Skip to content

Instantly share code, notes, and snippets.

@JiaweiZhuang
Created December 1, 2017 01:13
Show Gist options
  • Save JiaweiZhuang/e3f229db8262ee0d0314fcb4515f08ee to your computer and use it in GitHub Desktop.
Save JiaweiZhuang/e3f229db8262ee0d0314fcb4515f08ee to your computer and use it in GitHub Desktop.
ESMPy_memory_layout
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import ESMF"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Nlon, Nlat = 6001, 4001 # make a large grid"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"lon = np.linspace(-120, 120, Nlon)\n",
"lat = np.linspace(-60, 60, Nlat)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"lons, lats = np.meshgrid(lon, lat) # don't use indexing='ij'"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(4001, 6001)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lons.shape # (Nlat, Nlon), typical C-ordering"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" C_CONTIGUOUS : True\n",
" F_CONTIGUOUS : False\n",
" OWNDATA : True\n",
" WRITEABLE : True\n",
" ALIGNED : True\n",
" UPDATEIFCOPY : False"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lons.flags # C-ordering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inefficient memory layout"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"grid = ESMF.Grid(np.array(lons.shape), \n",
" staggerloc = ESMF.StaggerLoc.CENTER,\n",
" coord_sys = ESMF.CoordSys.SPH_DEG)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"lon_pointer = grid.get_coords(coord_dim=0, \n",
" staggerloc=ESMF.StaggerLoc.CENTER)\n",
"lat_pointer = grid.get_coords(coord_dim=1, \n",
" staggerloc=ESMF.StaggerLoc.CENTER)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(4001, 6001)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lon_pointer.shape"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" C_CONTIGUOUS : False\n",
" F_CONTIGUOUS : True\n",
" OWNDATA : False\n",
" WRITEABLE : True\n",
" ALIGNED : True\n",
" UPDATEIFCOPY : False"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lon_pointer.flags # Fortran-ordering"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 480 ms, sys: 0 ns, total: 480 ms\n",
"Wall time: 475 ms\n"
]
}
],
"source": [
"# passing C-ordered array to F-ordered array is slow\n",
"%time lon_pointer[:] = lons "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Efficient memory layout"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"grid_T = ESMF.Grid(np.array(lons.T.shape), \n",
" staggerloc = ESMF.StaggerLoc.CENTER,\n",
" coord_sys = ESMF.CoordSys.SPH_DEG)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"lon_T_pointer = grid_T.get_coords(coord_dim=0, \n",
" staggerloc=ESMF.StaggerLoc.CENTER)\n",
"lat_T_pointer = grid_T.get_coords(coord_dim=1, \n",
" staggerloc=ESMF.StaggerLoc.CENTER)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(6001, 4001)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lon_T_pointer.shape"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" C_CONTIGUOUS : False\n",
" F_CONTIGUOUS : True\n",
" OWNDATA : False\n",
" WRITEABLE : True\n",
" ALIGNED : True\n",
" UPDATEIFCOPY : False"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lons.T.flags # Fortran-ordering"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 40 ms, sys: 0 ns, total: 40 ms\n",
"Wall time: 40.9 ms\n"
]
}
],
"source": [
"# passing F-ordered array to F-ordered array is fast\n",
"%time lon_T_pointer[...] = lons.T "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mathematically, this is equivalent to using `indexing='ij'` at the beginning. For memory efficiency we should first create a normal, C-ordered numpy array and pass its transpose (which is F-ordered) to ESMPy."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment