start new:
tmux
start new with session name:
tmux new -s myname
| /// @file segmented_sieve.cpp | |
| /// @author Kim Walisch, <[email protected]> | |
| /// @brief This is a simple implementation of the segmented sieve of | |
| /// Eratosthenes with a few optimizations. It generates the | |
| /// primes below 10^9 in 0.9 seconds (single-threaded) on an | |
| /// Intel Core i7-4770 CPU (3.4 GHz) from 2013. | |
| /// @license Public domain. | |
| #include <iostream> | |
| #include <algorithm> |
| (ns primes.core | |
| (:use clojure.test) | |
| (:require [clojure.math.numeric-tower :as math])) | |
| ;; Problem statement: | |
| ;; You are given a function ‘secret()’ that accepts a single integer parameter | |
| ;; and returns an integer. In your favorite programming language, write a | |
| ;; program that determines if this function is an additive function | |
| ;; [ secret(x+y) = secret(x) + secret(y) ] for all prime numbers under 100. |
| # Sieve of Eratosthenes, docstrings coming in Julia 0.4 | |
| function es(n::Int64) # accepts one 64 bit integer argument | |
| isprime = ones(Bool, n) # n-element vector of true-s | |
| isprime[1] = false # 1 is not a prime | |
| for i in 2:int64(sqrt(n)) # loop integers from 2 to sqrt(n), explicit conversion to integer | |
| if isprime[i] # conditional evaluation | |
| for j in (i*i):i:n # sequence from i^2 to n with step i | |
| isprime[j] = false # j is divisible by i | |
| end | |
| end |
| // Use Gists to store code you would like to remember later on | |
| console.log(window); // log the "window" object to the console |
| ## Algoritmos de caminos más cortos | |
| from estructuras import Cola, ColaMin | |
| from conectividad import ordenamiento_topologico | |
| inf = float('inf') #Tratar infinito como un numero | |
| def recorrido_a_lo_ancho(G, s): | |
| dist, padre = {v:inf for v in G}, {v:v for v in G} | |
| dist[s] = 0 |
| function squareroot(x) | |
| it = x | |
| while abs(it*it - x) > 1e-13 | |
| it = it - (it*it-x)/(2it) | |
| end | |
| return it | |
| end | |
| function time_sqrt(x) | |
| const num_iter = 100000 |
| import socket | |
| import fcntl | |
| import struct | |
| def getHwAddr(ifname): | |
| s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
| info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) | |
| return ''.join(['%02x:' % ord(char) for char in info[18:24]])[:-1] |
| # ---- @sexpr: S-expression to AST conversion ---- | |
| is_expr(ex, head::Symbol) = (isa(ex, Expr) && (ex.head == head)) | |
| is_expr(ex, head::Symbol, n::Int) = is_expr(ex, head) && length(ex.args) == n | |
| macro sexpr(ex) | |
| esc(sexpr_to_expr(ex)) | |
| end | |
| sexpr_to_expr(ex) = expr(:quote, ex) |
| #usr/bin/python | |
| #coding: utf-8 | |
| #Cdt.py | |
| from math import * | |
| #resolveremos una ecuacion cuadratica de la forma ax^2+bx+c=0 | |
| class Cdt(object): | |
| def __init__(self, cc, cx, ti): #cc=a, cx=b y ti=c | |
| self.a1=cc |