'''This script goes along the blog post "Building powerful image classification models using very little data" from blog.keras.io. It uses data that can be downloaded at: https://www.kaggle.com/c/dogs-vs-cats/data In our setup, we: - created a data/ folder - created train/ and validation/ subfolders inside data/ - created cats/ and dogs/ subfolders inside train/ and validation/ - put the cat pictures index 0-999 in data/train/cats - put the cat pictures index 1000-1400 in data/validation/cats - put the dogs pictures index 12500-13499 in data/train/dogs - put the dog pictures index 13500-13900 in data/validation/dogs So that we have 1000 training examples for each class, and 400 validation examples for each class. In summary, this is our directory structure: ``` data/ train/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... validation/ dogs/ dog001.jpg dog002.jpg ... cats/ cat001.jpg cat002.jpg ... ``` ''' import numpy as np from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense from keras import applications # dimensions of our images. img_width, img_height = 150, 150 top_model_weights_path = 'bottleneck_fc_model.h5' train_data_dir = 'data/train' validation_data_dir = 'data/validation' nb_train_samples = 2000 nb_validation_samples = 800 epochs = 50 batch_size = 16 def save_bottlebeck_features(): datagen = ImageDataGenerator(rescale=1. / 255) # build the VGG16 network model = applications.VGG16(include_top=False, weights='imagenet') generator = datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) bottleneck_features_train = model.predict_generator( generator, nb_train_samples // batch_size) np.save(open('bottleneck_features_train.npy', 'w'), bottleneck_features_train) generator = datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode=None, shuffle=False) bottleneck_features_validation = model.predict_generator( generator, nb_validation_samples // batch_size) np.save(open('bottleneck_features_validation.npy', 'w'), bottleneck_features_validation) def train_top_model(): train_data = np.load(open('bottleneck_features_train.npy')) train_labels = np.array( [0] * (nb_train_samples / 2) + [1] * (nb_train_samples / 2)) validation_data = np.load(open('bottleneck_features_validation.npy')) validation_labels = np.array( [0] * (nb_validation_samples / 2) + [1] * (nb_validation_samples / 2)) model = Sequential() model.add(Flatten(input_shape=train_data.shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(validation_data, validation_labels)) model.save_weights(top_model_weights_path) save_bottlebeck_features() train_top_model()