Skip to content

Instantly share code, notes, and snippets.

@JBed
Created April 17, 2017 18:33
Show Gist options
  • Save JBed/a7116dee27d43cbd00b77558fc05442a to your computer and use it in GitHub Desktop.
Save JBed/a7116dee27d43cbd00b77558fc05442a to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>check_in_day</th>\n",
" <th>check_out_day</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2017-01-08</td>\n",
" <td>2017-01-12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2017-01-14</td>\n",
" <td>2017-01-18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2017-02-20</td>\n",
" <td>2017-02-26</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" check_in_day check_out_day\n",
"0 2017-01-08 2017-01-12\n",
"1 2017-01-14 2017-01-18\n",
"2 2017-02-20 2017-02-26"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stays = pd.DataFrame({'check_in_day':['Jan 08 2017','Jan 14 2017','Feb 20 2017'], \\\n",
" 'check_out_day':['Jan 12 2017','Jan 18 2017','Feb 26 2017']})\n",
"\n",
"stays['check_in_day'] = pd.to_datetime(stays['check_in_day'])\n",
"stays['check_out_day'] = pd.to_datetime(stays['check_out_day'])\n",
"\n",
"stays"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### my idea is to refactor so that the index is the day and the column is True/False is occupied that night."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>occupied_that_night</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2017-01-01</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-02</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-03</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-04</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-05</th>\n",
" <td>False</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" occupied_that_night\n",
"2017-01-01 False\n",
"2017-01-02 False\n",
"2017-01-03 False\n",
"2017-01-04 False\n",
"2017-01-05 False"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# this is all of the days that the room could be occupied in Jan 2017\n",
"Jan_bookings = pd.DataFrame()\n",
"Jan_dateRange = pd.date_range(start='2017-01-01', end='2017-01-31')\n",
"Jan_bookings['occupied_that_night'] = [False]*len(Jan_dateRange)\n",
"Jan_bookings.index = Jan_dateRange\n",
"Jan_bookings.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# make a df for the first stay \n",
"stay_i = pd.DataFrame()\n",
"dr = pd.date_range(start=stays.iloc[0]['check_in_day'],\\\n",
" end=stays.iloc[0]['check_out_day']-pd.Timedelta('1 day')\\\n",
" ,freq='D')\n",
"stay_i['stay_1'] = ['True']*len(dr)\n",
"stay_i.index = dr"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2017-01-01</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-02</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-03</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-04</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-05</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-06</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-07</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-08</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-09</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-10</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-11</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-12</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-13</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-14</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-15</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-16</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-17</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-18</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-19</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-20</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-21</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-22</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-23</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-24</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-25</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-26</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-27</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-28</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-29</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-30</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-31</th>\n",
" <td>False</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0\n",
"2017-01-01 False\n",
"2017-01-02 False\n",
"2017-01-03 False\n",
"2017-01-04 False\n",
"2017-01-05 False\n",
"2017-01-06 False\n",
"2017-01-07 False\n",
"2017-01-08 True\n",
"2017-01-09 True\n",
"2017-01-10 True\n",
"2017-01-11 True\n",
"2017-01-12 False\n",
"2017-01-13 False\n",
"2017-01-14 False\n",
"2017-01-15 False\n",
"2017-01-16 False\n",
"2017-01-17 False\n",
"2017-01-18 False\n",
"2017-01-19 False\n",
"2017-01-20 False\n",
"2017-01-21 False\n",
"2017-01-22 False\n",
"2017-01-23 False\n",
"2017-01-24 False\n",
"2017-01-25 False\n",
"2017-01-26 False\n",
"2017-01-27 False\n",
"2017-01-28 False\n",
"2017-01-29 False\n",
"2017-01-30 False\n",
"2017-01-31 False"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# and merge... collapse wiht any...\n",
"pd.merge(Jan_bookings, stay_i, left_index=True, right_index=True,\\\n",
" how='outer').fillna(False).any(axis=1).to_frame()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# ok now we just need to loop"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Jan_bookings = pd.DataFrame()\n",
"Jan_dateRange = pd.date_range(start='2017-01-01', end='2017-01-31')\n",
"Jan_bookings['occupied_that_night'] = [False]*len(Jan_dateRange)\n",
"Jan_bookings.index = Jan_dateRange\n",
"Jan_bookings.head()\n",
"\n",
"# now loop over the stays in Jan\n",
"for ii in range(len(stays)):\n",
" stay_i = pd.DataFrame()\n",
" dr = pd.date_range(start=stays.iloc[ii]['check_in_day'],\\\n",
" end=stays.iloc[ii]['check_out_day']-pd.Timedelta('1 day')\\\n",
" ,freq='D')\n",
" stay_i['Stay_i'] = [True]*len(dr)\n",
" stay_i.index = dr\n",
" Jan_bookings = pd.merge(Jan_bookings, stay_i, \\\n",
" left_index=True, right_index=True,\\\n",
" how='outer').fillna(False).any(axis=1).to_frame()\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2017-01-01</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-02</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-03</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-04</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-05</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-06</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-07</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-08</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-09</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-10</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-11</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-12</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-13</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-14</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-15</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-16</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-17</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-18</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-19</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-20</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-21</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-22</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-23</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-24</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-25</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-26</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-27</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-28</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-29</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-30</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-01-31</th>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-20</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-21</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-22</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-23</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-24</th>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-02-25</th>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0\n",
"2017-01-01 False\n",
"2017-01-02 False\n",
"2017-01-03 False\n",
"2017-01-04 False\n",
"2017-01-05 False\n",
"2017-01-06 False\n",
"2017-01-07 False\n",
"2017-01-08 True\n",
"2017-01-09 True\n",
"2017-01-10 True\n",
"2017-01-11 True\n",
"2017-01-12 False\n",
"2017-01-13 False\n",
"2017-01-14 True\n",
"2017-01-15 True\n",
"2017-01-16 True\n",
"2017-01-17 True\n",
"2017-01-18 False\n",
"2017-01-19 False\n",
"2017-01-20 False\n",
"2017-01-21 False\n",
"2017-01-22 False\n",
"2017-01-23 False\n",
"2017-01-24 False\n",
"2017-01-25 False\n",
"2017-01-26 False\n",
"2017-01-27 False\n",
"2017-01-28 False\n",
"2017-01-29 False\n",
"2017-01-30 False\n",
"2017-01-31 False\n",
"2017-02-20 True\n",
"2017-02-21 True\n",
"2017-02-22 True\n",
"2017-02-23 True\n",
"2017-02-24 True\n",
"2017-02-25 True"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Jan_bookings"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>False</th>\n",
" <th>True</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"0 False True \n",
"0 3 3\n",
"1 3 3\n",
"2 3 2\n",
"3 4 1\n",
"4 4 1\n",
"5 3 2\n",
"6 3 2"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Jan_bookings.groupby(Jan_bookings.index.dayofweek)[0].value_counts().unstack()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x10c887240>"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEDVJREFUeJzt3X+MZXV9xvH3w7KiRguNO9Ht/mBMoG3UKsJk0dA0VEO7\nCoGkYgJNVYw4iZGIiWkLtsFI0kaTRqrFSDaAorWCRWtXRS0pWKUtK7PbBVlW29ViWIIy/BDcgujq\np3/M0U7Hmb1nZu7s3fn6fiU3e35855wHMvvcs+eec0+qCklSW44adQBJ0vBZ7pLUIMtdkhpkuUtS\ngyx3SWqQ5S5JDbLcJalBlrskNchyl6QGHT2qHa9bt67Gx8dHtXtJWpV27tz5UFWNDRo3snIfHx9n\nampqVLuXpFUpyXf6jPO0jCQ1yHKXpAZZ7pLUIMtdkhpkuUtSg3qXe5I1Sf4jyefmWXdMkhuS7Euy\nI8n4MENKkhZnMUfuFwN7F1j3JuDRqjoBuAJ473KDSZKWrle5J9kInAlcvcCQc4DruukbgVcmyfLj\nSZKWou9NTH8N/Anw7AXWbwDuA6iqg0keA54DPDR7UJJJYBJg8+bNS8krLcn4JZ9f0e3f+54zV2zb\nqzm7RmfgkXuSs4AHq2rncndWVduqaqKqJsbGBt49K0laoj6nZU4Dzk5yL3A98IokfztnzP3AJoAk\nRwPHAg8PMackaREGlntVXVpVG6tqHDgPuKWq/mjOsO3AG7rpc7sxNdSkkqTelvzFYUkuB6aqajtw\nDfCxJPuAR5h5E5Akjciiyr2qvgx8uZu+bNbyHwKvHWYwSdLSeYeqJDXIcpekBlnuktQgy12SGmS5\nS1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrsk\nNWhguSd5epKvJbkzyZ4k755nzAVJppPs7l4XrkxcSVIffR6z9xTwiqo6kGQtcFuSL1TV7XPG3VBV\nFw0/oiRpsQaWe1UVcKCbXdu9aiVDSZKWp9c59yRrkuwGHgRurqod8wx7TZK7ktyYZNMC25lMMpVk\nanp6ehmxJUmH0qvcq+onVXUSsBHYkuRFc4Z8FhivqhcDNwPXLbCdbVU1UVUTY2Njy8ktSTqERV0t\nU1XfB24Fts5Z/nBVPdXNXg2cMpx4kqSl6HO1zFiS47rpZwBnAN+YM2b9rNmzgb3DDClJWpw+V8us\nB65LsoaZN4NPVtXnklwOTFXVduBtSc4GDgKPABesVGBJ0mB9rpa5C3jpPMsvmzV9KXDpcKNJkpbK\nO1QlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDL\nXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQX2eofr0JF9LcmeSPUnePc+YY5LckGRfkh1JxlcirCSpnz5H\n7k8Br6iqlwAnAVuTvGzOmDcBj1bVCcAVwHuHG1OStBgDy71mHOhm13avmjPsHOC6bvpG4JVJMrSU\nkqRFGfiAbIAka4CdwAnAB6tqx5whG4D7AKrqYJLHgOcAD83ZziQwCbB58+ZFBR2/5POLGr9Y977n\nzBXdvvkPbaXza3RW++/Oas3f6wPVqvpJVZ0EbAS2JHnRUnZWVduqaqKqJsbGxpayCUlSD4u6Wqaq\nvg/cCmyds+p+YBNAkqOBY4GHhxFQkrR4fa6WGUtyXDf9DOAM4Btzhm0H3tBNnwvcUlVzz8tLkg6T\nPufc1wPXdefdjwI+WVWfS3I5MFVV24FrgI8l2Qc8Apy3YoklSQMNLPequgt46TzLL5s1/UPgtcON\nJklaKu9QlaQGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5\nS1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAb1eYbqpiS3JrknyZ4kF88z5vQkjyXZ3b0um29bkqTD\no88zVA8C76iqXUmeDexMcnNV3TNn3Fer6qzhR5QkLdbAI/eqeqCqdnXTPwD2AhtWOpgkaekWdc49\nyTgzD8veMc/qlye5M8kXkrxwgZ+fTDKVZGp6enrRYSVJ/fQu9yTPAj4FvL2qHp+zehdwfFW9BPgb\n4DPzbaOqtlXVRFVNjI2NLTWzJGmAXuWeZC0zxf7xqvr03PVV9XhVHeimbwLWJlk31KSSpN76XC0T\n4Bpgb1W9b4Exz+vGkWRLt92HhxlUktRfn6tlTgNeB3w9ye5u2TuBzQBVdRVwLvCWJAeBJ4HzqqpW\nIK8kqYeB5V5VtwEZMOZK4MphhZIkLY93qEpSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDL\nXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KD+jxDdVOSW5Pck2RP\nkovnGZMkH0iyL8ldSU5embiSpD76PEP1IPCOqtqV5NnAziQ3V9U9s8a8Cjixe50KfKj7U5I0AgOP\n3Kvqgara1U3/ANgLbJgz7BzgozXjduC4JOuHnlaS1MuizrknGQdeCuyYs2oDcN+s+f384hsASSaT\nTCWZmp6eXlxSSVJvvcs9ybOATwFvr6rHl7KzqtpWVRNVNTE2NraUTUiSeuhV7knWMlPsH6+qT88z\n5H5g06z5jd0ySdII9LlaJsA1wN6qet8Cw7YDr++umnkZ8FhVPTDEnJKkRehztcxpwOuAryfZ3S17\nJ7AZoKquAm4CXg3sA54A3jj8qJKkvgaWe1XdBmTAmALeOqxQkqTl8Q5VSWqQ5S5JDbLcJalBlrsk\nNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KD\n+jxm79okDya5e4H1pyd5LMnu7nXZ8GNKkhajz2P2PgJcCXz0EGO+WlVnDSWRJGnZBh65V9VXgEcO\nQxZJ0pAM65z7y5PcmeQLSV44pG1Kkpaoz2mZQXYBx1fVgSSvBj4DnDjfwCSTwCTA5s2bh7BrSdJ8\nln3kXlWPV9WBbvomYG2SdQuM3VZVE1U1MTY2ttxdS5IWsOxyT/K8JOmmt3TbfHi525UkLd3A0zJJ\nPgGcDqxLsh94F7AWoKquAs4F3pLkIPAkcF5V1YolliQNNLDcq+r8AeuvZOZSSUnSEcI7VCWpQZa7\nJDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtS\ngyx3SWqQ5S5JDbLcJalBA8s9ybVJHkxy9wLrk+QDSfYluSvJycOPKUlajD5H7h8Bth5i/auAE7vX\nJPCh5ceSJC3HwHKvqq8AjxxiyDnAR2vG7cBxSdYPK6AkafGGcc59A3DfrPn93TJJ0ogc1g9Uk0wm\nmUoyNT09fTh3LUm/VIZR7vcDm2bNb+yW/YKq2lZVE1U1MTY2NoRdS5LmM4xy3w68vrtq5mXAY1X1\nwBC2K0laoqMHDUjyCeB0YF2S/cC7gLUAVXUVcBPwamAf8ATwxpUKK0nqZ2C5V9X5A9YX8NahJZIk\nLZt3qEpSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWp\nQZa7JDXIcpekBlnuktQgy12SGmS5S1KDepV7kq1JvplkX5JL5ll/QZLpJLu714XDjypJ6qvPM1TX\nAB8EzgD2A3ck2V5V98wZekNVXbQCGSVJi9TnyH0LsK+qvl1VPwKuB85Z2ViSpOXoU+4bgPtmze/v\nls31miR3JbkxyaahpJMkLcmwPlD9LDBeVS8Gbgaum29QkskkU0mmpqenh7RrSdJcfcr9fmD2kfjG\nbtnPVdXDVfVUN3s1cMp8G6qqbVU1UVUTY2NjS8krSeqhT7nfAZyY5PlJngacB2yfPSDJ+lmzZwN7\nhxdRkrRYA6+WqaqDSS4CvgSsAa6tqj1JLgemqmo78LYkZwMHgUeAC1YwsyRpgIHlDlBVNwE3zVl2\n2azpS4FLhxtNkrRU3qEqSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwl\nqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDepV7km2Jvlmkn1JLpln/TFJbujW70gy\nPuygkqT+BpZ7kjXAB4FXAS8Azk/ygjnD3gQ8WlUnAFcA7x12UElSf32O3LcA+6rq21X1I+B64Jw5\nY84BruumbwRemSTDiylJWoxU1aEHJOcCW6vqwm7+dcCpVXXRrDF3d2P2d/Pf6sY8NGdbk8BkN/sb\nwDeH9R8yj3XAQwNHHbnMP1qrOf9qzg7mH+T4qhobNOjoFQzwC6pqG7DtcOwryVRVTRyOfa0E84/W\nas6/mrOD+Yelz2mZ+4FNs+Y3dsvmHZPkaOBY4OFhBJQkLV6fcr8DODHJ85M8DTgP2D5nzHbgDd30\nucAtNeh8jyRpxQw8LVNVB5NcBHwJWANcW1V7klwOTFXVduAa4GNJ9gGPMPMGMGqH5fTPCjL/aK3m\n/Ks5O5h/KAZ+oCpJWn28Q1WSGmS5S1KDLHdJatBhvc59JSX5TWbulN3QLbof2F5Ve0eXSqtBki1A\nVdUd3VdrbAW+UVU3jTjakiT5aFW9ftQ5NFpNfKCa5E+B85n5aoT93eKNzFy1c31VvWdU2X5ZdG+u\nG4AdVXVg1vKtVfXF0SU7tCTvYuZ7k44GbgZOBW4FzgC+VFV/McJ4AyWZe1lygN8FbgGoqrMPe6hl\nSPLbzHzlyd1V9U+jzjNIklOBvVX1eJJnAJcAJwP3AH9ZVY+NLFsj5f6fwAur6sdzlj8N2FNVJ44m\n2fIleWNVfXjUOQ4lyduAtwJ7gZOAi6vqH7t1u6rq5FHmO5QkX2cm8zHAd4GNs/6i7qiqF4804ABJ\ndjFTJFcDxUy5f4LucuSq+pfRpRssydeqaks3/WZmfo/+Afg94LNH+oFZkj3AS7pLxrcBT9B9v1a3\n/A9Gla2V0zI/BX4N+M6c5eu7davZu4EjutyBNwOnVNWB7uueb0wyXlXvZ6ZsjmQHq+onwBNJvlVV\njwNU1ZNJVsPvzgRwMfBnwB9X1e4kTx7ppT7L2lnTk8AZVTWd5K+A24EjutyBo6rqYDc9MetA5rYk\nu0cVCtop97cD/5zkv4D7umWbgROAixb8qSNEkrsWWgU893BmWaKjfnYqpqruTXI6MwV/PEd+uf8o\nyTOr6gnglJ8tTHIsq+DAoKp+ClyR5O+7P7/H6vp7fVSSX2Xm4o5U1TRAVf1PkoOH/tEjwt2z/nV9\nZ5KJqppK8uvAjwf98EpaTb8EC6qqL3b/M7fw/z9QvaM7KjvSPRf4feDROcsD/Nvhj7No30tyUlXt\nBuiO4M8CrgV+a7TRBvqdqnoKfl6UP7OW//tKjSNe942sr01yJvD4qPMswrHATmZ+1yvJ+qp6IMmz\nOPIPDAAuBN6f5M+Z+SbIf09yHzMHmReOMlgT59xXuyTXAB+uqtvmWfd3VfWHI4jVW5KNzJze+O48\n606rqn8dQSytYkmeCTy3qv571Fn6SPIrwPOZOWDeX1XfG3Eky12SWuRNTJLUIMtdkhpkuUtSgyx3\nSWrQ/wLzIqr7r9ItEgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10c89fda0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# these would be the unoccupied nights\n",
"# Monday=0, Sunday=6\n",
"Jan_bookings.groupby(Jan_bookings.index.dayofweek)[0].value_counts()\\\n",
".unstack()[False].plot(kind='bar')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment