6M2PGhe0eYzNdXZ1ZtGhOu8cA9lDCEQAAwDZY\nvz5ptRa2e4zN9PWNvpgF7DncqgYAAABAlXAEAAAAQJVwBAAAAECVcAQAAABAlXAEAAAAQJVwBAAA\nAEBVR7sHgHaYNWt++vvXtXuMzfT2rkir1e4pAAAAYAPhiL1Sf/+6tFoL2z3GZpYund7uEQAAAGCQ\nW9UAAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqBKOAAAAAKgSjgAAAACoEo4AAAAAqOpo9wAAAADs\nuGXLejNjxoXtHqOqq6szixbNafcYwDAIRwAAALux9euTVmthu8eo6usbnUEL2HZuVQMAAACgSjgC\nAAAAoEo4AgAAAKBKOAIAAACgysOxGTGzZs1Pf/+6do9R1du7Iq1Wu6cAAACA0U04YsT0968btb/u\nsHTp9HaPAAAAAKOecAQAAMCIWLasNzNmXNjuMTbT1dWZRYvmtHsM2C0IRwAAAIyI9eszKu9C6Osb\nfTELRisPxwYAAACgSjgCAAAAoEo4AgAAAKBql4ejUso7Syn/UUq5r5TyN7v6/AAAAABsm136cOxS\nypgkf5/krUlWJ/lBKeXGpmn+Y1fOAaPBypU9OeSQ7naPASPq/7Z3PyF63HUcx9+frVisQmibtilJ\ndFOEHsQSFYPQHszBELxEFLR6sT2IB2s9pNDiJbkUjFChFy82hSqR+gc0uZmCSFDYJtHGpDVNKjZL\nYv402Ja29CL262EmZps8W7u7T56ZnX2/4GFnfjsPfA/f+TLzfeb3G/NcK4F5rpXAPNfQjHrb28WL\np7nllvUdRXSZb3xT30z6rWqbgJeqahYgydPANsDG0RJs3/4os7OvdR3GVY4ePc70dNdR9JcXYFoJ\nzHOtBOa5VgLzXEMz6m1vZ8/uZHp6ZzcBzbF375Ze3t8BvPzyCTZsuLPrMK5is+3amnTjaC1wes7+\nGZpmUq+dPPl3Dhw43HUYI61evYrZ2VeZnn6s61CuMjOzpesQJEmSJGlZGdXU6ouZmS1s3ty/2E6d\neuj/H6RFm3TjaFk6fPgoe/b0s3F0++2hqroOQ5IkSZIkDVAm2XRI8jlgZ1VtbfcfAaqqdl1xnJ0Q\nSZIkSZKkMauqLOT4STeOrgNO0CyOfQ44CHy9qo5PLAhJkiRJkiS9LxOdqlZV/0nyALAfmAJ22zSS\nJEmSJEnqp4k+cSRJkiRJkqTlY6rrAOZKsjXJi0lOJnm463ikayHJqSR/TfJckoNdxyONQ5LdSS4k\nOTpn7MYk+5OcSPK7JKu6jFFaqnnyfEeSM0n+0n62dhmjtFRJ1iX5fZIXkhxL8mA7bk3XYIzI8++2\n49Z0DUaS65M82953Hkuyox1fcD3vzRNHSaaAkzTrH50FDgH3VtWLnQYmjVmSfwCfqarXuo5FGpck\n9wBvAT+tqrvasV3Av6rqh+2PATdW1SNdxiktxTx5vgN4s6p+1Glw0pgkWQOsqaojST4C/BnYBtyP\nNV0D8R55/jWs6RqQJDdU1dvtetN/Ah4EvsIC63mfnjjaBLxUVbNV9W/gaZqTVxqa0K9zT1qyqvoj\ncGUzdBvwVLv9FPCliQYljdk8eQ5NXZcGoarOV9WRdvst4DiwDmu6BmSePF/b/tuarsGoqrfbzetp\n1rguFlHP+3TzuhY4PWf/DJdPXmlICngmyaEk3+o6GOkaurWqLkBzgQbc2nE80rXyQJIjSZ5w+o6G\nJMk0sBGYAW6zpmuI5uT5s+2QNV2DkWQqyXPAeeCZqjrEIup5nxpH0kpxd1V9Gvgi8J126oO0EvRj\nbrQ0Xj8G7qiqjTQXZU5v0CC003d+DXyvfSLjyhpuTdeyNyLPrekalKp6p6o+RfPk6KYkn2AR9bxP\njaN/Ah+ds7+uHZMGparOtX8vAr+hmaYpDdGFJLfB/9YSeKXjeKSxq6qLdXnByJ8An+0yHmkcknyA\n5mb6Z1W1tx22pmtQRuW5NV1DVVVvAH8AtrKIet6nxtEh4ONJPpbkg8C9wL6OY5LGKskN7S8bJPkw\nsAV4vtuopLEJ714XYB9wX7v9TWDvlV+QlqF35Xl7wXXJl7GmaxieBP5WVY/PGbOma2iuynNruoYk\nyepL0y2TfAj4As16Xguu5715qxpA+7rDx2kaWrur6gcdhySNVZINNE8ZFc3iZHvMcw1Bkp8Dnwdu\nBi4AO4DfAr8C1gOzwFer6vWuYpSWap4830yzNsY7wCng25fWDZCWoyR3AweAYzTXKwV8HzgI/BJr\nugbgPfL8G1jTNRBJPkmz+PVU+/lFVT2a5CYWWM971TiSJEmSJElSf/RpqpokSZIkSZJ6xMaRJEmS\nJEmSRrJxJEmSJEmSpJFsHEmSJEmSJGkkG0eSJEmSJEkaycaRJEmSJEmSRrJxJEmSJEmSpJFsHEmS\nJEmSJGmk/wKe+/9qe94J2AAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f81ea991a20>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.figure(figsize=(20,10))\n", | |
"model = np.random.poisson(13.1, 10000)\n", | |
"plt.hist(model, alpha=0.55, label='Poisson Model for GSW', bins=26)\n", | |
"plt.legend(loc='upper right')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 80, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[ 0 1 1 6 25 57 137 274 470 643 909 1000 1110 1087 1006\n", | |
" 886 707 554 399 273 185 116 75 38 21 9 5 3 3]\n" | |
] | |
} | |
], | |
"source": [ | |
"print(np.bincount(model))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Still only a few games with 25+ 3PTM even for the best team in the league at shooting 3's. And note that the most 3's GSW made in one game this season was 22 (they did that twice)." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment