Created
May 17, 2017 02:17
-
-
Save Jessime/69df607e4ad5f1229528af2edebe6e70 to your computer and use it in GitHub Desktop.
Template for monthly notebooks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"toc": "true" | |
}, | |
"source": [ | |
"# Table of Contents\n", | |
" <p><div class=\"lev1 toc-item\"><a href=\"#Watermark\" data-toc-modified-id=\"Watermark-1\"><span class=\"toc-item-num\">1 </span>Watermark</a></div><div class=\"lev1 toc-item\"><a href=\"#Imports-and-Setups\" data-toc-modified-id=\"Imports-and-Setups-2\"><span class=\"toc-item-num\">2 </span>Imports and Setups</a></div><div class=\"lev3 toc-item\"><a href=\"#Autoimport-my-code\" data-toc-modified-id=\"Autoimport-my-code-201\"><span class=\"toc-item-num\">2.0.1 </span>Autoimport my code</a></div><div class=\"lev3 toc-item\"><a href=\"#Plotting\" data-toc-modified-id=\"Plotting-202\"><span class=\"toc-item-num\">2.0.2 </span>Plotting</a></div>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Watermark" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The watermark extension is already loaded. To reload it, use:\n", | |
" %reload_ext watermark\n", | |
"Jessime Kirk Mon Oct 31 2016 \n", | |
"\n", | |
"CPython 2.7.12\n", | |
"IPython 5.1.0\n", | |
"\n", | |
"numpy 1.11.1\n", | |
"scipy 0.18.1\n", | |
"pandas 0.18.1\n", | |
"scikit-learn 0.17.1\n", | |
"matplotlib 1.5.3\n", | |
"seaborn 0.7.1\n", | |
"networkx 1.11\n", | |
"notebook 4.2.3\n", | |
"jupyter_contrib_nbextensions 0.2.1\n", | |
"\n", | |
"compiler : GCC 4.4.7 20120313 (Red Hat 4.4.7-1)\n", | |
"system : Linux\n", | |
"release : 4.4.8-040408-generic\n", | |
"machine : x86_64\n", | |
"processor : x86_64\n", | |
"CPU cores : 4\n", | |
"interpreter: 64bit\n" | |
] | |
} | |
], | |
"source": [ | |
"%load_ext watermark\n", | |
"%watermark -a 'Jessime Kirk' -nmv --packages numpy,scipy,pandas,scikit-learn,matplotlib,seaborn,networkx,notebook,jupyter_contrib_nbextensions" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Imports and Setups" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import cPickle\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"import networkx as nx\n", | |
"\n", | |
"from tqdm import tqdm, trange, tqdm_notebook, tnrange" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Autoimport my code" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"u'/home/jessime/Code/kmers/Notebooks'" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pwd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"/home/jessime/Code/kmers\n" | |
] | |
} | |
], | |
"source": [ | |
"cd .." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"%load_ext autoreload" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"autoreload 2" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Plotting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"plt.style.use(\"seaborn-whitegrid\")\n", | |
"plt.rcParams['figure.figsize'] = [6.0, 4.0]\n", | |
"plt.rcParams['axes.titlesize'] = 20\n", | |
"plt.rcParams['axes.labelsize'] = 18\n", | |
"plt.rcParams['xtick.labelsize'] = 14\n", | |
"plt.rcParams['ytick.labelsize'] = 14\n", | |
"plt.rcParams['legend.fontsize'] = 14\n", | |
"colors = [i['color'] for i in plt.rcParams['axes.prop_cycle']]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [default]", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.13" | |
}, | |
"nav_menu": {}, | |
"toc": { | |
"nav_menu": { | |
"height": "84px", | |
"width": "252px" | |
}, | |
"navigate_menu": true, | |
"number_sections": true, | |
"sideBar": true, | |
"threshold": 6, | |
"toc_cell": true, | |
"toc_section_display": "block", | |
"toc_window_display": true | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment