start new:
tmux
start new with session name:
tmux new -s myname
| import urllib.request | |
| import json | |
| resp = urllib.request.urlopen('http://worldcup.sfg.io/matches').read() | |
| for jogo in json.loads(resp.decode('utf-8')): | |
| if jogo['status'] == 'completed': | |
| print (jogo['home_team']['country'], jogo['home_team']['goals'], 'x', jogo['away_team']['country'], jogo['away_team']['goals']) |
| def horner(p, x): | |
| '''Evalúa p(x) y p'(x), donde el polinomio p está representado como una | |
| lista donde cada p[k] es el coeficiente de x**k''' | |
| r, d = 0, 0 | |
| for k in range(len(p) - 1, 0, -1): | |
| r = x*r + p[k] | |
| d = x*d + k*p[k] | |
| return x*r + p[0], d | |
| def newton(p, x, eps): |
| #usr/bin/python | |
| #coding: utf-8 | |
| #Cdt.py | |
| from math import * | |
| #resolveremos una ecuacion cuadratica de la forma ax^2+bx+c=0 | |
| class Cdt(object): | |
| def __init__(self, cc, cx, ti): #cc=a, cx=b y ti=c | |
| self.a1=cc |
| # ---- @sexpr: S-expression to AST conversion ---- | |
| is_expr(ex, head::Symbol) = (isa(ex, Expr) && (ex.head == head)) | |
| is_expr(ex, head::Symbol, n::Int) = is_expr(ex, head) && length(ex.args) == n | |
| macro sexpr(ex) | |
| esc(sexpr_to_expr(ex)) | |
| end | |
| sexpr_to_expr(ex) = expr(:quote, ex) |
| import socket | |
| import fcntl | |
| import struct | |
| def getHwAddr(ifname): | |
| s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
| info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) | |
| return ''.join(['%02x:' % ord(char) for char in info[18:24]])[:-1] |
| function squareroot(x) | |
| it = x | |
| while abs(it*it - x) > 1e-13 | |
| it = it - (it*it-x)/(2it) | |
| end | |
| return it | |
| end | |
| function time_sqrt(x) | |
| const num_iter = 100000 |
| ## Algoritmos de caminos más cortos | |
| from estructuras import Cola, ColaMin | |
| from conectividad import ordenamiento_topologico | |
| inf = float('inf') #Tratar infinito como un numero | |
| def recorrido_a_lo_ancho(G, s): | |
| dist, padre = {v:inf for v in G}, {v:v for v in G} | |
| dist[s] = 0 |
| // Use Gists to store code you would like to remember later on | |
| console.log(window); // log the "window" object to the console |
| # Sieve of Eratosthenes, docstrings coming in Julia 0.4 | |
| function es(n::Int64) # accepts one 64 bit integer argument | |
| isprime = ones(Bool, n) # n-element vector of true-s | |
| isprime[1] = false # 1 is not a prime | |
| for i in 2:int64(sqrt(n)) # loop integers from 2 to sqrt(n), explicit conversion to integer | |
| if isprime[i] # conditional evaluation | |
| for j in (i*i):i:n # sequence from i^2 to n with step i | |
| isprime[j] = false # j is divisible by i | |
| end | |
| end |