Created
July 17, 2019 19:49
-
-
Save Hanrui-Wang/993e1325f79bb10ad3c16827228ec527 to your computer and use it in GitHub Desktop.
how to compute attention of seq2seq
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Luong attention layer | |
| class Attn(torch.nn.Module): | |
| def __init__(self, method, hidden_size): | |
| super(Attn, self).__init__() | |
| self.method = method | |
| if self.method not in ['dot', 'general', 'concat']: | |
| raise ValueError(self.method, "is not an appropriate attention method.") | |
| self.hidden_size = hidden_size | |
| if self.method == 'general': | |
| self.attn = torch.nn.Linear(self.hidden_size, hidden_size) | |
| elif self.method == 'concat': | |
| self.attn = torch.nn.Linear(self.hidden_size * 2, hidden_size) | |
| self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)) | |
| def dot_score(self, hidden, encoder_output): | |
| return torch.sum(hidden * encoder_output, dim=2) | |
| def general_score(self, hidden, encoder_output): | |
| energy = self.attn(encoder_output) | |
| return torch.sum(hidden * energy, dim=2) | |
| def concat_score(self, hidden, encoder_output): | |
| energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh() | |
| return torch.sum(self.v * energy, dim=2) | |
| def forward(self, hidden, encoder_outputs): | |
| # Calculate the attention weights (energies) based on the given method | |
| if self.method == 'general': | |
| attn_energies = self.general_score(hidden, encoder_outputs) | |
| elif self.method == 'concat': | |
| attn_energies = self.concat_score(hidden, encoder_outputs) | |
| elif self.method == 'dot': | |
| attn_energies = self.dot_score(hidden, encoder_outputs) | |
| # Transpose max_length and batch_size dimensions | |
| attn_energies = attn_energies.t() | |
| # Return the softmax normalized probability scores (with added dimension) | |
| return F.softmax(attn_energies, dim=1).unsqueeze(1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment