Created
April 25, 2018 22:24
-
-
Save JiaweiZhuang/1a287e68b5af9eccebad8056fb556b4f to your computer and use it in GitHub Desktop.
# Parallelizing linear regression (across extra dimension) with Numba and dask
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Parallelizing linear regression (across extra dimension) with Numba and dask" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import numpy.linalg as LA\n", | |
"from scipy import stats\n", | |
"\n", | |
"import dask.array as da\n", | |
"from dask.diagnostics import ProgressBar\n", | |
"\n", | |
"from numba import jit, prange" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Input data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"np.random.seed(0)\n", | |
"X = np.random.rand(20000, 4000)\n", | |
"Y = np.random.rand(20000, 4000)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Speed-up Linear regression itself" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Built-in Scipy.stats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"LinregressResult(slope=-0.0003621403862170396, intercept=0.5027361902987688, rvalue=-0.00036486335324476015, pvalue=0.9815954145065677, stderr=0.015697312038407407)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"stats.linregress(X[0,:], Y[0,:])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"216 µs ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit stats.linregress(X[0,:], Y[0,:]) # deadly slow..." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Hand-written numba code" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"@jit(nopython=True, nogil=True)\n", | |
"def my_linregress(x, y):\n", | |
" '''\n", | |
" Adapted from http://charlesfranzen.com/posts/simple-linear-regression-in-python/\n", | |
" '''\n", | |
" n = x.size\n", | |
" sum_x = x.sum()\n", | |
" sum_y = y.sum()\n", | |
" sum_xy = (x*y).sum()\n", | |
" sum_xx = (x**2).sum()\n", | |
" \n", | |
" slope = (sum_xy - (sum_x*sum_y)/n)/(sum_xx - (sum_x*sum_x)/n)\n", | |
" \n", | |
" # only compute slope for now\n", | |
" # intercept = sum_y/n - slope*(sum_x/n)\n", | |
" \n", | |
" return slope" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"-0.00036214038622500987" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"my_linregress(X[0,:], Y[0,:]) # same as scipy.stats result" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"23 µs ± 453 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit my_linregress(X[0,:], Y[0,:]) # 10x faster than Scipy" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Loop over the entire dataset" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# numba" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"@jit(nogil=True, nopython=True)\n", | |
"def regress_block(X, Y):\n", | |
" N = X.shape[0]\n", | |
" s = np.empty(N)\n", | |
" for i in range(N):\n", | |
" s[i] = my_linregress(X[i,:], Y[i,:])\n", | |
" return s" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(20000,)" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Z = regress_block(X, Y)\n", | |
"Z.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([-0.00036214, 0.00651474, 0.00686529, ..., -0.02137249,\n", | |
" -0.00529643, -0.00165035])" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Z " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"440 ms ± 10.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit regress_block(X, Y)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Numba parallel" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"@jit(nogil=True, nopython=True, parallel=True)\n", | |
"def regress_block_parallel(X, Y):\n", | |
" N = X.shape[0]\n", | |
" s = np.empty(N)\n", | |
" for i in prange(N):\n", | |
" s[i] = my_linregress(X[i,:], Y[i,:])\n", | |
" return s" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.array_equal(regress_block_parallel(X, Y), Z) # same as serial result" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"123 ms ± 2.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit regress_block_parallel(X, Y) # 4x faster than serial" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Dask parallel" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"X_d = da.from_array(X, chunks=[2000,-1])\n", | |
"Y_d = da.from_array(Y, chunks=[2000,-1])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"dask.array<array, shape=(20000, 4000), dtype=float64, chunksize=(2000, 4000)>" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X_d" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# need the drop_axis keyword, see https://github.com/dask/dask/issues/263\n", | |
"Z_d = da.map_blocks(regress_block, X_d, Y_d, dtype=np.ndarray, drop_axis=[1])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[########################################] | 100% Completed | 0.2s\n", | |
"CPU times: user 480 ms, sys: 12.2 ms, total: 492 ms\n", | |
"Wall time: 216 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"with ProgressBar():\n", | |
" Z_result = Z_d.compute(num_workers=4) # 2x faster than serial" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.array_equal(Z_result, Z) # same as serial result" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[########################################] | 100% Completed | 0.5s\n", | |
"CPU times: user 478 ms, sys: 11.8 ms, total: 490 ms\n", | |
"Wall time: 524 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"with ProgressBar():\n", | |
" Z_result = Z_d.compute(num_workers=1) # with one worker, as fast as serial " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment