Created
July 17, 2019 20:00
-
-
Save Hanrui-Wang/8205c4836d2827dce68463ab99633e25 to your computer and use it in GitHub Desktop.
decoder rnn and how to apply attention
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class LuongAttnDecoderRNN(nn.Module): | |
| def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1): | |
| super(LuongAttnDecoderRNN, self).__init__() | |
| # Keep for reference | |
| self.attn_model = attn_model | |
| self.hidden_size = hidden_size | |
| self.output_size = output_size | |
| self.n_layers = n_layers | |
| self.dropout = dropout | |
| # Define layers | |
| self.embedding = embedding | |
| self.embedding_dropout = nn.Dropout(dropout) | |
| self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout)) | |
| self.concat = nn.Linear(hidden_size * 2, hidden_size) | |
| self.out = nn.Linear(hidden_size, output_size) | |
| self.attn = Attn(attn_model, hidden_size) | |
| def forward(self, input_step, last_hidden, encoder_outputs): | |
| # Note: we run this one step (word) at a time | |
| # Get embedding of current input word | |
| embedded = self.embedding(input_step) | |
| embedded = self.embedding_dropout(embedded) | |
| # Forward through unidirectional GRU | |
| rnn_output, hidden = self.gru(embedded, last_hidden) | |
| # Calculate attention weights from the current GRU output | |
| attn_weights = self.attn(rnn_output, encoder_outputs) | |
| # Multiply attention weights to encoder outputs to get new "weighted sum" context vector | |
| context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) | |
| # Concatenate weighted context vector and GRU output using Luong eq. 5 | |
| rnn_output = rnn_output.squeeze(0) | |
| context = context.squeeze(1) | |
| concat_input = torch.cat((rnn_output, context), 1) | |
| concat_output = torch.tanh(self.concat(concat_input)) | |
| # Predict next word using Luong eq. 6 | |
| output = self.out(concat_output) | |
| output = F.softmax(output, dim=1) | |
| # Return output and final hidden state | |
| return output, hidden |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment