Skip to content

Instantly share code, notes, and snippets.

@HintikkaKimmo
Created March 8, 2017 17:49
Show Gist options
  • Save HintikkaKimmo/1ca2fe904eb504641eb7d137976d0208 to your computer and use it in GitHub Desktop.
Save HintikkaKimmo/1ca2fe904eb504641eb7d137976d0208 to your computer and use it in GitHub Desktop.
data preparation for time warp test
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import pandas_datareader.data as web"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"pd.set_option('display.max_colwidth', 200)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"start = pd.to_datetime('2010-01-01')\n",
"end = pd.to_datetime('2017-01-01')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"spy = web.get_data_yahoo('SPY', start, end)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Open</th>\n",
" <th>High</th>\n",
" <th>Low</th>\n",
" <th>Close</th>\n",
" <th>Volume</th>\n",
" <th>Adj Close</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Date</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2010-01-04</th>\n",
" <td>112.370003</td>\n",
" <td>113.389999</td>\n",
" <td>111.510002</td>\n",
" <td>113.330002</td>\n",
" <td>118944600</td>\n",
" <td>98.214371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010-01-05</th>\n",
" <td>113.260002</td>\n",
" <td>113.680000</td>\n",
" <td>112.849998</td>\n",
" <td>113.629997</td>\n",
" <td>111579900</td>\n",
" <td>98.474354</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010-01-06</th>\n",
" <td>113.519997</td>\n",
" <td>113.989998</td>\n",
" <td>113.430000</td>\n",
" <td>113.709999</td>\n",
" <td>116074400</td>\n",
" <td>98.543685</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010-01-07</th>\n",
" <td>113.500000</td>\n",
" <td>114.330002</td>\n",
" <td>113.180000</td>\n",
" <td>114.190002</td>\n",
" <td>131091100</td>\n",
" <td>98.959667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010-01-08</th>\n",
" <td>113.889999</td>\n",
" <td>114.620003</td>\n",
" <td>113.660004</td>\n",
" <td>114.570000</td>\n",
" <td>126402800</td>\n",
" <td>99.288981</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Open High Low Close Volume \\\n",
"Date \n",
"2010-01-04 112.370003 113.389999 111.510002 113.330002 118944600 \n",
"2010-01-05 113.260002 113.680000 112.849998 113.629997 111579900 \n",
"2010-01-06 113.519997 113.989998 113.430000 113.709999 116074400 \n",
"2010-01-07 113.500000 114.330002 113.180000 114.190002 131091100 \n",
"2010-01-08 113.889999 114.620003 113.660004 114.570000 126402800 \n",
"\n",
" Adj Close \n",
"Date \n",
"2010-01-04 98.214371 \n",
"2010-01-05 98.474354 \n",
"2010-01-06 98.543685 \n",
"2010-01-07 98.959667 \n",
"2010-01-08 99.288981 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spy.head()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"spy_adj_close = spy['Adj Close']"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([<matplotlib.axes._subplots.AxesSubplot object at 0x119876390>], dtype=object)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAFRCAYAAACsdAO0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xmcj+X+x/HXNWNmDCODsWUnOtbCJEqbkPxydFIhHRUp\nTjm0p04LnRTaxcmS6LRSKqFjKYXIlm1GdoPB2MZgmBlm5vr9MfO9+35nM8v3O5v38/Hw6L6v+7qv\n+7onDz6u67o/l7HWIiIiIiLe51fUHRAREREprRRoiYiIiPiIAi0RERERH1GgJSIiIuIjCrRERERE\nfESBloiIiIiPKNASERER8REFWiJS7BhjOhpjVhhjThpjYo0xvxpjrjLG3G+MSTHGxBtjThljNhhj\nbjPGVDfGHDPG3JihnWnGmC+K6DVERBRoiUjxYoy5BJgLjAcqA7WAkUBSepWV1toQIBT4EJgJnAMe\nA6YYY4LT27kZuA0YWqgvICLiRoGWiBQ3TQCstZ9ba1OstQnW2oXW2k3ulay1qcA0IBhoZK39L7AN\nGJUebE0C/mmtPVrI/RcRcZQp6g6IiGSwHUgxxswAvgB+s9aeyFjJGFMGeBCIB3akFw8GNpIWrEVY\nazVtKCJFSiNaIlKsWGtPAR0BC0wBjhpj5hhjqqdXaW+MiQNigL7A36y1J9PvjQZeBDoDQwq98yIi\nGRhtKi0ixZkx5i/AJ6SNWi0AHrTWdsyh/o3AJ9ba2oXTQxGR7GlES0SKNWvtVmA60KKIuyIikmcK\ntESkWDHG/MUY84Qxpnb6eR3Spgh/K9qeiYjknQItESluTgNXA6uMMWdIC7AigCeKtFciIvmgNVoi\nIiIiPqIRLREREREfUaAlIiIi4iMKtERERER8RIGWiIiIiI8o0BIRERHxEQVaIiIiIj6iQEtERETE\nRxRoiYiIiPiIAi0RERERH1GgJSIiIuIjCrREREREfESBloiIiIiPKNASERER8REFWiIiIiI+okBL\nRERExEcUaImIiIj4iAItERERER9RoCUiIiLiIwq0RERERHxEgZaIiIiIjyjQEhEREfERBVoiIiIi\nPqJAS0RERMRHFGiJiIiI+IgCLREREREfKVPUHQAICwuz9evXL+puiIiIiFzQunXrjllrq+ambrEI\ntOrXr8/atWuLuhsiIiIiF2SM2Zvbupo6FBEREfERBVoiIiIiPqJAS0RERMRHFGiJiIiI+IgCLRER\nEREfUaAlIiIi4iMKtERERER8RIGWiIiIiI8Ui4SlIiIiIsXRwYMHqVWrFldddRUHDhzg2muvzdP9\nCrREREREsrF69WoA1qxZA8CsWbPydL+mDkVERESykJKSwt/+9rcCtaFAS0RERCQLR44c8Tg/ePAg\nNWrUyFMbCrREREREsnDgwAEAhgwZwq5du6hZsyZNmzbNUxsKtERERESysH79egCGDx9Ow4YNAbjj\njjvy1IYCLREREZEsxMTEANCgQQOnrHfv3nlqQ4GWiIiISBbi4+MJCgoiICDAKatatWqe2rhgoGWM\nqWOMWWKM2WKMiTTGDEsvH2eM2WqM2WSM+cYYE+p2zwhjzE5jzDZjzC156pGIiIhIMRAfH09ISEiB\n2sjNiFYy8IS1thnQHnjEGNMMWAS0sNa2ArYDIwDSr/UBmgPdgInGGP8C9VJERESkkBVKoGWtPWSt\n/T39+DTwB1DLWrvQWpucXu03oHb6cU/gC2ttkrV2D7ATaFegXoqIiIgUglOnTtGyZUvmzp3L8ePH\nqVixYoHay1NmeGNMfaA1sCrDpQHAl+nHtUgLvFyi08sytvUQ8BBA3bp189INEREREZ+YNWsWERER\n9OjRA4B77rmnQO3lejG8MSYE+BoYbq095Vb+PGnTi5/m5cHW2snW2nBrbXheF5aJiIiI+ML777/v\ncd6lS5cCtZerQMsYE0BakPWptXa2W/n9wG1AP2utTS8+ANRxu712epmIiIhIsXX06FE2bNjAqFGj\nnLLbbrutQG1ecOrQGGOAD4E/rLVvuZV3A54GbrDWnnW7ZQ7wmTHmLeBSoDGwukC9FBEREfGx8PBw\nIG0Uq0mTJsTHxxMWFlagNnOzRuta4O/AZmPMhvSy54D3gCBgUVosxm/W2sHW2khjzExgC2lTio9Y\na1MK1EsRERERN6mpqezYsYMmTZoAYIzBWsvx48fzFRzFxsayb98+IC3gat++vVf6ecFAy1q7HDBZ\nXJqfwz2vAq8WoF8iIiIiWUpISKBcuXLOeYMGDdiyZQu33347ixcvZseOHR7Z3HPj66+/do7LlMnT\nt4I5UmZ4ERERKTHmzZvnEWQB7Nmzh+DgYBYsWEBKSgorVqwgISGBKlWqMHv27Gxa+lNcXBwffPAB\nABs2bLhA7bxRoCUiIiLF2okTJ4iKiiIpKclj5AmgVatWmeqfPXuWAwcOEBsbS69evTDGkJiYyKZN\nmzh//nym+k899RS///47AI0bN/Zq3xVoiYiISLEVHx9P5cqVadCgAWXLluWjjz6iQoUKTJkyhdTU\nVFasWOHUveGGGwBISkri5MmTHu0EBwdzxRVXMHny5EzPOH36NAATJkzINFpWUAq0REREpFg6efIk\nVapUyVReo0YNHnzwQYwxlC9fnjNnzpCSksKcOXMAGDp0KFu3bs22TYCdO3c6o1vx8fG0adOGf/zj\nH15/BwVaIiIiUiy9/fbbnDt3DoDHH3+cAQMGANC0aVOPeuXKlcPPz4/AwECnbNy4cVm26efnx1df\nfUXjxo157bXXADh8+DDVqlXzxSso0BIREZHiaf78tAQHcXFxvPnmm7zyyis0bNiQ0aNHZ1nfPdDa\nuHGjc9y8eXP+85//ADB16lTuuusuABYtWgTAkSNHfBZoee/7RREREREviomJAXA2dr700kvZtWtX\ntvX9/DKPH/3+++9ceeWVGGMYMmSIx/3btm3DWuvTQEsjWiIiIlIsnTp1iqFDh+b7/jFjxtC6dWvS\nE6tz2WWXOdcmTJjA0aNHGTlyJImJiQq0RERE5OIRHR3NyZMnqVmzZr7uDwgI4Omnn/Yo27Jli3Pc\nrVs3AEaOHAmgQEtEREQuHmPGjCEwMJC+ffvm6b6vvvqK2267jRkzZmS6FhAQQFxcHLt376Zhw4a8\n+eabzrXq1asXuM9Z0RotERERKXa2b99O69atqV+/fp7u69WrF7169cr2esWKFZ01X7Vr13bKNaIl\nIiIipcqJEyd4+OGHOXr0aKZrZ86coXz58j59vvu0pAItERERKVVmzZrF5MmTeeWVV4C0YOedd94B\n0gKtkJAQnz7fPdCqWrWqT56hqUMREREpdMeOHXOSipYpU4bk5GSOHj3KY489hp+fH/v27cuUmNTb\n3KcOg4KCfPIMBVoiIiLiVampqVnmtHLZt28f9evXx1oLpKVxOHPmjHN92LBhAOzfv9+n/SxbtqxP\n2wdNHYqIiIgXJScn4+/vz8svv5xtnQ4dOjhBFqRlZj916lSmerfccosvuuhh06ZNLFu2zGftK9AS\nERHJJWstixYtIiUlJdf3bNy4kZdeeomDBw/6sGfFx4oVK4C0/FRdunRxNm522bFjh/Oz+Oabb/j7\n3//OypUref311zO11bNnT5/3t2XLlnTs2NFn7SvQEhERyQVrLc2aNaNr166MGzcuU7C1bds2Hn30\nUVatWuVxT6dOnRg1alSWeZ284YknnuDbb7/NVH7o0CGOHTvmk2fmZN68ec7x4sWLiY6OZv/+/axc\nuRKANWvWALB8+XJuv/12unTpwrFjx5g4caJzX0BAAAsXLqRly5aF23kf0BotERGRXJg9ezZbt24F\nYMSIEcybN8+Zcjpy5Ah/+ctfADh58iRXX301kPblXGxsLIBHAOYtZ8+e5a233uKtt94iNTXV2WoG\n0vYFBDym6Hxt1apVjB07lqpVq1KmTBkOHTrEvffey7p160hKSsJay4kTJ4A/t8Pp3LlzpnZCQ0Pp\n0qVLofXblzSiJSIikoG1lo8//pioqCggbZTmtddeo0mTJnTq1AlIG5GpUqUKmzdv5vvvv/e41yUi\nIsI5Xr58Ob179+aLL77gxIkTrFixgiVLljgbJ+dHZGSkc/zzzz8DkJCQwDfffOOUF6T9vJo5cyYA\no0aNcn4mK1asICkpCUhbJO8KtCpVqgSQ5RY75cqVK4zuFgqNaImISKm3Y8cODhw4QHJycpYjKBmt\nXr2a++67L1N5z549adu2LT/99BMAsbGxtGrVyqOO+356P/zwAwDdu3dn/vz5zJw50wlGXK655hp+\n/fXXPL9TYmIi99xzj3O+cuVKqlSpwhVXXOFR79Zbb2X9+vV5bj+3Tp06RbNmzXjssceIi4sjJCSE\nhx9+mAMHDmSq26lTJy677DLKly9PYGCgRxtz5szh1Vdf5Y8//vB5otLCpBEtEREp1X766SeaNGnC\nTTfd5DEdtWjRIicQcrHW8u677zJp0qQs2woICKBDhw7ZPqtNmzasX7+ePXv2AGkBXt26denRo0e2\n97imI/Nq1apV7Ny50zl//vnnue2225x+umzYsAFrrbOm7P/+7/+8uq/f999/z4EDB3jyySeZNm0a\nderUwRiTZab1X375henTpzujWS4VKlSgX79+Tr8VaImIiJQQd911l8d5QkICAF27dqV79+4sX74c\nSFtn5efnx/Dhw/noo4+ybOvcuXPcfPPNfPLJJ/z222+Zro8YMQLAmXKMiIigZcuWhIaGZtu/ypUr\n5/mdUlJSWLp0aaZyV96ppKQkjzxWDzzwAGXKlMFay/z58zly5Eien5mde++91+Pc9T6BgYEeU6ru\nfXf9P8jIFWiVpqnDCwZaxpg6xpglxpgtxphIY8yw9PLKxphFxpgd6f+t5HbPCGPMTmPMNmOM75Ng\niIiIZGCt5bvvviM2NtYjA/jIkSM9ptJcgdbatWtzbO+KK65g9OjRGGPo168fV111FfXq1fOo06JF\nCyBtXdSqVavYvHkzLVu29BjB+ec//+lxT36Cnvnz5/Piiy8C8PHHH3sEfVdffTXGGK666iqnzPXF\n4+233+6UFXSR/P79+1m0aFGmn4H7u7pG2DJq3bp1luVlyqStaLrYRrSSgSestc2A9sAjxphmwLPA\nj9baxsCP6eekX+sDNAe6ARONMf6+6LyIiEh2vvrqKyewmDhxohPQxMfHs337dqferl27iI+Pz5SF\nfNGiRR7nEyZMoHnz5s65n5+fR56nf/zjH9SoUQNIC6bat28PpAVfrnJIWzMFMGnSJEaMGOGRET23\n3Ddh7tatG3Xr1nXOXUGK+/Shy5w5c5zj+Pj4PD/X/fmNGjWia9eu7N271+NaxveZPn06X375pfMl\nJqT9v8nKRTmiZa09ZK39Pf34NPAHUAvoCbiSgswAXGFyT+ALa22StXYPsBNo5+2Oi4jIxWn37t2Z\ngqCsLFu2jAoVKhAfH0+PHj2oWrUqwcHBBAcHc+7cOafe1KlTqVChAs8++6zH/ddff70TLMGf6Qjc\nDRw4kNDQUL777jsmTJhAxYoVATzyV1122WUeC+a7du3K/v37GTRoEGXLliUlJSVPCVDhz2Bm6NCh\nhIWFcckllzjXXKNCWQVa7gqSY2v9+vUeiUjd16DdeOONHnXvu+8+7r77bn777TemT5/O8OHDnZ9T\nRq7RsNI0opWnrw6NMfWB1sAqoLq19lD6pRjAtbKuFuA+cR2dXiYiIlIg+/fvp1GjRkBavir3ACOj\n6Oho6tat6/GXdkJCAm+88YZzfskllzhbv8TFxQHw+eef88cffxAYGMjKlSuJjIzk+++/z3Jxd6tW\nrZx0BYBHHiuX0NBQjDE8+uijfPvtt/j5+TlTma6NjJOSkvI0iuMajRo7dizGGI97XV899ujRgyVL\nlmS6t0+fPnzxxRccO3aMBg0a5PqZ7lxr0Fxat27NRx99xLlz53JcaH/fffdl+TWni+vnUppGtHId\naBljQoCvgeHW2lPuv5mstdYYk6fJXmPMQ8BDgMeQp4iISHYefvhh5zgqKipTagV3sbGxVKlSJcf2\n6tat65Hr6o033qBPnz4edZo3b+4xZZhXrmBw/PjxjB8/3uOaK8VBXgOt06dP4+/v7wRq7n8nP/XU\nUwAMHz6cPn36OIlLXZo2bQqkbezsvo4rL/bs2UNAQAAffPABsbGxPPDAAxf8WedGnTp1CtxGcZOr\nrw6NMQGkBVmfWmtnpxcfNsbUTL9eE3Ct5jsAuP+kaqeXebDWTrbWhltrw6tWrZrf/ouISCn23HPP\nMXfuXCAtTcEPP/xAeHg4cOFEnHv37s30RV+3bt2c4zvvvNMjl1O7du144oknCtxn9+lGIMdRN/cR\nrbyIj4+nQoUKWY6gde3aFUgLvmrWrMlNN93kcb1jx474+/uzYcOGPD3T5fvvv+f111+nWrVqDBgw\ngCeffNIrQRZArVppE2Duo4QlXW6+OjTAh8Af1tq33C7NAVzjf/cB37mV9zHGBBljGgCNgdXe67KI\niJRmrj0FQ0JCeO211+jRowepqal88MEHlC9fnnfffRfw/MvYWsuSJUucL+lcWd1dozcun332mXPc\ntm1bJ98VZP+FXF799NNPnDx50jnPaaTKFWi5rxm7kI8//pjx48c7U50Z1a9f3+O8bNmyHuc1a9ak\nadOm/P7777l+pruXXnoJIMuEpAUVFhYG4GxbVBrkZkTrWuDvQCdjzIb0X92B14EuxpgdQOf0c6y1\nkcBMYAvwP+ARa23eVvmJiMhFa8KECfzxxx8eX6+tXbuW6OhoLr/8cmdd0ZtvvokxhoiICL777js6\ndepE7969WbNmjbMOKOPUovt6rVq1avGf//yHhg0bsnz5cp577jmv9D84OJhLLrmEJUuWMGfOnCxH\nnVzyM6L1+OOP53g9Y2CVcVF8aGgorVu3Zv78+fn68tDVfsYM997g2o4np1HAkuaCa7SstcuB7H6X\n3JzNPa8CrxagXyIicpH64IMPqFSpkseI1bRp0zhz5gzly5cnLCyMwMBA1qxZA8CCBQuchKCzZs2i\nZcuWzn0ZE4W6Bx333HMP/v7+9O7d2yfvkfHru6zkNdA6deoUx48fz/Laddddl2VOrsWLF3ucV69e\n3UlmOm7cOEaOHJmrZ0PaKOLu3bvp2bNnpkSw3nDllVcybdo0/vrXv3q97aKizPAiIlJsrF27lsjI\nSO655x4nTUHLli05dOiQE2gFBAQ4GdgBzp49S0hIiHPuSuQJmQMt99Elf/+iT/Hovhj+Qg4cOOAR\ngGRc5L506dIst/MZMGCAx7mfn5/z88spY31Ge/bsoXLlyhw+fNhn6ReMMV5bWF9cKNASEZFiw7X+\np3379kRFRbF69WpCQkI4e/asE2iB5zqkAwcOcPbs2Uxtvf/++x5JMl3mzZvHvHnzfPMCeZSXNVqv\nvvoqv/zyCwAfffSRx/qynLz33nvOKJgrV5jr55fVzy077qkiSlOeK1/LUx4tERERX7DWcscddzB/\n/nwA+vXrhzGGWrVqcfz4cVauXOmRE8s9DcCaNWsypV8oV64cjzzySJbP6t69u4/eIu/yMnUYHR3t\nHFeqVMnji8mcGGOoXLkycXFxztqnoKAggoKCnBxiubFp0ybnOONommRPI1oiIlLkJk+ezLfffguk\nfRnoPsXn2i5n3759WQZaGzduZNeuXR7tZUyxUFzlFGhl3IvQPZN7frbtqVixosfPNSQkhNOnT+f6\n/s2bNzvH2e1VKJkp0BIRkSJ19uxZnnzySa699lri4+Pp27dvtnVdgZb7JtEpKSm8++67Hl+qua/Z\nKs6yC7S++OIL/Pz8OHTokFPmvr9hVtsB5VXZsmXz9LXjtm3buPHGGxk0aJBHPjLJmQItEREpUjt2\n7CA+Pp5hw4Zlufbnrbf+TOHoup5VbqqPP/7YOXYPxIoz1/Tf9OnTGTt2rFPuyvflWpMVGRnJzp07\nuf7664mJiaFdu4JvIRwUFJSnQOvs2bO0bNmSyZMnOwGiXJgCLRERKTJbt27lyiuvBHD2MMzIff1V\nTiNV7l/ktWjRwks99C1XwPLNN9/wzDPPOIvWXV9EJicnO9chbVQpp70E8/rsxMTEXNdPTExUgJUP\nCrRERMQnfvrpJ2dEJqc6LtkFWu6jXDl97ea+/qikBVourp+X6ytE11eBrsDrQj/PvMjL1OHhw4dJ\nSEjIlAxVLkyBloiIeM3u3btZunQpADfffDM33ngj58+fz7a+axuZF154gYoVK2ZZx/0LN/dAa9iw\nYQwePNijrmudVrNmzfL3AoUsY+CyePFiBg4cyO7du4G0TbRPnTrF3r17CQsL4/LLL/fas3M7dWit\npUaNGln2Vy5M6R1ERKTAdu7cSd++fVm7di0An376qXPtX//6F2PGjMnyvpMnT1K2bFlGjRqVbduu\nLXfAM9B65513gLT1TBUqVADSvlBcs2ZNiUl46eq3y0cffZRpOm/jxo3s3buXunXrevXZZcuWzdXU\noXvmfE0d5p1GtEREpEBOnTpF48aNnSAL0vJguYwdOzbbdASxsbG5yk7uSjya1SL4I0eOOCNA1atX\n99rm0IUhODjYI0N9VoFPYmIi+/bto169el59dlBQECdOnPDY0mf79u2sW7fOo96sWbOcY/fNsiV3\nFGiJiEiBuKb8HnroIZYtW5ZlnawCLWstU6dOzXJ/vowqV64M/Lk43F1QUFCuk3cWN8aYTKNaLq4v\nC0+dOsWhQ4e8niQ0JCSEiIgIwsLCnLIOHToQHh7OqlWrsrwnNTXVq324GCjQEhGRCzp16hRDhw4l\nMjLSozwmJsY5njRpEh07dnS20XH3/PPPZypzrc/KzV/ertEc9wXvpYV7/i93X375JZA26hcfH59t\nQJZflSpVylQWGxsL4AS/7qODw4cP57nnnvNqHy4GCrRERCSTd955h+uvv574+HgWLFhA//79ef/9\n9+nSpYvH4vb169cDnl/Dvfzyy+zbt49Vq1YxfPhwAKZOnUpERITHM1yB1ttvv33B/owbN44333yz\nWG2f4y1ZBVCTJk2iVq1aVK1alfnz53P+/HmfBloZF8W7vnZ03xPy0Ucf1R6H+aBAS0REMnnrrbdY\ntmwZderUoVu3bnz33XcAHDp0iJkzZzr1Nm7cCEDLli097q9Tpw7t2rWjWrVqTlnLli0xxhAfHw/8\nGWC5bxCdnZCQEB5//HH8/ErfX1tZBVAPPfQQAQEBdOjQwdmayNvZ7t230XnxxRc9rvXp08fjfObM\nmdmm35Cclb7fsSIiUiBnzpzh8OHDwJ+jTgA33HADkJaKwWXlypU0atQoy2kogB49emQqc+1LOH78\neMBz38KLUU4jVZ07d85Vvfzo27cvDRs2BCAqKoq9e/dmqtOwYUP69evHXXfd5dVnX0yU3kFERIC0\npJRfffUVycnJTsJMdwsWLKBmzZpOLqVz584xZ84cBg0alG2bLVq04MyZMx5TTtZap/2+ffvStm1b\nL79JyZIxN9Wtt97qHLuPIrlnyPeWgIAAIG3Eyn2k0iXj/zvJOwVaIiICpC1Y//DDD53zGTNm8L//\n/Y8lS5YQExNDUFAQt9xyi/P5/6RJkwC46aabcmw3ODjY4zwpKclZdN2xY0dvvkKJlDHQck+n4D71\nWrNmTa8/u0yZ7MOAc+fOcerUqRKzQXdxpUBLROQilpKSwnfffUfFihWZPXu2Uz5q1Cj+/ve/079/\nf44ePcr+/fuBtKDJtVDalbvq7rvvzvEZxhguu+wydu7cCUB8fDxPPPEEgEdqgYuVKwlojx496N+/\nv8cIknuglVUOsYJyjWi5q127NtHR0Wzfvp2EhAQuu+wyrz/3YqI1WiIiF7H33nuPXr160blzZ06c\nOEFYWBjXXHMNL7zwgpNKoWrVqrRp0wZI+8v+4MGD7Nmzh02bNtGiRQuPhJvZ+eOPP5zj+Ph4Pvvs\nMyD71AYXE9eI1q233sqdd97pca1q1arOsS8CrdGjR2cqc2XVX716NVBy9o0srhRoiYhcxFx/mbq8\n+eab/Prrr9nWDw4OxlpLw4YN+emnn7JcQJ2VMmXKMG7cOADnq0MonXmx8so1opVVMlb3aVdf7DPo\nvh7M5fbbbwdgxYoVgAKtglKgJSJyEduzZ4/HuftXblnJuKZn4sSJuX7WPffcA6QFWtdffz2QtvH0\nxc4VQF1o30FfBaUfffSRc/z222/TtWtXAGbPnk2tWrWy/aJUckeBlojIRer48eOsWrXK2eplxowZ\nF9zm5fLLL3eOr7vuOu69995cP8+1qDo+Pp7y5csTHh6e42Lsi4VrRCtj0lCXAQMGcMstt/js+fff\nf79zPHz4cJo2bQrAiRMnNJrlBfodLiJyEYqNjXUWOf/jH/9g4cKFzp6FObnvvvtYsWIFU6ZMyXZf\nw+y4FnnHx8eTkJCQ6WvEi9WFRrTcvwQtDJUqVaJGjRrExMToYwUvuOCIljFmmjHmiDEmwq3sSmPM\nb8aYDcaYtcaYdm7XRhhjdhpjthljfBeCi4hIvn333XfExcUxZswY+vfvn6sgC9Kmr9577z3gz0XT\nueXv788ll1zCsWPHiIuLU9qAdK5F7ikpKUXWh5YtW/Lggw96nMOfex9K/uVmRGs68D7wsVvZWGCk\ntfYHY0z39PMbjTHNgD5Ac+BSYLExpom1tuh+94iIiAdrLQMGDABg8ODBeV77U7ZsWaZOnUqHDh3y\n/OyGDRsSGRlJREQE3bp1y/P9pdHgwYPZvn07Tz/9dJH1YdOmTR7nAwcOZNGiRURFRRVNh0qRCwZa\n1tqlxpj6GYsB1ze5FYGD6cc9gS+stUnAHmPMTqAdsNIrvRURkQJbsGABAN26dct3eoWBAwfm676G\nDRs6+bquvfbafLVR2pQvX95J/lpcNGvWDMBjA3HJn/yu0RoOLDDGvEHa9OM16eW1gN/c6kWnl2Vi\njHkIeAigbt26+eyGiIjk1vDhw6lZsyYRERFUrVrV2Si6MLlvKeNahC/Fj2s9nQKtgstvoDUEeMxa\n+7Ux5m7gQyDnb4IzsNZOBiYDhIeH23z2Q0RESNuTLjU1NduNh2NiYnj33XcBuOyyy7j66qsJDAws\nzC4CnhuGLdzDAAAgAElEQVQja6F18eUa6XR9gSj5l9/0DvcBrr0aZpE2PQhwAHDfhr12epmIiPhQ\n165ds5wGPHr0KJMmTXK2vAHYuXNnkY0muW/X4+enDEPFVVhYGAsXLuTzzz8v6q6UePkd0ToI3AD8\nDHQCdqSXzwE+M8a8Rdpi+MbA6qwaEBER73Fl8T537hyBgYEcOHCANm3aUL58+UxJSaHovnBzz8Ml\nxVuXLl2KugulQm7SO3xO2mL2y40x0caYgcAg4E1jzEZgNOlrray1kcBMYAvwP+ARfXEoIuI9EyZM\noHr16rz++uucO3eOuLg4jy1tpk2bRnJyMi+99BJHjhzJMsgCinSjYI2UyMXEWFv0y6PCw8Pt2rVr\ni7obIiLFWlJSErVq1eL48eMe5Z9//jl9+/Z1zp966ilmz57Nrl27gLRtc5KTkxk/fjyJiYm0a9eO\n6667TvsMiuSTMWadtTY8V3UVaImIlAz79u2jXr16uaobGBhIcnIyqamp7N27l/nz5zNo0CD8/f19\n3EuR0i8vgZZWIoqIlADWWlq3bg2kbZmTUcY9A9u0acPhw4c5cOAAdevWZfDgwQqyRIqAAi0RkRJg\ny5YtznYo9evXd8r79esHQPPmzT3qV6lShbCwsAtuEi0ivqVAS0SkCCxevJjNmzcDEBUVxQ8//JBj\n/fvuu885dg+epkyZwg033MC4ceOoVq2aU57XfQhFxDcUaImIFLI9e/bQpUsXWrVqxbx582jQoAHd\nu3enSpUqzJ8/36PujBkzMMawbt06qlSpwltvvUWfPn1o3rw5Tz31FMHBwfz888906dKFyMhI5z6N\nZIkUD/nNoyUiIvmQmJjIFVdc4ZzfdtttznFsbCyLFi2ie/fuAJw8eZL777/fuR4ZGUn16tUBiIiI\nyNS2e6b1OnXqZLouIoVPI1oiIoXoxx9/5PTp09lej4uLc4537Njhcc0VZOXGddddl/fOiYjXKdAS\nESlEU6ZMoWrVqmzcuNGjvFatWlxxxRUeObI2bNgAwOuvv87WrVvz9JwWLVoUvLMiUmCaOhQRKST7\n9+/n+++/55lnnqFVq1ZERkayePFihg0bRlhYGOXKlSMhIcGpv3jxYoKCghg+fDhBQUG5esbcuXPx\n8/NTMlKRYkKBlohIIZk2bRqpqanceeedADRr1oxmzZpRsWJFbrjhBgYOHOgRaB06dIirr74610EW\nwP/93/95vd8ikn8KtEREvMxaS1xcHBMmTKBXr1688MILJCUlMXfuXAAaN27sUd+VuqFcuXKcOHHC\nKT9+/DhNmjQpvI6LiNcp0BIR8bIFCxZw6623AvDCCy845U2bNmXnzp1UqFAhy/uCg4NJSEjg+PHj\nLFmyhMjISI1QiZRwWgwvIuJFt912mxMcuaYIXY4dO0bXrl2zvTc4OJitW7cSFhbGq6++SsWKFRk5\ncqRP+ysivqVAS0TES06dOsW8efNITU0FYObMmR7Xjx496vFVYUbNmjVzjjds2EBYWBhly5b1TWdF\npFAo0BIR8ZKdO3d6nBtj6NKli0fZb7/9lu39Dz/8sMd5pUqVvNc5ESkSCrRERLwkKioKgHr16vHy\nyy8DMGfOHDZt2uTUWbZsWbb3h4aG0rNnT49zESnZtBheRKQAfv/9d6Kioli/fj3//ve/AVi/fr0z\nGlW2bFlatmzJ559/Tv369Wnfvn2O7X311VfUq1ePgwcPKtASKQUUaImIFEDbtm0zlWU15denT59c\ntVemTBlatGjBwYMHqVixYoH7JyJFS1OHIiL5tHLlykxl0dHRBW732LFjQNom0iJSsinQEhHJh7i4\nOK655ppM5bVq1Spw267s8E8++WSB2xKRoqVAS0QkH1555RXn2FpLYGCg19p++umnAbj55pu91qaI\nFA0FWiIieXT69GneeustAN555x0gbcpw9+7dXmn//vvvx1qrxfAipYAWw4uI5JErjcP48eN59NFH\nAahatSpVq1Ytwl6JSHF0wREtY8w0Y8wRY0xEhvKhxpitxphIY8xYt/IRxpidxphtxphbfNFpEZHC\nYq3NVLZ3714ArrrqqsLujoiUMLmZOpwOdHMvMMbcBPQErrDWNgfeSC9vBvQBmqffM9EY4+/NDouI\nFJaxY8cSGhrK+fPnPcrdE5OKiOTkgoGWtXYpEJuheAjwurU2Kb3OkfTynsAX1toka+0eYCfQzov9\nFREpNM888wynTp1i69atHuWuFA7VqlUrim6JSAmS38XwTYDrjDGrjDG/GGNc4+e1gP1u9aLTy0RE\nShxXwlD3Re4nT55kzJgxAPj56XsiEclZfv+UKANUBtoDTwEzjTEmLw0YYx4yxqw1xqw9evRoPrsh\nIpI31loefPBBBg0aRFJSUo51q1evDsDbb7/N2bNngT+/MhQRyY38fnUYDcy2aatEVxtjUoEw4ABQ\nx61e7fSyTKy1k4HJAOHh4ZlXm4qI+MDhw4f58MMPAbj22mu5//77s6yXlJTE/v1pA/S//PIL5cuX\nZ8qUKWzcuLGwuioipUB+R7S+BW4CMMY0AQKBY8AcoI8xJsgY0wBoDKz2RkdFRApiy5YtPP7442zb\nts0pe+CBB+jatSspKSkeda21dOnShYSEBKZPn+6UDxo0iG+++YarrrqKmJiYwuq6iJRgFxzRMsZ8\nDtwIhBljooGXgGnAtPSUD+eA+9JHtyKNMTOBLUAy8Ii1NiXrlkVECsfZs2dp06YNSUlJvP322x7X\nFi1axK5du2jSpIlTtmLFCpYtWwZA//79iY6O5l//+pdzvW7dus60oohITnLz1WFfa21Na22Atba2\ntfZDa+05a+291toW1to21tqf3Oq/aq1tZK293Fr7g2+7LyJyYY899pjHeqzAwEBWrVrFE088AcCe\nPXs86rs2c54+fTrGGJ599lmP697cbkdESjd9MiMipdrPP//M5MmTneM9e/awa9cu2rVrxwMPPACk\nfUnoLioqCn9/f/r16weAv78/586d49ZbbwXStuAREckNBVoiUqq59iTs168fN9xwA/Xr16d27drA\nn+kbTpw4wW+//eZkgV+xYgUtWrSgTJk/V1cEBAQwYMAAABISEgrzFUSkBFOgJSIlysaNG+nRowdT\np07NVf3Y2FhuuukmPvnkk0zXXJs2f/jhh3To0IFXXnmFo0ePsmzZMm65JfMOYlWqVAEgKCioAG8g\nIhcTbSotIiVKnz592Lp1K3PnziUlJYUHH3wQf//sd/qKjY3lL3/5S5bXQkJCaNCgAWvWrAHggw8+\n4MSJE6SmpnLHHXdkqh8eHs7DDz/MM888452XEZFSTyNaIlJi7Nixw2M7nMGDB/Poo4865/PmzePL\nL790zuPi4vjjjz+oVKlStm3efvvtznF8fDybN2+mXbt2XH311ZnqVqhQgQ8++IAGDRoU9FVE5CKh\nQEtESgzXZs7uPvjgAyIiIti6dSu33XYbffr0ca798ccfANx4443Ztjls2DDn+PTp0/z444/UrVvX\na30WkYubAi0RKTEOHjwIwMKFC/n444+d8pYtW9K0adNM9VetWgVAu3bZ721fr149jhw5QqdOnZwy\n16J3EZGCUqAlIiXGihUrALjuuuv4+9//7nw1mBVrLe+++y7XXnstl19+eY7tVq1albvvvhuA559/\n3knjICJSUFoMLyIlQsuWLYmIiKBOnTqULVsWgLZt2/LTTz9lqpuSkkJMTAxRUVFOUtILeeihh+jb\nty+XXHKJV/stIhc3jWiJSIkQEREBwJIlS5yyr7/+Osu6CQkJfPXVVwC0aNEiV+0bYxRkiYjXaURL\nRIq9w4cPY4zhscceo1GjRk65Kw9WRv369WPOnDlA7gMtERFf0IiWiBR7Q4YMISgoiHvvvTfTtZCQ\nEADuvPNO+vfvD+AEWR988AFhYWGF11ERkQwUaIlIsRcZGUmPHj1o3bp1pmu///47M2fOZNasWXTr\n1s0pDw4O5uGHHy7MboqIZKKpQxEp1mJiYti+fXuWW+IANG7cmMaNGwN4ZIj/17/+VSj9ExHJiUa0\nRKRY+frrrxk8eLBz3qZNGwDOnz9/wXvdN4F2bRwtIlKUNKIlIsXKnXfeCcDTTz/N+vXrOXToEACp\nqakXvNd9Ox0FWiJSHGhES0SKpS1btjBkyBDnvG/fvhe8x8/Pj2uuuQaAatWq+axvIiK5pREtESly\n1loSExOJjY11ynr06AHAPffcw6effprrtmbOnMnUqVNp1qyZ1/spIpJXGtESkSJhrSUlJQWAgQMH\nUq5cuSyn+zp06JCndmvVqsVLL72En5/+eBORoqc/iUSkSDz88MNUqVKFzp0789FHH2Vbr27duoXY\nKxER7zLW2qLuA+Hh4Xbt2rVF3Q0RKSSfffYZ/fr1y1Xd8+fPe3xNKCJS1Iwx66y14bmpqxEtESlU\niYmJWQZZ69atA+DLL790Eo3WrVtXQZaIlGj6E0xECtX//vc/AL799lsCAwPp3r07v/76K23atME1\nwt61a1cmTZrkkeldRKQkUqAlIoVqxowZ1K5dm1tvvZXAwECyWr4QGhrKzp07lQtLREq8C04dGmOm\nGWOOGGMisrj2hDHGGmPC3MpGGGN2GmO2GWOy3jNDRC4qL730EiNHjgRg//79tGjRgsDAwBzvadSo\nEUFBQYXRPRERn8nNGq3pQKbxe2NMHaArsM+trBnQB2iefs9EY4x/xntF5OLx3//+l1GjRvHyyy9z\n6NAhtmzZwmWXXVbU3RIRKRQXDLSstUuB2CwuvQ08DbiP+/cEvrDWJllr9wA7gXbe6KiIlCznzp2j\nX79+9O/f3ym79NJLSUhIYNiwYUXYMxGRwpOvrw6NMT2BA9bajRku1QL2u51Hp5dl1cZDxpi1xpi1\nR48ezU83RKSYmjp1KkFBQXz22WcEBwdTp04dj+sa0RKRi0WeAy1jTDngOeDFgjzYWjvZWhturQ2v\nWrVqQZoSkWLCWsvrr7/OoEGDnLJdu3Zx0003OecTJ04siq6JiBSJ/IxoNQIaABuNMVFAbeB3Y0wN\n4ADg/k/X2ullInIRWLNmDSNGjHDO69WrR82aNXnxxT//XabNnkXkYpLnQMtau9laW81aW99aW5+0\n6cE21toYYA7QxxgTZIxpADQGVnu1xyJSbM2cOdPjvFevXkDaF4SNGzcGyDSNKCJSmuUmvcPnwErg\ncmNMtDFmYHZ1rbWRwExgC/A/4BFrbYq3OisixddXX33Fm2++yYMPPoi1lmPHjjFmzBjn+ujRo/Hz\n8+Mvf/lLEfZSRKRwaa9DEfGKBg0aUKVKFX799VflvxKRUk17HYpIodm6dSsPPvggUVFR9OnTR0GW\niIgbbcEjIvm2YMECnn/+edatW0ft2rXp1KlTUXdJRKRYUaAlUoolJCQQHBzsk7a3b9/usenz/v37\nc6gtInJx0tShSCm1atUqypUrR//+/YmKigLgzTff5L333iM5OZkBAwawZs2afLcfGRnpHLu+LhQR\nEU8a0RIppX788Ucgba/Bzz77jB9//JEnn3wSgJiYGD766CPmzZvH4cOHc93m/v37WbhwIQ888AAn\nT54EYP369TRr1sz7LyAiUgoo0BIppY4ePUpQUBBz586lS5cu3Hnnnc61GTNmAODvn7c939u1a0dM\nTAy7d++mUqVKADRs2JDAwEDvdVxEpBTR1KFIKXXixAmqV69O586dATh27Jhz7eDBgwCUL18+T23G\nxMQAMH78eI4ePUpgYCAVKlTwUo9FREofBVoipdBzzz3HjBkznFEnl9GjR3PLLbc45zt37mTjxox7\nw2dmreWZZ55xzsPCwti2bRthYWEYY7zXcRGRUkaBlkgpk5KSwmuvvQbAZZddBsCdd95J9erVGTFi\nRKYtcKZNm8akSZMIDQ3NdlH71q1bGTt2LACtWrVi3759fPfdd9SuXduHbyIiUvIp0BIpZU6dOuUc\nP//88wDMmjXLmfZ7//33efLJJ4mOjqZBgwYcP36cwYMHc/LkSWbPnu3R1uzZs7n33ntp27atR5v9\n+/cH0oIuERHJnhbDi5RwW7du5ZVXXqFDhw48+uijnD59GoCpU6fSunXrTPWDgoIYN24ckDb69emn\nn2bZ7syZM+ndu7dz3rVrVwICAujevbuTFkIbRIuI5EwjWiJelJJS+Huojx49ms8++4yhQ4cSFhbG\nv//9b4BcLVKvXLlypjJrLQkJCR5BVv369fn666+ZO3cuISEhVKtWDYAWLVp46S1EREonBVoiXvDq\nq6/Su3dvypQpw759+wrlmampqYwcOZL//ve/Ttnx48eZMmUKkLtA64cffmDx4sVYa3n99deBtGzy\nO3bscOrce++9bN++nZCQEKds+PDhfPvtt/ztb3/z1uuIiJRKCrRECmD79u28/PLL/Otf/2LmzJkA\nLFmyJFO9uXPn5ikxaG68++67vPzyyzRq1MgJrlz69evHVVdddcE2atSowc033wxAxYoVATh58iTr\n168H4MUXX2TChAkEBAR43BcQEEDPnj31xaGIyAVojZZIPp06dYqWLVty7tw5j3L3Ea2UlBSuu+46\nVq5cSZMmTdi2bZtXnn306FHeeustWrduzbp16zDGMHDgQE6ePMmhQ4do2rRpntt0BVpxcXG88847\nVKpUieeee46goCCv9FlE5GKkES2RfHriiSc8gqyOHTsCaV/4uezevZuVK1cCaaNf3jBz5kyuuuoq\noqOjeeGFF5xRJWMMoaGh+Qqy4M9Aq1mzZmzYsIGHHnpIQZaISAEp0BLJJ9c2Nq5AZ9myZYwePZrN\nmzfTu3dvjDG8/PLLTv3Q0NACPS8lJYWUlBR69+7N3r17Abj99tsL1Ka7Vq1aeazruuKKK7zWtojI\nxUqBlkg+NW/enI4dO3LgwAFnS5sHH3wQwFmv9dlnnwFw9913c/LkSVJTU3PdfkJCAi+++CJxcXEA\ntG7dmnbt2nnU8eYaqdq1a7N7927nPL8jYyIi8icFWiJ5dPLkSSBtjVa9evWoWbMmNWvWBKBq1apZ\n3tO8eXOstcTGxub6Od9//z2vvPIKgwcPJikpic2bN/P7778X/AVy4L5lT5MmTXz6LBGRi4ECLZFc\nstYSFhZGaGgogwcPZvfu3bmeDqxXrx6A84VfTs6fP09KSgrvvvsuANu2bWPz5s0edcqUKZNlMtKC\n8vf3ByAwMJBy5cp5vX0RkYuNvjoUyYWtW7cyaNAgjh8/DsCkSZMAGDx4cLb3TJgwgcOHDxMUFETP\nnj0JCQlh06ZN7Nq1i0aNGmV5z5o1a2jXrh1Tp05lxYoVAGzYsCFTqobFixdzww03eOPVMtm7dy/n\nz5/3SdsiIhcbjWiJXMDKlStp2rQpy5cvx8/Pjx49egBw6623ZpkZ/bbbbgPgH//4ByNHjuS5554j\nNDSUadOmAdCnT59sn/XTTz8B8MUXXwDwwAMPZFmvoAvrc1K3bt1sA0EREckbBVoiOXjllVe45ppr\nAGjcuDErV66ke/fuAM42NBl98803nDlzJlN5r169CAkJYd++fVkuij979izjx48H/lzkftdddzlf\nAn755ZdOXV8GWiIi4j0XDLSMMdOMMUeMMRFuZeOMMVuNMZuMMd8YY0Ldro0wxuw0xmwzxtziq46L\n+NL58+cZNGgQL774olO2fft22rVrR0JCAgC1atXK8t4yZcpkub7Jz8+PiRMncuTIEdatW+c8x1oL\nwPr16zlw4AAAixYtAiAkJMRZlJ6UlMSzzz5LWFgY1atX99KbioiIL+VmRGs60C1D2SKghbW2FbAd\nGAFgjGkG9AGap98z0Rjj77XeSpH45JNPqF27Nl999RWxsbF5TlGwcOFCH/bON5YuXcrUqVOd8/bt\n2zvHAwYM4KGHHuLpp5/Oc7u33JL2b48lS5aQmppKYGAgQ4YM4fTp00RERGSqHxgYyE8//cRTTz1F\nr169eO211zhy5Ahly5bNx1uJiEhhu2CgZa1dCsRmKFtorU1OP/0NqJ1+3BP4wlqbZK3dA+wEPBP/\nSInzxhtvcODAAR555BGqVKnCqFGjcn3vM888wy233OLsnbdhwwaSk5MvcFfRc+1LOHfuXA4ePOhk\nd4e0DOqTJk1yMqnnRbVq1WjSpAm//voro0ePBtIW1rdt2zbLhfVXXHEFl1xyCWPHjnVGybS/oIhI\nyeGNNVoDgB/Sj2sB+92uRaeXSQmVmJjIpk2bADhy5AgAI0eOZObMmcTFxbFs2TIGDhzoTH+5O3jw\noJM9fdu2bfzyyy+0bt2axx9/vPBeII/OnTvHmDFjnD0J27dv7+TI8pbmzZszZ84cXnjhBQDCw8PZ\nsWOHc3316tXOsUauRERKtgIFWsaY54Fk4NN83PuQMWatMWbt0aNHC9INyYXNmzezdevWPN+3fPly\nrLXceuutHuW9e/fmtdde4/rrr2fatGnEx8dnuvfRRx/l1KlTAERGRjrPHz9+PMXx//nRo0e59NJL\nefbZZxk1ahQNGjSgcuXKXn9OxsBt7dq1Hufh4eH06NGD2bNne/3ZIiJSuPIdaBlj7gduA/rZP4cz\nDgB13KrVTi/LxFo72Vobbq0Nzy6btnhHUlISrVq1uuCWKidPnmTIkCE0b96cpKQkNmzYQJcuXQDo\n1KlTpvqu7WUATp8+nel6dHQ0ZcuWpUqVKmzevNmjvmsxeHHy8ccfO3myABo1auSTaboaNWoAcM89\n9/D222875bVr12bt2rUYY5gzZw5/+9vfvP5sEREpXPlKWGqM6QY8DdxgrT3rdmkO8Jkx5i3gUqAx\nsDqLJqSQnD9/3mN/vB07dnDNNdfw2muvOfvyQVrWc/eUARMnTqRMmbTfHs8++yzDhw/HGMMDDzxA\n27ZtiYqKIjo62qmfVaB1/Phx7rjjDlJSUvjyyy892ndtY1OcLF26FGMMU6ZMYevWrc7CdW9zJQOt\nXbs2l1xyiVP+ySef0LZtW588U0REisYFAy1jzOfAjUCYMSYaeIm0rwyDgEXp/+L/zVo72FobaYyZ\nCWwhbUrxEWttiq86LxfWtWtXZ40V/Ll/3aBBg6hduzbduqV9ULp3714gLQXBDTfc4KyjKlOmDKNH\nj8YYwxNPPAFAREQEo0ePdhZzA5w4ccLjudZaYmJiqFatmvOVYlxcHB07dmT58uXOlGJxkZiYyK5d\nu+jZsycDBw706bOuvPJKIO0LRPcpVFe+LBERKT1y89VhX2ttTWttgLW2trX2Q2vtZdbaOtbaK9N/\nDXar/6q1tpG19nJr7Q85tS2+FRMTw88//wzAggULMl13rbtKTk7mvvvuA9JGdZ5//nmnTnJycqbp\ns/LlyzN06FBatGjhLOh2bRfjEhsby9mzZ6lXrx6PPfaYU75nzx6geI1obd++neDgYCIjI7PNjeVN\nd9xxB/v376dTp06EhIQ45UpCKiJS+igzfCn2zjvvADBnzhxnrVVWFi1axNKlS4G0L+KuueYaOnfu\nnGPbNWrUYPPmzYwaNYrQ0FB2797tcX3//rSPT+vWrUv9+vWdQG/s2LFUqlSJjRs35vu9vG3y5MnO\ncf/+/QvlmbVrp2VEcR/FqlOnTnbVRUSkhNKm0qXUjBkzGDNmDH369HH25rv++uudgMrlP//5D8uX\nLwfSNip2jaosWrSIzp0707Vr1ws+q1GjRmzevNk5HzZsGPv27QP+DCi6du3qpICYNWsWK1euJDU1\nFT+/gsf6U6ZMISQkhL59++b53nHjxvHmm2/i7+/Pnj17Cj3YadeuHc8//zw1atQgICCgUJ8tIiKF\nwFpb5L/atm1rpeDi4uJsTEyMfffddy1gAbtr1y7n+tmzZ21UVJTdtWuX7d69u1PH9Ss1NTVfz33x\nxRctYCtVqmSHDBni0WZ0dHSm+tOmTbOAff/99/P9ru5cz0pMTLTjx4+3ycnJubovLi7OuffLL7/0\nSl9ERKT0A9baXMY4mjosJZYvX05oaCj169dn2LBhQNq0XcOGDZ06wcHB1KtXj4YNGzJx4kQCAwOd\naz169Mh3KoM+ffoAaQvi//Of/3hcc6UycHf//fdTs2ZNfv/993w9LzsvvvgiQ4cO5dNPc07rFh0d\nzaOPPup84bds2TLuvvtur/ZFREQEtEar1LjuuuuAtK/nXNxTB2RUr149PvzwQ+f8QsFJTrLLzxUc\nHIy/f+atLo0xVKhQgTNnzuT7mVmZNWsWgMdifkgbtf3b3/7mXJ8xYwYTJkxg165dAHTo0MGr/RAR\nEXFRoFXCHT16NNMoksu1116b473uiWILmlrgl19+yVQ2aNCgbOuXL1+euLi4Aj0T8Ng30fVFY3R0\nNL169XLKZ82axbfffsvdd99NamqqE2C5ZBUMioiIeIMWw5dw4eHhzsLzCRMmEB4eTpkyZXj22Wf5\n97//neO9lSpVAqBBgwYF7sd1113HwoUL6dq1K9OnTycgIIA777wz2/quTaZTUlIKFOg88MADWZa7\ntq+Jj493UldA2lZE7l9ILlu2LN/PFhERuRAFWiXY8ePHnSCrRYsW9OzZ08kDtXDhwgveHxwcDHhn\n42JjDF26dCE5OTlPgVNiYiLly5fP93M/+eSTHK9/+OGHHtOpCxYsYO3atQwYMIAXXniB+vXr5/vZ\nIiIiF6KpwxJo0aJFXHnllYSFhQGwZs0aNm/enOdkm67UC66M796Q2yDLlcT03Llz+X6WK8jMiit4\nzDg9+e2333LmzBk6dOigIEtERHxOI1ol0Hvvveck/HT/ei6vKlWq5OS2KmyNGzcG0ja8zq+MSVLd\nJSYmcvbsWRITEwkICODrr7/mr3/9KxEREYC2uxERkcKhEa0SJD4+nqeeeorFixdz7733Yq1l/Pjx\n+U7LUJRcqSXyO6L1/vvvc9NNN2Uqv/vuu501WcePHycxMZGyZcvSo0cPBg4c6Gx+Xa5cuXz2XERE\nJPcUaJUQcXFxhIaG8sYbb5CYmMiYMWOKuksFEhQUBGQe0Tp37hw//vijc75///4sv04cOnSocxwV\nFX1UF2IAABXlSURBVOUcf/nll9x1110A/Prrr06gBZ7TiAVZFyYiIpJbCrRKiBUrVpCSkgLAtGnT\nuPTSS4u4RwWT3YjWP//5Tzp37kxkZCSQlnS1bt26ObZVtWpVli1b5iRA7dy5M8HBwSxdupSkpCQn\n0HryySede0riKKCIiJQ8CrSKkV9++YWPP/7YCahcPvnkE+644w5CQkJISEjINqVBSZLdiNakSZOA\ntFxYrvVjp0+fJjo62qmTcW1WuXLl6NixI61bt3babt++PatWrfIY0Wrfvj3r1q0jPDycK664wjcv\nJiIi4kaBVjFyxx13cN9993HNNdd4lL/22mskJSXx3HPPeSUVQ3HgCrTOnDlDWFgY99xzj8f1yZMn\nM3fuXOd8+vTpzrFrE2yAqVOnZtl++/bt2bRpE7t37/aYJmzTpg1r1qyhcuXK3ngNERGRHCnQKiZS\nUlKIjY0FYPXq1R7b0xw+fJghQ4YwYsSIouqe17lSK/z6668cP36czz//3GMN1ezZs/nrX//qnLt+\nNpCW3qJcuXLEx8czcODALNu/+uqrSU5OZtWqVc72RCIiIoWt1Adau3fv5vvvvy/qblzQyZMnPc73\n7t3LuXPnSE1N5cSJE1SpUqWIeuYbl19+Of7+/vz8889O2cqVK7Ot7x54RkVFcdVVV+W4oN092/3l\nl19esM6KiIjkU6kNtFavXk3//v3p2rUrf/3rXxk/fnxRdylHJ06cAGDAgAEANG/enKCgIPz9/UlN\nTS11gZYxhksuuYSlS5c6ZV988UWWdf39/dm3b5+zrc6+ffsuuEC+YsWKznHDhg290GMREZG8K7UJ\nS++++2727v3/9u49PKr6zuP4+5sQ5WJIIoLgauMKCYuANxC1grYiKk9rqXilSHHVIlrBPtanatUq\nKhal667l0iIuIPXC1mXZWqpIqaxo0XWtiBS8pAVCpYKkYiURAiTf/eOcGTKQQMgwc2Yyn9fz+JBz\n5szMd76emfnO7/c7v19lfHv8+PFs2rSJiRMnRhhV02IDvIcPH84bb7zBmjVrEm6PzQLfmnTs2DFe\nYALMnTsXCAqrhhcEdO/enUWLFrFo0SKqqqrYuHHjAQutjh07xv9WoSUiIlFplS1amzdvTiiyYh56\n6CE+/vjjCCJqXE1NDa+++ioXX3wxl112GWbGwIEDExZBjqmvr48gwtRq7P8R7FmeB6BLly7xxa8B\nbr31Vurq6g44vUXDQktL7YiISFRaXYvWli1b6Nq1a5O3f/bZZ3Tr1i2NETVu5syZjBkzJmHf1772\nNYqKiujcufM+x+fSgO6JEyfyk5/8BIDS0tKEsVixVq82bfZ/6ubn5zN79mzWrl0bv8JRREQk3Vpd\ni9ZFF10EBJNYzps3j6qqqoTbP//88yjC2kfDIuuFF17g008/jU9nMGLECObOnUtNTQ3ujrsnDO5u\nzQYNGsRhhx3G7NmzAXjwwQdp167dPseNHDnygI91zTXXcP/99x/yGEVERJqrVRRadXV1rF69mjlz\n5sRnB1+wYAFXXnklnTp1Yv78+QwdOhQIuhVjx0Tl7rvvTtg+9dRTE7rH2rZty6hRo1r9enyNtUp9\n73vfA2DUqFFUVlZywQUX7FMc9+7dW0voiIhIVsj6rsMdO3YwYcIEJk2aFN+3ffv2hIk9hw8fTp8+\nfXjxxRcZNmwYEHQxRjHAfNasWUycOJHS0lIWL17MqlWr9tvV2ZoVFRXxt7/9LWFfrIDKz8+PD3hv\nOCs8oMlGRUQkaxywRcvMZpnZJ2b2xwb7jjSz35pZRfhvSYPb7jSzP5nZB2Z2YaoCj7nuuusSiqwb\nb7yx0dnTe/TokTBWZ8uWLakOLcHatWv5/PPPeeeddwBYsmQJ5eXlXHrppWmNI5M0nIIhprFWvL/8\n5S8A8bF1DVv/REREMllzug7nABftte8O4HfuXgb8LtzGzE4ErgJ6h/eZbmb5hyzaRjzzzDMAXH31\n1axZs4bp06c3elxeXh5HHHFEfPuTTz5JZVgJ3n33Xbp3705RURFTpkzhsMMOo0ePHml7/kzVWPdf\nY/uef/55xowZw+mnnw6oRUtERLLHAQstd18GfLrX7mHAk+HfTwLfbLB/nrvXuvs64E/AgOYGs337\ndlauXMnu3bsPeGx9fT2DBw8G4Prrr2fu3Ln06tVrv/dp2KKVzkJr7wWMd+7cmbbnzmQN57fq168f\nvXr1anTOq6FDhzJjxox4cVpcXJy2GEVERJLR0jFaR7t7bEKqTcDR4d//ALzR4LiPwn37MLMxwBgI\nuoTMLH7bz372M8aOHbvfAJ577jlefvllTj/9dCZMmJBw/6ZUV1fH/3788ce5/PLLD3ifZMUmIoVg\ngHdZWRldunRJ+fNmgzlz5jB27FgmT57Mcccdd8DjY2O2duzYkerQREREDomkrzp0dwe8Bfd73N37\nu3v/va8qa1icNOaVV17hqquuIi8vj8WLFx9w8sqYhs+zZMkS3nvvvYMNO27Dhg0ceeSRdO7cmRdf\nfLHRY2pra+nevXt8u6ioiHvuuYcbbrihxc/bmhQXFzNv3rxmFVlAfBmihgtMi4iIZLKWFlqbzawb\nQPhvrB9uI9DwW/PYcN9+NVwwGIJJRffngw8+AODll19uUTfSD37wA2DPIOu9BbXj/vXt25etW7dS\nVVXV5FxN06ZNA2DYsGHMmDEjY5f/yRYDBw4EguWVREREskFLC63ngdg6MaOBXzXYf5WZHW5m/wiU\nAW8e6MFKSkqorq5m/fr19OzZM2H9u8ZUVFQA8OUvf7lFwccmNV2/fv0+t40fP55OnTo1ucDx7t27\nGTFiRELrWFPdlnPnzqW0tJQFCxYwZsyYhGVh5OAdf/zx1NfX5/SVmiIikl2aM73Ds8DrQE8z+8jM\nrgMmAUPMrAI4P9zG3VcDvwTWAIuA77p7XeOPvMcJJ5xAhw4dKC0tpVOnTvsttKqqqpg2bRrnnXce\nBQUFzXiJ+zrjjDMoLi6OT7UQs2PHDqZMmcLWrVt54IEHGr3vwoUL40XY2LFjueSSS9i2bVvCMYsX\nL+bss89m5cqV3HLLLc0aPybNo1yKiEg2OeBgeHcf0cRNg5s4fiLQ4j6y4uJiNm3atM/+t99+m3Hj\nxrF8+XIAHnvssYN+7KeeeoonnniC9u3bU1xczMaNGykvL+fCCy+kffv23HrrrfFj974qcefOneza\ntYunn346vq9379588cUXbNu2jbVr13LMMcfQtm1b7rrrLt566y0Azj///IOOU0RERFqHjFuCp6Sk\nhK1bt1JXV8e4ceN4//33AXj44YfjRVafPn3o06fPQT/2yJEjWbp0KQDt2rVj6dKlVFRUMHXqVB55\n5BGWLVsGQHl5OVVVVQljx04++WQ6derEm2++yTnnnMOECRMYOXIkhYWFVFZW0r17dx555BEgcZ6n\n3r17tywRIiIikvUyrtAqLCxk3bp1tGnThqlTpzJ06FBqa2tZvHhx/Jj58+cn/TxVVVX7dPnFBll/\n4xvfAOCNN4KZKtyd999/n9raWjZs2EC/fv340Y9+RElJSXy2coBFixYBUFlZyUknncRrr71GXl7G\npVhERETSJOOqgHbt2iVs19TU8NJLL/HZZ58xbdo0Zs6cSXl5edLP09QSPJdeeinXXnstsGfW+Rkz\nZiQcExuMDzBkyJD437GZ5z/66CMGDx7M2WefnXScIiIikr0yrtC68847uf322+PbJ5xwAsOHD6dj\nx4585zvf4frrr0/p819xxRXxRZ5nzZrF8uXL9xkPtmvXrvjfAwYMYNmyZeTn5/PWW2+xYsUKampq\nGl3HT0RERHJLxhVanTt35o477ohvr1y5krq6Os4888wWX2XYmKbGThUWFlJSUsJNN90EwKpVq6io\nqOCss86KHzNq1KiE+wwaNIjVq1dTXV3NaaedBpCwrqKIiIjkpowrtCC48vDEE08E9iy30tR0Cy21\nYsUKKioquO2223j00Ufj+9u3bw/AfffdB+wp9EaPHs3NN9/Mhg0bGDly5D6P17Nnz4SWrsLCwkMa\nr4iIiGSfjCy0AFavXk2/fv3i2/379z+kj19QUECPHj2YPHkyI0bsmcEidsVgrEVqw4YNQNCFOWXK\nlGYvFxMr2ERERCR3tXRR6bRYuHAh3bp144orrkjp1Xtdu3bljDPOoLq6mr59+wLQtm1b8vLy4nN6\nNacr8MMPP+TKK69kwIAB8dnnRUREJHdldKHVtWtXdu7cSX5+fsqf6/XXX0+YddzMKCoqorKyEmhe\nV2BZWRlvv/12ymIUERGR7JKxXYcxBQUFaZmLqrGlXcrKyqiqqgI0uF1EREQOXsYXWlFquGh1586d\nI4xEREREspEKrf0YPXo0paWl/OY3v6FDhw5RhyMiIiJZJqPHaEXtlFNOYf369VGHISIiIllKLVoi\nIiIiKaJCS0RERCRFVGiJiIiIpIgKLREREZEUUaElIiIikiIqtERERERSRIWWiIiISIqo0BIRERFJ\nERVaIiIiIili7h51DJjZFqAy6jiy1FFAVdRBZDHlLznKX3KUv+Qof8lR/lqu1N2btQhyRhRa0nJm\n9pa79486jmyl/CVH+UuO8pcc5S85yl96qOtQREREJEVUaImIiIikiAqt7Pd41AFkOeUvOcpfcpS/\n5Ch/yVH+0kBjtERERERSRC1aIiIiIimiQktEREQkRVRoSatnZhZ1DNlM+RMRaTkVWlnCzPKjjiGL\n6TxPTkHUAWQzMzsq/Ffv4RYws+OjjiFbmVl/M+sSdRy5Tl9AGczMzjKz+wHcvS7qeLKNmQ0ws6eA\nH5tZXzPT+X4Qwg/p54DJZjZQhULzWaC9mT0L/Ar0Hj5YZnaamS0B7te5d3DMrLeZLQfuBYqjjifX\n6YsnQ5nZaOBJ4G4zuyLc1ybaqLKDmeWZ2b3AE8CLQBvgu8DJkQaWJcIiYRLwc2AhsBm4GfhSpIFl\nEQ98EW4eZWY3QnBuRhhWVgjPv7uAZ4F57v7tWJGqbuxmuwVY4O4Xu/uHoNxFSW/6zLUBOA+4CPgX\nAHffrTfLgbl7PcHamde4+9PARKAU0K/iZvBgzpf/AYa4+5PAbMCBLVHGlU3CYqEbQZF6HXCjmRW7\ne72Krf0Lz78C4DV3fwLAzE41szau+Yj2y8zyzexIgvfr1HDfJWZ2LNAu3NZ3SJppHq0MYWbnAjvc\n/X/DbQPyw+LqNWCpu99jZgXuvivSYDNQI/lrC+wECty91sx+CfzC3X8dZZyZau/8Ndg/CHgK+Cvw\nJrDQ3X8bQYgZrWH+zCwvLPYxs/8maA28HagBZrr7nyMMNSM18v7tAMwHVgPnEBSsfydopfnPyALN\nQE189q0Avg98i2Dh6E3ATncfE1mgOUy/rCJmZoVm9l/AAuAGMyuJ3QTExnTcAIw3s6NVZCVqJH9H\nhjfVunt9WGQVAMcCH0QWaIZq6vxr0OryKUHL4FkEH94jzOyfook28zSWvwZFVjmw1t0/An4L3AQ8\nZ2aHh+dkzmvq/HP3GmAucApwm7t/HVgGXBTmNeftJ3c7CFqhpwOL3f0i4C6gj5kNjSzgHKZCK3o7\ngZeBqwlaDS6HoPvL3d3M8t19NfAcMAlAb5YEe+fvMoh3P8T0Aja7+4fhh9OA9IeZsZo8/8J/V7v7\n0vDYZUAJUB1BnJmq0fyF/gqUmdnzwGTgFaDS3Wv1gymuyfy5+zPA5e7+SrhrCdAZnX8x+zv3pgNt\nCVqzcPeNwGtAfZpjFFRoRcLMvm1m54ZjNmoJBm0vAT4E+sd+sYXdhw7g7tcDo81sK3ByLo/zOIj8\nxS4eOBL4wsyuAZYDfXN5nMJBnn8NDSH4zNiW1oAzTHPzBxQCHwNrgX7ufjFwnJn1iyTwDHEw55+7\nf9rgrkMIPg9zttBqbu7cvRoYT/CdcUp4Mcb5wPqIQs9pGqOVJuGXVlfgGYJfFX8GOgC3uHtVeEwZ\nMJqgv/3BBvf7EvCvQCfgu+7+x/S/gmi1NH/h/h8TjJGZA/ybu7+b3uijl8T5dzgwCHgY+Ai43d3f\nT/8riNZB5q/W3R8I9xW5+98bPE7Cdq5I4vzLAwYCjxFcIJRz51+Sn31XElxt3Rv4Ydg7ImmWs60i\n6RR2/znBL9yN7j4YuJFg/Et89XR3rwD+ABxjZj3CQY0GbAUmufu5OVpktTR/7cObfg2McPdrc7TI\namn+Dif4YN8M3Ovuw3LtSw5alL9uYf7aATvCx8gLj8nFIiuZzz8HNpKj518SuetgwYVT/wHcFeZO\nRVZENC9TClkwyd4DQL6ZvQB0JBzg7u51ZnYL8FczOzc2DsHdF5hZL2ARcARwnruvIbjiK6ccivyZ\n2VfdfXlELyFSh+j8+6q7rwJWRfIiInSo8ge8FxvzlksO8edfTl2peYjPPXVbRUwtWiliwSW3fyAY\nPPwngjfNLuCrscHY4YfvfeF/sftdTnCFyFLgpPBDJuccwvy9l9bAM4TylxzlLzn6/Gs5nXutj8Zo\npYgF8w8d7+6/CLenE7QKbAfGuXu/sDuhC/BTgrEH68L74e6vRhR6RlD+kqP8JUf5S47y13LKXeuj\nFq3U+QPwS9uzRtfvgS+5+xyC5uBx4a+SY4Hd7r4OgjeJ3iiA8pcs5S85yl9ylL+WU+5aGRVaKeLu\nX3gwX05s0tEh7FnC5J+BXma2kGA9rxVRxJjJlL/kKH/JUf6So/y1nHLX+mgwfIqFv0ocOBp4Pty9\nDfgh0AdY58FkctII5S85yl9ylL/kKH8tp9y1HmrRSr16ggVSq4CTwl8i9wD17v6a3igHpPwlR/lL\njvKXHOWv5ZS7VkKD4dPAzM4kmJF8OTDb3f894pCyivKXHOUvOcpfcpS/llPuWgcVWmlgZscCo4BH\nPVg2QQ6C8pcc5S85yl9ylL+WU+5aBxVaIiIiIimiMVoiIiIiKaJCS0RERCRFVGiJiIiIpIgKLRER\nEZEUUaElIlnFzOrM7B0zW21mK83s++Hab/u7z/Fm9q10xSgiEqNCS0SyzXZ3P8XdexMsTzIUuPcA\n9zkeUKElImmn6R1EJKuYWbW7H9Fg+wTg/4CjgFLgF0CH8Oab3X25mb0B9ALWAU8CPwUmAV8BDgem\nufuMtL0IEckZKrREJKvsXWiF+z4DehKsBVfv7jvMrAx41t37m9lXgNvc/evh8WOALu7+oJkdDvwe\nuNzd16X1xYhIq6dFpUWkNSkApprZKUAdUN7EcRcQrB93WbhdBJQRtHiJiBwyKrREJKuFXYd1wCcE\nY7U2AycTjEHd0dTdgHHu/lJaghSRnKXB8CKStcysM/BzYKoH4yCKgI/dvZ5gjbj88NBtQGGDu74E\n3GhmBeHjlJtZB0REDjG1aIlItmlnZu8QdBPuJhj8/mh423Rgvpl9G1gE1IT73wXqzGwlMAd4jOBK\nxLfNzIAtwDfT9QJEJHdoMLyIiIhIiqjrUERERCRFVGiJiIiIpIgKLREREZEUUaElIiIikiIqtERE\nRERSRIWWiIiISIqo0BIRERFJERVaIiIiIiny/5/eBt8hAuHsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1198a6fd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# adj close plotted\n",
"spy_adj_close.plot(subplots=True ,figsize=(10, 5), title='SPY', color='k')"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"112.370003"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_open = spy['Open'].iloc[0]\n",
"first_open"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"223.52999900000003"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"last_close = spy['Close'].iloc[-1]\n",
"last_close"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"111.15999600000004"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Total return between 2010-1-1 <> 2017-1-1\n",
"last_close - first_open"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Lets look at daily returns\n",
"spy['Daily Change'] = pd.Series(spy['Close'] - spy['Open'])"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"73.64011700000037"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spy['Daily Change'].sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment