Skip to content

Instantly share code, notes, and snippets.

@FBosler
Last active July 4, 2021 09:31
Show Gist options
  • Save FBosler/35577a64937836d351606aa54e8bdcb9 to your computer and use it in GitHub Desktop.
Save FBosler/35577a64937836d351606aa54e8bdcb9 to your computer and use it in GitHub Desktop.
dodge_the_lasers
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "d9d762a0",
"metadata": {},
"source": [
"### Original Sequence\n",
"\n",
"${\\mathcal {B}}_{r}^{(i)} = \\lfloor{ir}\\rfloor$\n",
"\n",
"$S(n,r) = \\sum_{i=1}^{n} \\mathcal {B}_{r}^{(i)}$\n",
"\n",
"$r = \\sqrt{2}$\n",
"\n",
"### ${\\mathcal {B}}_{r}^{(i)}$ is a Beatty Sequence => $\\exists$ complementary Series ${\\mathcal {B}}_{s}^{(i)}$\n",
"\n",
"${\\mathcal {B}}_{s}^{(i)} = \\lfloor{is}\\rfloor$\n",
"\n",
"$S(n,s) = \\sum_{i=1}^{n} \\mathcal {B}_{s}^{(i)}$\n",
"\n",
"$s = \\frac{r}{r-1} = \\frac{\\sqrt{2}}{(\\sqrt{2}-1)} = \\frac{\\sqrt{2}(\\sqrt{2}+1)}{(\\sqrt{2}-1)(\\sqrt{2}+1)} = \\frac{2 + \\sqrt{2}}{(\\sqrt{2})^{2}-1^{2}} = \\frac{2 + \\sqrt{2}}{1} = 2 + \\sqrt{2}$\n",
"\n",
"#### A bit of equation wrangling\n",
"\n",
"${\\mathcal {B}}_{s}^{(i)} = \\lfloor{is}\\rfloor = \\lfloor{i(2 + \\sqrt{2})}\\rfloor = \\lfloor{i\\sqrt{2}}\\rfloor + 2i = {\\mathcal {B}}_{r}^{(i)} + 2i$\n",
"\n",
"$S(n,s) = \\sum_{i=1}^{n} \\mathcal {B}_{s}^{(i)} = \\sum_{i=1}^{n} {\\mathcal {B}}_{r}^{(i)} + 2i = \\textbf{S(n,r)} + n(n+1) \\qquad \\textbf{(i)}$\n",
"\n",
"### Property of Beatty sequence and its complementary:\n",
"Every positive integer belongs to exactly one of ${\\mathcal {B}}_{r}^{(i)}$ or ${\\mathcal {B}}_{s}^{(i)}$.\n",
"\n",
"\n",
" \n",
"$S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,s) = \\sum_{i=1}^{{\\mathcal {B}}_{r}^{(n)}} i = \\frac{{\\mathcal {B}}_{r}^{(n)}({\\mathcal {B}}_{r}^{(n)}+1)}{2} \\qquad \\textbf{(ii)}$\n",
"\n",
"$S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,s)$\n",
"\n",
"$\\stackrel{using \\; (i)}{=>} S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,r) + \\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor+1)$\n",
"\n",
"$\\stackrel{using \\; (ii)}{=>} S(n,r) = \\frac{{\\mathcal {B}}_{r}^{(n)}({\\mathcal {B}}_{r}^{(n)}+1)}{2} - S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,r) - \\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor+1)$"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "foobar",
"language": "python",
"name": "foobar"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment