Last active
July 4, 2021 09:31
-
-
Save FBosler/35577a64937836d351606aa54e8bdcb9 to your computer and use it in GitHub Desktop.
dodge_the_lasers
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "d9d762a0", | |
"metadata": {}, | |
"source": [ | |
"### Original Sequence\n", | |
"\n", | |
"${\\mathcal {B}}_{r}^{(i)} = \\lfloor{ir}\\rfloor$\n", | |
"\n", | |
"$S(n,r) = \\sum_{i=1}^{n} \\mathcal {B}_{r}^{(i)}$\n", | |
"\n", | |
"$r = \\sqrt{2}$\n", | |
"\n", | |
"### ${\\mathcal {B}}_{r}^{(i)}$ is a Beatty Sequence => $\\exists$ complementary Series ${\\mathcal {B}}_{s}^{(i)}$\n", | |
"\n", | |
"${\\mathcal {B}}_{s}^{(i)} = \\lfloor{is}\\rfloor$\n", | |
"\n", | |
"$S(n,s) = \\sum_{i=1}^{n} \\mathcal {B}_{s}^{(i)}$\n", | |
"\n", | |
"$s = \\frac{r}{r-1} = \\frac{\\sqrt{2}}{(\\sqrt{2}-1)} = \\frac{\\sqrt{2}(\\sqrt{2}+1)}{(\\sqrt{2}-1)(\\sqrt{2}+1)} = \\frac{2 + \\sqrt{2}}{(\\sqrt{2})^{2}-1^{2}} = \\frac{2 + \\sqrt{2}}{1} = 2 + \\sqrt{2}$\n", | |
"\n", | |
"#### A bit of equation wrangling\n", | |
"\n", | |
"${\\mathcal {B}}_{s}^{(i)} = \\lfloor{is}\\rfloor = \\lfloor{i(2 + \\sqrt{2})}\\rfloor = \\lfloor{i\\sqrt{2}}\\rfloor + 2i = {\\mathcal {B}}_{r}^{(i)} + 2i$\n", | |
"\n", | |
"$S(n,s) = \\sum_{i=1}^{n} \\mathcal {B}_{s}^{(i)} = \\sum_{i=1}^{n} {\\mathcal {B}}_{r}^{(i)} + 2i = \\textbf{S(n,r)} + n(n+1) \\qquad \\textbf{(i)}$\n", | |
"\n", | |
"### Property of Beatty sequence and its complementary:\n", | |
"Every positive integer belongs to exactly one of ${\\mathcal {B}}_{r}^{(i)}$ or ${\\mathcal {B}}_{s}^{(i)}$.\n", | |
"\n", | |
"\n", | |
" \n", | |
"$S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,s) = \\sum_{i=1}^{{\\mathcal {B}}_{r}^{(n)}} i = \\frac{{\\mathcal {B}}_{r}^{(n)}({\\mathcal {B}}_{r}^{(n)}+1)}{2} \\qquad \\textbf{(ii)}$\n", | |
"\n", | |
"$S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,s)$\n", | |
"\n", | |
"$\\stackrel{using \\; (i)}{=>} S(n,r) + S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,r) + \\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor+1)$\n", | |
"\n", | |
"$\\stackrel{using \\; (ii)}{=>} S(n,r) = \\frac{{\\mathcal {B}}_{r}^{(n)}({\\mathcal {B}}_{r}^{(n)}+1)}{2} - S(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor,r) - \\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor(\\lfloor{\\frac{{\\mathcal {B}}_{r}^{(n)}}{s}}\\rfloor+1)$" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "foobar", | |
"language": "python", | |
"name": "foobar" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.13" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment