Last active
March 5, 2017 14:07
-
-
Save JironBach/1b2f78b2266a6b9fcd288ed93b37403e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"collapsed": true | |
}, | |
"source": [ | |
"# 動作環境\n", | |
"1. コンテナはVirtualBox内のUbuntuで動かす\n", | |
"2. 開発環境はMac" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Remote(Dockerコンテナ)\n", | |
"`sudo docker run -it -p 8888:8888 -v /home/user/notebooks:/home/jovyan/work -e PASSWORD=\"password\" -e GRANT_SUDO=yes --user root jupyter/tensorflow-notebook start-notebook.sh`\n", | |
"\n", | |
"[docker-stacks](https://github.com/jupyter/docker-stacks)<br/>\n", | |
"[ローカル環境でJupyter Notebookを動かすときの俺的ベストプラクティス](http://qiita.com/yacchin1205/items/efaa498ca68e7c169015)<br/>\n", | |
"[How do I start tensorflow docker jupyter notebook](http://stackoverflow.com/questions/33636925/how-do-i-start-tensorflow-docker-jupyter-notebook)<br/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## リンク\n", | |
"[matplotlib入門](http://bicycle1885.hatenablog.com/entry/2014/02/14/023734)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# [Jupyterって何ができるの?](http://www.hirotsuru.com/entry/2016/05/11/201337)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 計算ができる" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 73, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.7071067811865475" | |
] | |
}, | |
"execution_count": 73, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"2**3\n", | |
"\n", | |
"import math\n", | |
"from math import sin, pi\n", | |
"sin(pi/4)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### 数式が描ける" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"$\\displaystyle \\lim_{x \\to \\infty} f(x)$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$\\displaystyle \\lim_{x \\to \\infty} f(x)$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### グラフが描ける" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f226bb999e8>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGJCAYAAADIVkprAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VMXXwPHvEAKhJaGDIIKN3qOEDoKCFKlBQ+/NgoAC\noiKoILwi+gOliXRBmqBSRekQEBKqUqQKCEoIoSRA2rx/TIgBAiTL3dzs5nye5z7Z3L3l7CXsnp07\nc0ZprRFCCCGEsFIGuwMQQgghhPuRBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwgh\nhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwiRbEqpmkqp6nbH\n4ark+on0RBIMIUSyKKWeBJporbemcL/RSqlsTgrLZcj1E+mNJBhCpBNKqVlKqakPcYhRwMcO7Pcl\n8PlDnNddyPUT6YokGEKkHweAJY7sqJSqCvyrtb6a0n211meAI0qp5o6c2x3I9RPpkdJa2x2DECKN\nU0rNAb7UWu9wcH8f4EetdW1rI3MNcv1EeiQtGEKI5KgBBDu6s9b6MhCulCpjXUguRa6fSHcy2h2A\nEO5KKdUBKAd4aq3fjF+XA9gNVNBaX7PwXBmAD4BYIAK4rLWeFv9cJ6BM4jji1w+LXz8biIqPNTuQ\nS2v9RqLtngQuaK1j7jhnRmAAoIHKwLtAp/hj7NJaz7sjzCDgRcytmuS8plS7fvHH9gHeA65grmOo\n1npq/HPemNcXEb95NmCIjm8CfsD1t+X6CWE3acEQwgmUUsUxH9rfA10TPVUN8LX6wxF4Czihtf4Q\n2AJ8GB9HKeDGnXEopeoAvwCbgIlAFq31WK31cKCdUqpcomMXAv5N4pyvAgu11p8Cp4DVmI6MzwIv\nJbH9XqBCcl5Mal8/pVROYDPwi9b6I+AiMPqO5zZprT+Mv8ZFgJ6JDpHk9Y+X6tdPiLRAWjCEcI6a\nwBzMN9RdidZXxXxYJYj/9rsEyHxr1R3H0onWh2utA5M4X23ggFLKE9gD1IlfXwOYCQzm9ib64sBU\noCOwTWv9Q3wsHkCOROcEyAtcTuKc0Vrrk/GP8wA/aa1vKKX6AH8nsX0Y8EQS65OS2tfvf8ABrfWa\n+N/PAiMSPXdQa70i0fZ/AY2BKfG/3+v6gz3XTwjbSYIhhBMkah5vDsxI9FRVYNUd28YBLR7ylL8C\nY4HXgUVAr/hj32rib4Npqbh1zinx62ty+9BJf0zLwcFE65Js6dRaT0z0azVMEz9a6/33iPES4JOc\nF5Oa108pVRAIBBokOubyez0X7zEgU6Lfk7z+8VL9+gmRFsgtEiGcJL5pvTKQ+Jvvs8BGq8+ltR6H\naa34HNO83j9RHKWBEsDiO+LLFb9+S6LVTYBf7+gvEAr43uvcSqm8wNPAgwpIeWCSl2RJxev3TPzP\nbcl5TimlgFqJ193v+mPT9RPCbtKCIYTzPIFpkj8NCR/0CtOEniCJJv57uauJP76j4G7g/7TWc4Bt\nSql/gUcT7RcAbNBaX1BKvaW1Hhu/vjpw5lZ8ibYdoZTyBRprrb8FzgG574g5I1BTa70e82F7Umv9\nT/xzDeJ/P3xH/DmBCw94jYk5/frF88B0yrxxx3Efjz/mnc89j+nkOTmZ19+u6yeErSTBEMJ5rgKe\nSikVP9qgJ7Dl1siDWx6yiT8rpql+KyR82FYGPk20TWXgV6XUI8D1ROtrkqj1Ir5FoximuT8A+CH+\nqUNAfqVUhvhYAXoA4+L3aUj8B198H4TntNaDk4g1D4n6FsSPbvkIMyIkLIntU+P6AWyIjyeP1jo0\n/nEZoC3mtodSSuXSWofFjyYZDXTSWv8b//uDrr9Trp8QaZ0kGEI4idb6sFJqPOaD5AKmU+Aki89x\nRSn1f0AXpVQ0pil+xh338WcCLwOewCeJ1hfCjNK4dawwpdT3QG9gt9b63/j1Wim1AyiP+bYOpqPl\nD8AQYALQUyn1IaaV4LN7hOvH7R02M2BaCPyBlUm8Nqdfv/jzXFJKtQK+UEodxLRo/KW1HgqglAoA\n/qeU+hPTMvGq1jooft8HXn8nXj8h0jSp5CmEE8R/Ex0H/E9rfVQplR84ApTUWrvct1ClVENMk/67\nD3GMX4BeWutjidblAOpprZfdsa1cv7uPcdf1EyItc7lOnkqp3kqpvUqpy/HLtvj/vEKkJRUwQ0Cz\nxv8+FRjsih+OAFrr1UB5pZSXI/srpQrFH+fOD8faJF3hUq5fIve5fkKkWS7XgqGUaoyplnc0flVn\n4G3MfdyD99pPiNQU/w38XSASyIfpO7Ds/nulbUopP6CV1vodB/YdDazWWm9ItC4jMEhrPSqJ7eX6\n3b7vXddPiLTO5RKMpCilLgJvaa1nPHBjIYTDlFKtgYvxox+Su095TKfIAXesfwyI1Fqnm5ERVl4/\nIdI6l+7kGd9juw2mGTXI5nCEcHta68UP3uoujTCtjHce69TDR+RarLx+QqR1LtmCET+ELAjwwgxl\naxt/j1MIIYQQaYCrJhgZMZMN+QKtMGPKa2mtDyWxbW5Mmd+TmEmfhBBCCJE8XkBRYI3W+mJKdnTJ\nBONOSqm1wFGtdZ8knmsLfJv6UQkhhBBuo53Wel5KdnDpPhiJ3CrYk5STAHPnzqVkyZKpFpAd+vfv\nz+eff253GE4nr9O9hF6PodcbbzJl/BfkyeIub0lJSy//pvI63cfBgwdp3749xH+WpoTL/W9WSo3E\nzKZ4GjOtdDvMWPoX7rHLDYCSJUtSqVKlVInRLj4+Pm7/GkFep7s5HxlDluzelKtYiQJZXe4tKUXS\ny7+pvE63lOIuBq74vzk/MBsoCFwG9gEvaK3X2RqVEEIIIRK4XIKhte5udwxCCCGEuD+XKxUuhBBC\niLRPEgw3EhgYaHcIqUJep/sp17Cl3SGkivTybyqvU4CbDFO9H6VUJSA4ODg4PXXGEcJlnI+MYebh\ncDoX93X7Tp5CuJqQkBAqV64MUFlrHZKSfaUFQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCW\nkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaT\nBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpME\nQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRD\nCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMI\nIYQQlpMEQwghhBCWkwRDCCGEEJaTBEMIIYQQlpMEQwghhBCWc7kEQyn1jlLqN6XUFaXUP0qppUqp\np+2OSwghhBD/cbkEA6gJTACqAPUBT+BnpVQWW6MSQgghRIKMdgeQUlrrRol/V0p1Bv4FKgNb7IhJ\nCCGEELdzxRaMO/kCGgizOxAhhBBCGC6dYCilFPAFsEVr/Yfd8QghhBDCcLlbJHeYCJQCqtsdiBBC\nCCH+47IJhlLqS6ARUFNrfe5B2/fv3x8fH5/b1gUGBhIYGOikCIUQQgjXMX/+fObPn3/busuXLzt8\nPKW1ftiYUl18ctEMqK21Pv6AbSsBwcHBwVSqVClV4hNCJN/5yBhmHg6nc3FfCmR12e88QrilkJAQ\nKleuDFBZax2Skn1d7n+zUmoiEAi8BEQopfLHP3VZa33DvsiEEEIIcYsrdvLsDXgDG4C/Ey1tbIxJ\nCCGEEIm4XAuG1toVkyIhhBAiXZEPayGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQ\nQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBC\nWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJY\nThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhO\nEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4S\nDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIMIYQQQlhOEgwhhBBCWE4SDCGEEEJYThIM\nIYQQQljO5RIMpVRNpdSPSqmzSqk4pdRLdsckhBBCiNu5XIIBZAP2AK8C2uZYhBBCCJGEjHYHkFJa\n69XAagCllLI5HCGEEEIkwRVbMIQQQgiRxkmCIYQQQgjLudwtEiGEa7hy8wrHLx1PWE5cOkH4zXAi\noiKIiI7gWtS1+Mc3iIzxZPHOHOTMkoNsntnIlikbvpl9KZazGI/nfDxh8c7sbffLSpOuXIETJ+Ds\nWThzxvw8exb+/hsiIyE62iwxMeZnXBz4+kKuXP8tOXNCvnxQvDiULAn584PchBYPQ2ntuv0klVJx\nQHOt9Y/32aYSEFyrVi18fHxuey4wMJDAwEAnRymE+ztz5Qzbz2xPWA6FHuLi9YsJz2fPlJ1ivsXI\nlSUX2TJlI3um7GTzND9jdSZ2h17msWzRxOnrCYlH2PUwToSf4FrUtYTj5M6SmxJ5SuBf2B//wv5U\nLVyVQt6F7HjJtrlwAXbvhpAQs+zeDUeP/vd8hgxQoAAUKgSPPALZs0PGjODp+d+iFFy+DGFh/y2X\nLpljx8SY4/j6QokSZilfHmrVMj89POx53cL55s+fz/z5829bd/nyZTZt2gRQWWsdkpLjpZsEIzg4\nmEqVKqVecEK4sdOXT/PTkZ9Yf3I9289s58yVMwA85vMY/oX9KZe/HMV8/2t9yJM1D/fqk30+MoaZ\nh8PpXNyXAllvb1TVWhMaGfpfK0j4Cfb9s4/tZ7Zz6vIpAAp7F8a/sD91i9al6dNNedTnUee++FQW\nEQEbN8Lq1Wb580+zPkcOqFgRKlUyP4sXN0lFgQImoXBEdDQcPw4HD5rl0CHzc98+uHkTvL2hRg2o\nXdsslSs7fi7hGkJCQqhcuTKkhwRDKZUNeBJQQAgwAFgPhGmtTyexvSQYQjwkrTUh50L48fCP/Hjk\nR/ac30PGDBmpWriqWR6tSpVCVSiYo2CKj32/BON+zl09x46zOwg6HUTQGbPExMVQsUBFXir+Ei8V\nf4mKBSreM7FJy06cgO+/NwnFpk0QFQWPPQYvvgh16pgP9scfN60VqeHmTfjtNxPLxo2wdau59ZI7\nNzRvDq1bw3PPQaZMqROPSD3pLcGojUko7gx8lta6axLbS4IhhIMOXjjIN7u/4bsD33H26ll8vXxp\n9FQjXnr6JRo+2RAfL58HH+QBHE0w7nT5xmVWH13ND4d/YOWfK7l88zKFchTilTKv0K1iN0rmLfnQ\nsTrTpUuwaBHMmQNbtoCXl0kmGjY0y9NPp50+EdHRsGsX/PSTifnoUXNLpVkzk2y88IIkG+4iXSUY\nKSUJhhApc/XmVRb+vpBvdn9D0JkgcmfJTWCZQFqUbEHNIjXx9PC09HxWJRiJRcdGs/mvzSw9uJR5\nB+YRdj2MqoWr0q1iN9qUbkOOzDksOc/DiomBFStg9mxYvtz8/vzz0KGDaRnIls3uCB9Ma3MLZfFi\nk2wcPmw6iHbrBj17mpYX4bokwbgPSTCESJ59/+zjf9v/x4LfFxAZHckLT7xAt4rdeKn4S2TOmNlp\n53VGgpHYzZib/HD4B6bvns7Px34mq2dWXi79Mv38+1EufznLz5cc4eEwbRpMmAB//WX6UHToAIGB\npg+Fq9Ia9u+HqVNN0hQRAY0aQZ8+0KCBdBB1RQ+TYEgdDCHSMa01G09upNG3jSg/uTxrj69lUPVB\nnHzzJKvbryagdIBTk4vUkDljZtqUbsPq9qs5+eZJBlUfxNrjayk/uTyNvm3ExpMbSa0vWseOQb9+\n8OijMHQo1K3734iQ/v1dO7kAcwunXDn48kszRHbSJDNstnFjePJJs/7GDbujFKlFEgwh0qE4HcfS\ng0up+k1V6syqw5krZ5jTYg7H3jjGsNrDKOJTxO4QnaKITxGG1R7GsTeOMafFHE5fOU2dWXWo+k1V\nlh5cSpyOc8p59+yBli3hqafg22/hzTfh1CmYORMqVHDKKW2XPbu5RRISAtu3Q9WqJrkqVgzGjTOt\nG8K9SYIhRDqitWbxH4spPbE0LRe2JHPGzKxou4K9vffSvlx7y/tXpFWeHp60L9eefb33saLtCjJn\nzEzLhS0pPbE0i/9YbFmLxsGD0KaNuQWyfz9MngynT8NHH0HBlA+4cUlKQZUqMG+eGfb64osweDAU\nLQqffGKKhAn3JAmGEOnE+hPrqTKtCgGLAijqW5SgbkFs7LyRRk81csmhnFZQStHoqUZs7LyRoG5B\nPObzGAGLAvD/xp/1J9Y7fNzjx6FjRyhTBnbsMP0t/vjDfKPPksXCF+BinnoKpk83tTxat4bhw02i\n8fnnZiiucC+SYAjh5vac30PDuQ15bvZzKKVY13Edq9qtwr+wv92hpSn+hf1Z3X416zquQ2vNc7Of\n48VvX2Tv+b3JPsaFC6ZDY/HisHYtjB8PR46YERWe6aNxKFmKFjX9M44fNy08b70FpUrBkiWmo6hw\nD5JgCOGmzl09R8elHak4pSInwk+wOGAx27ttp26xunaHlqbVLVaXHd13sChgEccvHafilIp0XNqR\nc1fP3XOfmBgzIuTpp2H+fBg1ynTofPVVyOzafWSdqlAhc9to3z5z7Vq3NiXJf/vN7siEFdJNgjFl\nivReFulDTFwM/9v+P0p8VYJVR1cxufFkDvQ5QKtSrdLtrZCUUkrRulRrDvQ5wKTGk1h1dBUlvirB\n+B3jiYmLuW3b9etNH4t+/SAgwDT/v/02ZM1qU/AuqHRpWLkSfv7Z9MmoUgXatYPz5+2OTDyMdJNg\nTJ8OZcuaZksh3NW209vwm+pH/zX9aVe2HUdeO0Ivv17ppvOm1Tw9POnl14vDrx2mbZm2vLn6TZ75\n+hmCTgfx11+mef+558y8IDt3mvoPefPaHbXrev55M+rkm29MslGihPlyGOecwT3CydJNgvHdd6Y5\n7oUX4JVXzBhtIdxFaGQo3X7oRvXp1fH08GRH9x1MbDyRnFly2h2aW8iVJReTmkxiR/cdZFQZqTa9\nGk/078amXaHMnWvm5jC1iMTD8vCArl3NiJPWraF3bzPB2v79dkcmUirdJBjFipmmzNmzYd06kxlP\nniwdioTrW/T7Ikp+VZKlh5YyufFktnfbzjOFnrE7LLfkfe0ZMs3eDssn4VFmKTG9S5KpwqI0M0eI\nO8md24y+2bjRzNNSqRK8846ZZE24hnSTYIAZj92hg6mV/8orprf3Cy+YUr1CuJoLERcIWBRAm8Vt\nqP1YbQ69dohefr3wyCD1mK0WHW1qNpQvD//+48GGsb35a9Ah6hStTZvFbWizqA0XIi7YHaZbqlXL\nFCr74AMznLV8edi2ze6oRHJYX/jfBeTMae6Vtm5tho+VLWv+cLt0STuzFQpxP4t+X0TflX3RWrOg\n9QLalG5jd0hua98+6NwZ9u41wymHD79VyyIfiwIWsfD3hby68lVKTyzNxMYTaV2qtb0B38dff/1F\naGio3WE4pFEj0xn0gw/MLZOOHc3tE5m19eHlyZOHIkWcUL1Xa+3WC1AJ0MHBwToply5p3aWL1qB1\no0Zanz2b5GZCpAkXIi7ogIUBmuHoVgta6X+u/WN3SA/tXES0/iTkgj4XEW13KLeJjdV67FitM2XS\nukwZrXfuvPe256+e1y0XtNQMR7dZ1EZfiLiQeoEm06lTp3TWrFk1IIssty1Zs2bVp06dSvLvJjg4\n+NZ2lXQKP3/TZQtGYr6+ZoRJy5bQo4fJkKdMMb3DhUhLfjn+Cx2XdiQqNorvWn1Hm9JtZNipk5w9\nC506wa+/woABpq7F/epZ5M+en8UBixNaM8pNKsecFnOo93i91Av6AUJDQ4mMjGTu3LmULFnS7nBE\nGnHw4EHat29PaGio5a0Y6T7BuKVJE/j9d9Mv4+WXzXDWL76AbNnsjkykd1GxUby/7n0+3fYp9R6v\nx+zmsymYI51MZGGDJUtMSW8vL/M+UL9+8vZTSvFymZep9VgtOi7ryPNznmdQ9UF8VPejNDVMuGTJ\nklSqVMnuMEQ6kK46eT5IrlxmOOu0aWbGQz8/c/9VCLscDTtK9enVGbd9HGPqj2FN+zWSXDjJtWtm\neGTr1mYa9X37kp9cJFYwR0HWtF/D6Pqj+SzoM6pPr87RsKPWByxEGicJxh2UMh0/g4NN56Fnn4Wv\nvkKGs4pUpbVm9t7ZVJxSkfAb4QR1C+Lt6m+TQcl/WWc4cACeeQYWLjS3TBctMsMkHZVBZWBQ9UFs\n67qNSzcuUXFKRebsnWNdwEK4AHm3uoeSJc0siD17wmuvQYsWZiy2EM4WGR1J1x+70mlZJ1qVbEVI\nzxD8HvGzOyy3NWuW+SLh6Wm+WFg5muyZQs8Q0jOEViVb0XFZR7r80IXIaCnkINIHSTDuw8vLzIb4\nww+waZOp1Ld7t91RCXd2NOwoVb+pyoIDC5jVfBYzm88kR+YcdoflliIjTWtl584QGAjbt5tZUK2W\nI3MOZjafyazms1hwYAHVvqkmt0xEuiAJRjK89JL5ZpMzJ1SrBjNm2B2RcEfLDi2j8tTKXI++zo7u\nO+hYvqPdIbmtI0fA39/MfDpjhpn7wtmTk3Us35Ed3XcQGR1J5amVWXZomXNPKITNJMFIpmLFzHwD\n7dubjmA9e8rsrMIaMXExDFo7iBYLWlD/8frs6rmLsvnL2h2W21q61LRGRkWZacE7d069c5fNX5ad\nPXZS//H6tFjQgsFrB981O6sQ7kISjBTw8oKvvzbfdmbPNtXkTp60Oyrhyv659g/1Z9dnXNA4Pnvh\nMxYHLMY7s7fdYbmluDh4/31T8+bFF2HXLihTJvXj8PHyYXHAYsY+P5bPgj6j/uz6/Bvxb+oHIlzC\n5s2b2bp1q91hOEQSDAd07Wpq4V+8aL4JrVtnd0TCFQX/HYzf134cvniY9Z3WM6DqACmc5STh4dC0\nKYwcCaNHw4IFkD27ffEopRhYbSDrO63nUOgh/Kb6EXIuxL6ARJp09OhRli9fTvXq1VO035AhQ4iI\niHBSVMknCYaDKlUy/TIqVzYTpk2YIENZRfLN2z+PGjNqUDB7QXb12EXNx2raHZLb+uMPM0pk2zZY\nuRIGD047cw7VfKwmu3ruokD2AlSfXp35++fbHZKwUKdOnejZs6fD+w8dOpT33nsvxfu99tpr9O/f\n3+HzWkUSjIeQK5d5w3rjDbP06AE3b9odlUjLYuNiGbR2EO2+b0eb0m3Y1GUThbwL2R2W21q6FKpU\nMWW+d+6Ehg3tjuhuhb0Ls6nLJgJKBdD2+7YMXjuY2LhYu8MSFihTpgytWrVyaN+goCDy5ctHjhwp\nH0VWuHBhnn76aZYts7cjsSQYDyljRhg3DmbOhDlz4Lnn4Px5u6MSadGl65doMr8JnwV9xucNPmdm\ns5l4ZfSyOyy3pDV8/LHpb9GwIQQFwZNP2h3VvXll9GJW81mMe2EcY4PG0mR+Ey5dl8I7ru7tt9+m\nQYMGDu07ceJEOnTo4PC5e/Toweeff+7w/laQBMMinTqZWhknTpiKgMHBdkck0pIjF49QZVoVdpzZ\nwZr2a3jT/03pb+Ek169Du3amQ+eIEaY6p539LZJLKUX/qv1Z3W41O87soMq0Khy5eMTusIRNtmzZ\nQuXKlR3e38fHB19fXw4cOGBhVCnz0JOdKaW8geeAw1rrgw8fkuuqUsX0TG/RAmrWNC0aDraOCTey\n7sQ6Wi1sRcHsBdnZYydP5HrC7pDc1rlz0Lw57N9vEouAALsjSrnnn3ienT120mR+E/yn+bOkzRLq\nFqtrd1guYc6cOezbt4/o6Gi++OILAK5evUrFihXZs2cP2S3MNOPi4hgxYgQeHh5ky5YNHx8funfv\nDsCsWbM4cODAbXEAfPjhhxw4cICOHTuSKVMm9u3bx7Vr1wgLC2P8+PEJ2x09epS8efOSMePtH9Ex\nMTGMGzcOpRTBwcGMHDmSWbNmce3aNfz8/Gjbtu1t21etWpVVq1ZRxo7hUjiQYCilFgKbtNZfKqWy\nALuAouYp9YrWeonFMbqURx6BDRtMueHWrc00z0OGpJ1OZSJ1fR38NX1X9qVu0bosDFiIr5ev3SG5\nrd27TVG8uDjTmujnwtXVn8j1BEHdgmizqA0vzH2BSY0n0b1S91SNITISDh1y7jlKlLCuwNnhw4fJ\nlCkTLVu2pEGDBgkf7Nu2bSM8PNzS5AJg7NixFCtWjM6dO7Njxw5atGhB9+7d+eOPP/Dy8rorjg0b\nNlC/fn1y5cpF3759mTBhAm+99RYAuXPnpnv37pQrVw6As2fPki9fvrvO+dVXX9GmTRuKFi3K4MGD\nadiwIfv376d+/fr8/fffdyUY5cuXZ+7cuZa+7pRwpAWjFjAy/nELQAG+QCfgPSBdJxgAWbLAvHnw\n9NMwdCgcPgxTp5rJ00T6cKsz57jt4+jr15f/vfg/MmZ46AZDcQ9Ll5oieKVKwbJlUMgN+s36evmy\nou0K+q3uR4+fenAo9BBj6o/BI4NHqpz/0CEzSs6ZgoPNiDwrbN68mQ4dOjBu3Dj8EmWXQUFB1Kx5\n+yituLg4WrVqxc34Xvn6jiGAt25faq3x9fVl/vy7R/ds3LiRMmXKEB0dTYUKFdiwYQNgbm107tyZ\nMWPG3HaL4/Dhw/Ts2ZPZs2dTrVo1mjVrBkBsbCxXr1697ZbphQsX8PHxueucnp6eFC1aFIDQ0FCa\nNm2Kl5cXkyZN4pFHHrlr+1y5cnHs2LF7XjNnc+QdzwcIi3/cEFiitY5USq0APrUsMheXIQN8+KGZ\n26BrV9M3Y8kSyJPH7siEs129eZW237dl5Z8rGd9wPK9Xed3ukNyW1qaT9dtvmxbDmTOdX/I7NXl6\nePJVo68O2Pr2AAAgAElEQVQomackb655kyMXjzCv1TyyZ3J+p5ISJZzfl6xECeuOdev2xLJly+jS\npUvC+qCgIF588cXbts2QIQNLly59qPPVq1ePt956iwkTJhAQEMCUKVMAEoalLly4kL59+yZs36tX\nL8AkQomHnm7fvp1MmTJRsmTJhHVxcXFJnjPx8bZt28bIkea7ftmySVf+zZkzJ5cvX3bk5VnCkQTj\nNFBVKRWGSTBeiV+fE5Di2Xdo1w6KFjX3hf39YcUK50yoJNKGM1fO0GReE45fOs7ywOW8+NSLD95J\nOCQmBl5/HSZPhnfeMaNGMrhht3WlFK9XeZ0ncz3Jy4tfpsb0Gixvu5zC3oWdet6sWa1rXUgtly5d\nIjg4mMWLFyes++233xg9erTl5xowYAD+/v6sWLGCiRMnUqJECd555x0Afv/9dw4dOkTr1q1v2ycs\nLIxDhw5Ro0aNhHXLly+nXr16t/W3yJMnD+Hh4fc894ULFzhy5MgDC3DFxsaSycamc0cSjC+Ab4Fr\nwClgQ/z6WsB+a8JyL9Wrm6nfmzSBqlVNE26tWnZHJay25/weGs9rjIfyYFu3bZTJZ0/HqvTgyhV4\n+WX45ReYNs3MiuruXnzqRbZ23UrjeY3xn+bPirYrKF+gvN1hpSnHjh3D19eXRx99FDAf9FprKlSo\ncNt2d94iuZekbpHExMRQsWJFBg0aRIcOHahWrRr58uXj9OnTCdssWrSIOnXqkDdvXsaOHZvQ12Lr\n1q0ULlw4Ib5b237wwQeEh4ezYsUK2rVrR8GCBbl48eJtscTExLB582bq1q3Lpk2bKFq0KPnz5wdg\nzZo1FC1alOJ3fHu9dOkSefPmTe7ls1yKEwyt9USl1G/Ao8BarfWttpzjmD4YIgmPP24qCbZsCc8/\nb5pyAwPtjkpYZfXR1QQsCuDp3E+zPHA5BXMUtDskt3X6tEnWT56EVaugfn27I0o9ZfOXZXv37TSd\n35QaM2qwOGAxDZ50rM6CO8qRIwfR0dForVFKMXXqVGrUqHHXkPCHuUUSGRlJVFRUQutBXFwcwcHB\nvP322wnbBAcHU69ePf7++2+yZMmSsH7z5s23tV6EhYVx4sQJ6tWrx6JFixL6ZZQoUYJ//vmHuLg4\nMsQ3y3399dcMGDCAsLAwVq9enZA4REdHs27dOsaMGXNXrKGhoUn2zUgtDvU601rvwoweSbxuhSUR\nuTFfX1i92lT8bNvWvEHKCBPXNzV4Kn1X9KXhkw35rvV3qXJ/PL0KCTHJRaZMJmEvXdruiFLfIzke\nYWPnjbyy+BUaz2vMxMYT6VnZ8XLU7qR48eK88cYbDBgwgLx587JixQr69Olj6Tm8vb0ZNGgQM2bM\nwNPTk/DwcLp06XJbP4jOnTuzYMECoqOjE26bgBkd0rJly4Tfc+XKRcuWLZk8eTIVK1ZMGDmilKJK\nlSrs3buXihUrAlCzZk2aNWvG6NGjef3115k6dSrDhg1Da83AgQOTjHXXrl23dXhNdVrrBy7AOCBb\nosf3XJJzvNRcgEqADg4O1mlFXJzWH3ygNWjdo4fWUVF2RyQcERsXqwevHawZjn51xas6Ojba7pBc\n0rmIaP1JyAV9LuL+12/lSq2zZdPaz0/rc+dSKbg0LDo2Wvdd3lczHD1k7RAdGxd73+2Dg4N1Wnsv\ntFJUVJR+7bXX9J9//qm11vr8+fPa29tbnz171ubIHLNq1So9dOjQhzpGvXr19NGjR++7zYP+Lm49\nD1TSKfz8TW4LRkXAM9Hje+YrKcht0i2lYPhwKFYMuneHv/6CRYvAgZLzwiY3Y27S+YfOLDiwgHEv\njJPKnE42bRr07g2NGsH8+ZAtm90R2S9jhox82ehLnsj1BG/9/BYnL59kZrOZZM6Y2e7QbLFnzx5m\nz55Njx49ADOaY8yYMbbeIngYDRs25Msvv+TGjRt4eaV8SoGzZ88C8MQT9hX2S1aCobWum9Rj8XA6\ndYLChU2/jFq1zMRpBeXWfZp36folWixowfYz21kUsIhWpaRcq7NoDcOGmREiffrA+PFm/h9hKKUY\nUHUAj/k8Rrvv23Hu6jmWvbIsXRZ0q1ChAv3792f16tXMnj2bLl260Lx5c7vDeijDhw9nxIgRfPLJ\nJyned8KECQ7NxGolRyp55tVaX7jHc+W01vsePqz0o1492LLFfDPz9zd9NBINhxZpzKnwUzSa14jz\n187za8dfqV7k/sPEhOOiokx/pdmzYfRoGDRI+ivdS6tSrcifPT/NvmtG9enVWdVuFUV8itgdVqry\n9PRk+PDhdodhKT8/P06ePMn69eupWzf53+337t1LVFQUderUcV5wyeDIqPH9SqnGd65USr0F7Hj4\nkNKfsmXNbI8+PlCtGmzebHdEIil7zu+h6jdViYyOZFvXbZJcONHly9C4sbkd8u23MHiwJBcPUqNI\nDbZ23UpkdCT+0/zZc36P3SEJC7Ru3TpFyQXAypUr+fRT++teOpJgfA4sUUpNUkplUUoVUkqtAwYB\nbR+wr2WUUq8qpU4opa4rpbYrpZ5JrXM7Q+HCJrGoWNEMu1u0yO6IRGI/H/uZmjNq8kiORwjqFkTx\nPFItzVnOnjW3DHfuhJ9/NiOuRPKUyFOCoG5BFMxRkFozarH22Fq7QxI2eOedd/DwSJ2S8veT4gRD\naz0G8AdqAvvilxtAOa31w9VeTSal1MvAZ8AHmE6ne4E1SimXLsTt42NukQQEQJs2pgSysN+sPbNo\nPK8xNYvUZEPnDRTIXsDukNzWH3+YYnRhYbB1K9jcwuuSCmQvwMbOG6lepDqN5jVi9t7Zdock0ilH\nC+seAw5gZlH1BhZorc9bFVQy9AemaK1na60PAb2BSKBrKsbgFJkymXvOQ4bAwIHQv7+ZHVKkPq01\nozaPovMPnelUvhM/Bv4oNS6caPtWU/XW19fcMkyPNS6skj1Tdn585Uc6le9Ep2WdGLV51F0Tegnh\nbI508qwOzAUuAuWA6sCE+H4ZvbTWl6wN8a7zewKVgVG31mmttVLqF6CqM8+dWjJkgE8+gUcfhdde\ng7//hlmzwIGRSsJBMXExvL7ydSYHT2Z47eEMqz1MhqE60f5fMjH8fQ+qVTMzoyYxkaRIIU8PT75u\n+jWFvQvz7rp32e272+6QRDrjyICvdZh+GO9rraOBg0qp9cAczFwkzp2BB/IAHsA/d6z/B3CrG+N9\n+5phq23bQoMGZg6TnDntjsr9RUZHErgkkBVHVjCt6TS6VUoHE13Y6OuvFPMH56B5a838OYrM6bOM\ng1MopRheZziFvQvTa2ovu8MR6YwjCcYLWuuNiVdorY8ppWoA71oTlkMU9yn0FXo9hvORMakYjjWq\nNoCFK6BTgAdVq8O3y2Ip5OwULh27GBlKp++b80fofma1XEq9x190yb8bVxAXBx+9m4HJ4z2o1TGS\nEZ9l4FJsRnOzU1iqSYnOjKh7lfenDLA7FJFG3eszMvS64+9/jkx2tvEe6+OAjxyOJPlCgVgg/x3r\n83F3q0aCXm+8SZbs3retK9ewJRUatrzHHmlITuj8tQczXvPmuZqKLhOuUOCpWLujcjthESeZsf0V\nrkdfpov/Mk5HV2Tm4XtPmSwcFxMFiz7Iwf6fPWjy9jWqB95gxekH7ycc909sObtDEGnYT6euMn3T\ndPat/v629devXXH4mA7VxFNKZQNqA0WA2yab11qPdziaZNBaRyulgoF6wI/x8aj43+957injv6Bc\nxUrODM25ikOnzZr2LT2Y3sOXGd/FUb22dNqyyt7zwbT/5SVyZPLmp8AtFM1pX3ldd3c5HLoGZuDw\nDsXUuXFUbZiRn05B08eyk9tLynQ6y77IHHxpdxAizWr6WA7KNe8K/W4fK7FvdwgNalRx6JiOdPKs\nCKwEsgLZgDBMv4hI4F/u8yFvoXHArPhE4zfMqJKswMx77ZAnS0YKZHXtN68CT8C2LdC6NQQ282Dm\nTKkRYIVVf64iYFEAZfKV4afAn8ibLa/dIbmtM2eg9Yum1sUvv0CNGh6cjzSJcm4v1/8/mpb9nUWu\nrbi3e31GPszfjaOFtn4CcgLXMTUxHgOCgbccjiQFtNYLgYHAh8BuzGiWBvcqYe5OcuSA5ctNYtGu\nHfzf/5n5GoRjpu+eTtP5TXmu2HOs67ROkgsnOnDA1Li4csXUuKhRw+6IhBDO5EiCUQH4LL7PRSyQ\nWWt9GlPJc9R997SQ1nqi1rqo1jqL1rqq1npXap3bbp6eMGMGvPeeKaH8xhsQK10yUkRrzYgNI+j2\nYze6V+rO9y9/T1bPrHaH5bbWrzcJRe7cpsaFzLcjhPtzpO0jmv9Ga/yL6YdxELgc/1ikAqXgo49M\nrYw+fUyT87ffQpYsdkeW9sXExdBneR+m7Z7GyOdG8k6Nd6TGhRN9+y106QK1a8OSJeDt/eB9hBCu\nz5EWjN2AX/zjjcCHSql2wBeYOhgiFfXsCT/8AGvWmJlZQ0Ptjihtu3rzKk3nN2Xm3pnMbDaToTWH\nSnLhJFqbgnHt25tbeitXSnIhREpt3ryZrVu32h2GQxxJMIYC5+IfvwtcAiYBeYGeFsUlUqBJE9ME\nfeyYucd99KjdEaVNf1/9m1oza7Ht9DZWtVtFpwqd7A7JbcXEmEJxQ4fCsGHmlp6np91RCeFajh49\nyvLly6lePWUzNw8ZMoSIiAgnRZV8jkx2tktrvT7+8b9a64Zaa2+tdWWt9V7rQxTJ8eyz5t62h4dJ\nMoKC7I4obfn939/xn+ZPaGQoW7psof7j9e0OyW1FRECLFvD11zBtGowYIVOtC+GIoUOH8t5776V4\nv9dee43+/fs7IaKUcXSyMwCUUkOUUr5WBSMezuOPw7ZtpgPdc8+Z+90C1p1YR/Xp1cmVJRfbu22n\nbP6ydofkts6fNzOgbthgRjt1kyrrQjgkKCiIfPnykSNHjhTvW7hwYZ5++mmWLVvmhMiS76ESDMzt\nklxWBCKskSsX/PwzNG9upn3//PP0PYx1zt45NJzbkCqFq7CpyyYKeReyOyS3deAAVKliJufbtAka\nNrQ7IiFc18SJE+nQoYPD+/fo0YPPP//cwohS7mETDGn4TIO8vEzP/cGDYcAAM4w1Jp1Np6G15oP1\nH9BxWUc6lOvA8sDleGeWHobOsnatmWo9Z07YsQMqVrQ7IiFc25YtW6hcubLD+/v4+ODr68uBAwcs\njCplpLSbm7o15XuxYqaz3fHj8N13plCXu7sRc4OuP3Rl/oH5fFLvEwZXHywjRZxo2jTo3RteeAEW\nLEgff2MibZozZw779u0jOjqaL774AoCrV69SsWJF9uzZQ/bs2S071+XLl/n444/x9vbGw8ODPHny\n0LPnf+Mcrly5wsiRI8mWLRsAERERjB49OuG9KC4ujhEjRuDh4UG2bNnw8fGhe/fugOncmTdvXjJm\nvP0jOiYmhnHjxqGUIjg4mJEjRzJr1iyuXbuGn58fbe8o7Vy1alVWrVpFmTJlLHvdKeFIqfCZwHSt\n9SagFPC31UEJ6/TsaZKM1q3NN8zly6GIG1cruRBxgRYLWhB8LpiFrRcSUDrA7pDcVlwcvPsujB5t\narGMHw8Z5SuL24iMjuRQ6CGnnqNEnhKWFbg7fPgwmTJlomXLljRo0CAhwdi2bRvh4eGWJheXLl2i\ndu3afPrppzRo0IApU6YwZMiQhAQjPDyc2rVrM2rUKBo3bgxAYGAgU6dOpVevXgCMHTuWYsWK0blz\nZ3bs2EGLFi0SEoyzZ8+SL1++u8771Vdf0aZNG4oWLcrgwYNp2LAh+/fvp379+vz99993JRjly5dn\n7ty5lr3ulHLk7SAnsFYp9RcwA5gFnLU0KmGp5583o0oaNzajTX76CZ55xu6orHco9BCN5zXmWtQ1\nNnTaQJXCjk3QIx4sMhI6dTIdiT/7DPr3l5Ei7uZQ6CEqT3W8iT45gnsGU6mgNZNQbt68mQ4dOjBu\n3Dj8/PwS1gcFBVGzZs3bto2Li6NVq1bcvHkTMLdUE7vVyqC1xtfXl/nz59/2fL9+/ShTpgwNGjQA\noFChQnzwwQcJz7/xxhuULFkyIbkAKFKkCCtWrEhIMDZu3EiZMmWIjo6mQoUKbNiwIWHbCxcu4OPj\nc9dr9PT0pGjRogCEhobStGlTvLy8mDRpEo888shd2+fKlYtjx44lfcFSgSPTtTdTSuUFOgCdgBFK\nqV+Ab4AftNbRFscoLFCqlLk33qyZqag4Zw60amV3VNZZf2I9LRe25JEcj/Brx18p6lvU7pDc1tmz\n5u/o4EH4/nvToVi4nxJ5ShDcM9jp57DKrW//y5Yto0uXLgnrg4KCePHFF2/bNkOGDCxdutSh85w7\nd4758+ezZs2ahHVNmjS57/MAp06dIioqKuH3evXq8dZbbzFhwgQCAgKYMmVKwnNxcXFJnrtv374J\nj7dt28bIkSMBKFs26ZFxOXPm5PLlyyl4ddZyqEEzflKxccA4pVQloAswB7imlJoLTNRa/2ldmMIK\n+fLBunWmbHPr1vDxx6YQkqt/85y0cxJvrH6D54o9x8LWC/HxujvzF9bYudMkFxkzmgnLKlSwOyLh\nLFk9s1rWupBaLl26RHBwMIsXL05Y99tvvzF69GjLzrFz504AqlWrluzntdZs2rSJ3r17J6wbMGAA\n/v7+rFixgokTJ1KiRAneeecdAPLkyUN4ePg9Y7hw4QJHjhx5YAGu2NhYMmXKlLwX5gQPdcdUKVUQ\neB54ATPx2UqgLPCHUmqQ1treMTLiLlmywLx5UKKEmSxt/36YPh2yuuA8X9Gx0fRb3Y9JuybRr0o/\nxr4wlowZpBOAsyxYAJ07Q/nysGwZFChgd0RC3O7YsWP4+vry6KOPAvD777+jtabCHZnwnbdI7iWp\nWySxsbH4+Pjg5eV127bHjx+nSJEiST6/du1aIiIi6N27NzExMVSsWJFBgwbRoUMHqlWrRr58+Th9\n+nTC9gULFuTixYu3HT8mJobNmzdTt25dNm3aRNGiRcmfPz8Aa9asoWjRohQvXvy2fS5dukTevPbN\nEO1IJ09P4CVMq8ULwD7MFO7faq2vxm/TApgev16kMRkywPDhUKaMuY9eq5b5wChc2O7Iku9i5EUC\nFgWw5a8tfN30a7pX6m53SG5La1ONc8QIM6fIN9+YodBCpDU5cuQgOjoarTVKKaZOnUqNGjXuGkX2\nMLdI6tSpA5g+EHny5AHgwIEDzJs3j1GjRlG7dm201oSFhZErVy6uXLnCkCFDmDVrFvny5ePKlStE\nRUUltD7ExcURHBzM22+/nXCOEiVK8M8//xAXF0eGDKaaxNdff82AAQMICwtj9erVCYlDdHQ069at\nY8yYMXfFGhoammTfjNTiyNe9c5j6GfOBZ7XWe5LYZj1w7/YdkSa0bg1PPmmavP38YOlSU2Y8rfvj\nwh80nd+UKzev8EvHX6j1WC27Q3Jb166ZVoslS2DkSHjnHde/pSbcV/HixXnjjTcYMGAAefPmZcWK\nFfTp08fSc+TMmZMlS5bw5ptvUrJkSWJjYylSpAijRo0CTMfKRYsW0a9fP5566ilOnz7NV199RdX4\nN1dvb28GDRrEjBkz8PT0JDw8nC5dutzWj0IpRZUqVdi7dy8V44vK1KxZk2bNmjF69Ghef/11pk6d\nyrBhw9BaM3DgwCRj3bVr120dXlOd1jpFC6Zzp1dK97NrASoBOjg4WIuk/fOP1tWra50pk9YzZ9od\nzf39cOgHnWNUDl1mYhl9POy43eG4tT//1Lp0aa2zZ9f6+++dd55zEdH6k5AL+lxEtPNOInRwcLB2\n5/fCqKgo/dprr+k///xTa631+fPntbe3tz579qzNkTlm1apVeujQoQ91jHr16umjR4/ed5sH/V3c\neh6opFP4+evIZGdztNY3rEtxhN1udf7s0MF8W33jDUjU2TlNiI2LZdj6YTT7rhn1Hq/Htq7bKJaz\nmN1hua1Vq8xQ5uho+O03M3mZEGnZnj17mD17NpGRkQD07NmTMWPG2HqL4GE0bNiQvXv3cuOGYx+3\nZ8+a6hFPPPGElWGlyMOWChduIlMmM/vlV1/B5MlmsrRz5+yOygi7HkbT+U35eNPHjHxuJEvaLCFH\nZikX6QxamwqwjRtDjRomuShZ0u6ohHiwChUq0L9/f1avXs1bb71Fly5dbhu14YqGDx/OiBEjHNp3\nwoQJDs3EaiXpci8SKGXKilesaPpnVKoECxfCHTVqUtXe83tpsaAFl29eZlW7VTR4soF9wbi5q1eh\na1dYvBjef990BM4gX0GEi/D09GT48OF2h2EpPz8/Tp48yfr166lbt26y99u7dy9RUVEJHVLtIm8f\n4i5Vq0JICBQvbloy/vc/e2Zk/Xbft1T9pio+Xj7s6rFLkgsn2r/fdPRds8Z09v3wQ0kuhEgLWrdu\nnaLkAmDlypV8+umnTooo+eQtRCQpf3745RfTH+PNN83wxKtXU+fcN2Ju0Gd5H9ovbU/rUq3Z2nWr\n9LdwohkzzDTrXl6wa5dU5hTC1b3zzjt4eHjYHYYkGOLeMmY080wsWGAmSatcGXbvdu45D4cepsq0\nKszYM4PJjSczq/ksyyZDEreLjDRVXbt2hXbtYPt2ePppu6MSQrgLSTDEA7VpY26ZZM8O/v4wYYJz\nbpnM3TeXylMrczPmJr/1+I1efr1kmnUnOXTItFosXAizZpkOvlmy2B2VEMKdSIIhkuWpp8yMrL17\nm9smLVpAWJg1x46IiqDrD13psLQDLUu2ZFfPXZTLX86ag4vbaG0qcfr5QWysGSXSsaPdUQkh3JEk\nGCLZMmc2HT6XLYNNm8xEV1u3Ptwxd5/bzbPTnmXB7wuY0WwGs1vMJnum7NYELG5z8aIZHdS9O7zy\nikkuSpe2OyohhLuSBEOkWLNmsGcPFCli5jEZOhQeMGfQXWLiYhi1eRRVplXBM4MnO3vspHOFzk6J\nV8DatVCuHGzYYMp+T5tmbnkJIYSzSIIhHFKkiPmw+ugjGDsWnn0W9u1L3r5Hw45Sa0Yt3l//PgOr\nDmRH9x2UylvKqfGmVzduwIAB8MILUKqUGY7asqXdUQkh0gMptCUcljGjab1o1MiUGffzMzNuvv22\nee5OWmumBk9l4M8DyZ89P5s6b6J6keqpH3g6sXOnGSFy5AiMGwf9+kltCwEHDx60OwSRhjjz7yHd\nJBijNo3im1Lf4OPlY3cobqdCBVM/4YMP4L334McfzciExEMeT4Wfos+KPqw6uooelXowrsE46Wvh\nJJGR5t9i3Djzb7Nzp7k9ItK3PHnykDVrVtq3b293KCKN8fDIyh9/5KFSJWuPm24SjJVHV1JqYikm\nNppIsxLN7A7H7WTODKNHw0svQadO5gPtvfdgwMBYpu6dwHvr3sPXy5efAn+iydNN7A7XbW3YAD16\nwOnTMGoUDByYdGuSSH+KFCnCwYMHCQ0NtTuUB9p0ahOjNo/i6s2r9H22L6+UfgWPDPYXjnJH587B\n6NF56NChCFu2wPjxZm4qS6R0+lVXW4ifrn35huW60beNNMPRAQsD9Lmr5+47ha1wXESE1kOGaO1R\nKER7vVFZq+FKv7biNX35xmW7Q3Nbly9r3auX1qB1jRpaHzpkd0TJJ9O1i6RcvnFZv7riVa2GK+03\n1U/vPrfb7pDcVlyc1hMnah0QYB4nlqrTtbuqgjkKsjxwOfNazmP9yfWU+qoUU3ZNITYu1u7Q3I7O\nGEHsc4Og5zMoz5voadu4/v0EYiK87Q7N7cTFwZw5Zt6Yb781s+Fu3Gh+F8KVeWf25stGX7Kt2zZu\nxNzAb6ofg9YOIjI60u7Q3E6cjsXj2alkb9cVK2sbppsEA0ApRWDZQA6+epBmJZrRe0VvKk+tzMaT\nG+0OzS1orZm3fx4lvyrJhN8m8PFzH3PpkxAmv+fP4sXmQ++bb0yBJ/Hwdu0yU6p37GiGC//+u5kN\nVzpyCnfiX9ifkJ4hfFT3I8bvGE+JL0swb/+8Wy3U4iFtPLmRylMr02t5L2J1LFGxUZYdO12+FeXJ\nmocZzWawo/sOvDJ6UWdWHdosasOp8FN2h+aygk4HUfWbqrT7vh1+j/hxoM8BhtQYQmZPT3r1MqWp\nGzQwRZ4qVTJ1GYRj/v3X9LN49lm4dg3WrzfzxRQpYndkQjiHp4cn79R8h9/7/o7fI360+74dVb+p\nStDpILtDc1knw0/SZlEb6syqg1dGL3Z038Gs5rPI5GFVB4x0mmDc8myhZ9nWbRuzm89my19bKPFV\nCYatH8bVm6k0bagbOBV+ilcWv0K16dWIio1ifaf1fP/y9zyR64nbtitQAObONRNq5chh6jI0amS+\ndYvkiYyE//s/MzpnyRIzJ0xICNSpY3dkQqSOJ3I9wfcvf8/6TuuJio2i2vRqBC4JlC+HKXD15lWG\nrR9Gya9KsvX0Vua0mMO2btt4ttCz1p8spZ02XG0hvpNncHDwfTu5XL15Vb/767s680eZde4xufWY\nLWP0tZvX7rtPenb+6nk9cM1AnfmjzLrA2AJ6esh0HRMbk6x94+K0XrJE6yee0DpDBtM58cwZJwfs\nwm7c0Hr8eK3z59c6Y0at+/TR+sIFu6OyjnTyFI6IiY3R00Om6wJjC2ivj730wDUD9fmr5+0OK826\ndvOaHrNljM49JrfO/FFm/e6v7+qrN68+cL+H6eRpewLg7CW5CcYtf4X/pXv/1Ft7fuip832aT3+2\n7TMdERWRrH3Tg3NXz+n+q/vrLB9n0d6feOv3172frD/SpNy8qfXnn2udM6fWmTJp3bu31idOWBuv\nK4uK0nrqVK0ffdQkYp06aX3smN1RWU8SDPEwrty4ot9f977OMSqHzvJxFt1/dX8ZJZhIRFSE/mzb\nZzrv/+XVnh966j7L++i/wv9K9v6SYFiYYNxy4tIJ3f2H7tpjhIcuMLaA/iLoC4c/SN3B2Stndb9V\n/bTXx17a5xMfPWzdMB0WGWbJsS9f1vqTT7TOk8d8Q+/SResjRyw5tEuKiNB68mTTwgNav/yy1gcP\n2stOYgsAABWQSURBVB2V80iCIawQFhmmh60bpr0/8dZeH3vpfqv66bNXztodlm2u3ryqvwj6QhcY\nW0B7jPDQ3X/ork9cOpHi40iC4YQE45ajF4/qzss66wwjMmifT3z0wDUDHfpHclW7zu7SXZZ10Zk/\nyqx9R/vq4euH60vXLznlXNeuaf3ZZ1oXKGC+sQcGah0UdPe4bHf1999av/uu1rlza62U1i1bar1n\nj91ROZ8kGMJKl65f0sPXD9e+o3115o8y6y7Luujgvx17/3dFx8OO6wGrB2ifT3x0hhEZdOdlnfXR\ni0cdPp4kGE5MMG45eemkHvTzIJ1zdE6dYUQG3fy75nr9ifU6zg0//W5E39Bz987V/tP8NcPRj457\nVI/aNEqHXw9PlfNfv671l19qXbSo+QutUMF8o7/qpg1IISFad+yotaen1tmza92vn3veCrkXSTCE\nM4RfD9ejNo3Sj457VDMc7T/NX8/dO1ffiL5hd2iWi4uL0+tPrNfNv2uuM4zIoHOOzqkH/TxInwo/\n9dDHfpgEQ2ntOmOJlVJDgcZABeCm1jpXMvapBAQHBwdTyYJC6xFREczdN5fxv43njwt/UCZfGdqX\nbU9g2UCK+Lj2OME/LvzB3H1zmRYyjQuRF6j/eH1efeZVmjzdhIwZUr/edFwcrFkDkybBihWQLZuZ\nVK1XLyhbFksLwqS2c+dg3jwzsmbPHjPEtF8/6NYNfNLZdDnnI2OYeTiczsV9KZBV6poLa8XExbD8\nyHK+/O1Lfj3xK/my5aNbxW60L9fe5WdxPhV+iu8OfMfc/XM58O8BSuUtRb8q/WhXth3ZMmWz5Bwh\nISFUrlwZoLLWOiQl+7pagvEBEA48CnS1I8G4RWvNryd+ZVrINH48/CPXY65Ts0hN2pZtS+tSrcmT\nNY9l53KmIxePsODAAhb+sZAD/x7AJ7MPHct3pO8zfSmRp4Td4SX46y+YOhWmTYN//oESJaB1a7OU\nK+cayUZEBCxdaipv/vKLmSPkpZegfXto3Dj9zhkiCYZILYdCDzFx50Rm753N5ZuXKZOvDC+Xfpk2\npdvwdO6nH3yANCA0MpTFfyzm2/3fsuWvLWTJmIWXir9E90rdqVesHsriN8N0k2DcopTqBP/f3r1H\nW1nXeRx/f4GjclEIDwdQFAUjCRQEypWlRAXdNXPKyGqmZppsusyy1XSZpjVOsxobl9lUM9aaXKZ2\nYXS6mNNSAQPvZQUCieAFvIACh4uAHBA55/zmj2cfORAo5/A759n7nPdrrd/a7Ofs397fh337PM/z\n28+Pb5UZMNp7bvdz3LTyJn764E+Zv2o+EcGMk2Ywa+wsZo6ZyenDT8/+pHfWnpY9LFq3iNtX387P\nV/ycJeuXMOiIQZz3qvO4cMKFzBo7iyP7HVl2mQf1wgswb15xHoibboKtW+GUU4qgce65xZTxdXVl\nV1lICR5+GG67rWh33gnPPw9nn13siXnf+2DIkLKrLJ8BQ91td/Nu5q6ayw3Lb+Dmh29mxws7mDxi\nMheMv4C3jHkL046bVspe2wNJKbFswzLmr57PvFXzWPjEQlJKzBw7k4tOu4jzXnUeRx95dJc9vgHj\npW/b5QGjvcamRm5cfiO/fuTX3PnknTzf/DwNAxuYOWYmM8fM5KwTzmLs0LH0ie45x1lLawtL1i9h\n4RMLWfD4Au5+6m52vLCDQUcM4h2vfAcXTriQt5/ydvrX9e+WenJ64YXiLJY/+1mxZ2DzZhgwAM46\nC6ZPL06f/drXwlFHdU89ra2wahUsWlTUNXcuPPlkMdPs9OnFmUzPPx9OPrl76qkVBgyVadeeXdz6\n2K3csPwGbnn0lhc/H88+8WzedPKbmHHSDCaPmNxts7m2plZWbVnFfWvuY97qedy++nYamxrp368/\n54w+h3eNexfvn/B+GgY2dEs9BoyXvm23Boz2nm9+nnufupf5q+czf/V8Hlj3AInEwLqBnDb8NCYP\nn8ykEZOYNHwSo4eMpmFgQ6dTc0trC2u3r2X5xuU82Pjgi5crNq5gV/Mu+vfrzxtOfAMzTprBjJNn\nMHXkVOr6VsmmfgbNzcVZLe+8s2h33w3btxdf7qedBuPHF4dVxo8v2tixnd/T0dxcjKF4+ml45JHi\ncRcvLsZSPFc5Cey4cfC2txVt+vQi+OjADBiqFm17eBc+vpAFTyzg3qfuffHzc/yw8UxsmMiEYRNe\nvBx1zKhOB4/m1mYamxp5cuuTLN2wlCXrl7B0w1L+tOFPNO1pIgimjJxSbJyOLTZOj+rXTVtL7dR0\nwIiIy4AvvsRNEjA+pfRIuz41ETD2t3nnZhatW8TS9UtZuqFoKzetpLm1uaiVYNjAYYwYNIKRg0bS\nMLCBuj519Ik++7Tm1mY27drExqaNbNq5iY07N7Jl1xZaUysAg44YxKuHvZqJwyYyoWEC046bxpnH\nn1nVhz5ya2mBZcvgrrtg6dJiLpQVK4pDKlCMd6ivh1e8AoYO3dsGDy4ObezZs7c1NxfjJ55+umjr\n1xe3afPKVxbzq5xxxt7L+toYglMVDBiqVrubd3P/0/fzx2f+yPLG5Ty48UEe2vgQO17YAUCf6MPQ\n/kMZNmAY9QPqGTZwGPX96+nXpx+tqXWftqd1D41NjazbsY71O9azsWkjieKDpF+ffpxafyqThhcb\nnJNGTGLqyKkcO+DYMlcfqP2AcSzwcv+Lq1NKze36dDhgnHPOOQzeb3j+7NmzmT17dieqzmd3825W\nblrJ2u1rWbdjHeueK15863aso7GpkebWZhJpnxdq3+hL/YD64gU9YFjxoh5Qz6hjRjFh2AROHHxi\n1Yz5qCYpFROFrVhRjI1obIRnn4UtW/a2rVuL2Ujr6ooQUldXtP794fjj97ZRo4rLk06CY5yF/rAY\nMFRLWlMra7atYfnG5azdvrbYyGvayMadxQbfpp2baEkt+2wUBkG/Pv1oGNjAyEEji43Io0cyctBI\nRh0zilPrT62KDcA5c+YwZ86cfZZt27aNu+66C2oxYHRGre7BkPTnDBhS9TqcPRg19W6OiBOAocBo\noG9ETKr86bGUUlN5lUmSpPZqKmAAXwM+0u56W5qaAdzV/eVIkqQD6Z7fSmaSUvpoSqnvAZrhQpKk\nKlJTAUOSJNUGA4YkScrOgCFJkrIzYEiSpOwMGJIkKTsDhiRJys6AIUmSsjNgSJKk7AwYkiQpOwOG\nJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIzYEiSpOwMGJIkKTsDhiRJys6AIUmSsjNg\nSJKk7AwYkiQpOwOGJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIzYEiSpOwMGJIkKTsD\nhiRJys6AIUmSsjNgSJKk7AwYkiQpOwOGJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIz\nYEiSpOwMGJIkKbuaChgRMToiro6I1RGxMyIejYhLI6Ku7NokSdJe/couoINOBQL4OLAKmAhcDQwA\nvlBiXZIkqZ2aChgppbnA3HaLnoiIK4CLMWBIklQ1auoQyUEMAbaUXYQkSdqrpgNGRJwCfBr4ftm1\nSJKkvaoiYETEZRHR+hKtJSLG7dfneOBW4IaU0jXlVC5Jkg6kWsZgXAH88GVus7rtHxFxHLAAuCel\n9IlDeYBLLrmEwYMH77Ns9uzZzJ49u4OlSpLU88yZM4c5c+bss2zbtm2dvr9IKR1uTd2qsudiAfAH\n4MPpZVYgIqYAixYtWsSUKVO6o0RJHbB+ZzPXPryVv3rVEEYMqJZtHkkAixcvZurUqQBTU0qLO9K3\npt7NETESuAN4guJXIw0RAUBKaUNphUmSpH3UVMAAZgFjKm1NZVkACehbVlGSJGlfVTHI81CllK5L\nKfXdr/VJKRkuJEmqIjUVMCRJUm0wYEiSpOwMGJIkKTsDhiRJys6AIUmSsjNgSJKk7AwYkiQpOwOG\nJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIzYEiSpOwMGJIkKTsDhiRJys6AIUmSsjNg\nSJKk7AwYkiQpOwOGJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIzYEiSpOwMGJIkKTsD\nhiRJys6AIUmSsjNgSJKk7AwYkiQpOwOGJEnKzoAhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIz\nYEiSpOwMGJIkKTsDhiRJys6AIUmSsqu5gBERv4qIJyNiV0Q8ExHXR8TIsuuqBnPmzCm7hG7hevY8\nS277RdkldIve8py6noIaDBjAAuB9wDjgvcBY4H9LrahK9JYXu+vZ8ywzYPQorqcA+pVdQEellL7d\n7uqaiPgG8MuI6JtSaimrLkmStFct7sF4UUQMBS4C7jVcSJJUPWoyYETENyJiB7AJOAF4T8klSZKk\ndqriEElEXAZ88SVukoDxKaVHKtcvB64GRgP/DPwIeNdB+h4FsGLFijzFVrFt27axePHissvocq5n\nz7JpVzO7dmxn2QOLeaZ/VXwkdZne8py6nj1Hu+/OozraN1JKeavphIg4Fjj2ZW62OqXUfIC+xwNr\ngNellO4/wN8/CPwkS6GSJPVOF6WUftqRDlWxuZBS2gxs7mT3vpXLIw/y97kU4zSeAJ7v5GNIktQb\nHQWcRPFd2iFVsQfjUEXEa4DXAvcAzwKnAF8DhgETU0p7SixPkiRV1Nogz10U5764HVgJ/ABYArzR\ncCFJUvWoqT0YkiSpNtTaHgxJklQDemXAiIgjImJJRLRGxOll15Nbb5mvJSJGR8TVEbE6InZGxKMR\ncWlE1JVdW24R8Y8RcW9ENEXElrLrySUiPhURj1deq7+rjLPqUSLi7Ii4OSKernzmnFt2TblFxJcj\n4vcRsT0iNkTELyNiXNl1dYWIuDgilkbEtkq7LyLeVnZdXany/LZGxJUd6dcrAwbFeTTWUpxfoyfq\nLfO1nAoE8HHg1cAlwMXA18ssqovUATcC3yu7kFwi4kLgmxTnsjkDWArMjYj6UgvLbyDFWLFP0XM/\nc84GvgucCbyF4vU6LyL6l1pV11hDcd6mqZW2APhVRIwvtaouUgn9H6d4f3asb28bgxERbweuAC4A\nHgImp5SWlVtV14qIdwO/BI7s6adUj4jPAxenlE4pu5auEBF/CXwrpTS07FoOV0T8Drg/pfT3letB\n8eH9nZTS5aUW10UiohV4T0rp5rJr6UqVkNgInJNSuqfserpaRGwGPp9S+mHZteQUEYOARcAnga8C\nD6SUPneo/XvVHoyIGA78N/Ahil+k9Hi9cL6WIUCPOYTQU1UOY00FftO2LBVbO7cDryurLmUzhGJv\nTY9+L0ZEn4j4ADAA+G3Z9XSB/wL+L6W0oDOde1XAAH4IXJVSeqDsQrpab5yvJSJOAT4NfL/sWvSy\n6ilOkrdhv+UbgBHdX45yqeyJ+g/gnpTSQ2XX0xUiYmJEPAfsBq4Czk8prSy5rKwqwWky8OXO3kfN\nB4yIuKwy+ORgrSUixkXEZ4GjgX9v61pi2R12qOvZrsvlFC+OmUALxXwtNaET69p2yvhbgRtSSteU\nU3nHdGY9e4Gg545T6C2uohgT9YGyC+lCK4FJFGNOvgdcHxGnlltSPhExiiIkfuhwzjFV82MwDnEe\nk8cpBsjtPyFaX6AZ+ElK6aNdUF42XTlfS7Xp6LpGxHHAQuC+an8e2+vMc9pTxmBUDpHsBC5oPx4h\nIq4FBqeUzi+rtq7U08dgRMR/Au8Gzk4pPVV2Pd0lIuYDj6WUPll2LTlExHnALyg2Tts2xvtShP8W\nivF8LxseqmIuksNxqPOYRMRngK+0W3QcxbnV3w/8vmuqy6eL52upKh1Z10p4WgD8AfhYV9aV22E+\npzUtpbQnIhYBbwZuhhd3rb8Z+E6ZtalzKuHiPGB6bwoXFX2okc/XQ3Q7cNp+y64FVgDfOJRwAT0g\nYByqlNLa9tcjookima1OKT1TTlX5xcHna3mUHjYIKYpze9xBMZHdF4CG4jsKUkr7H9uvaRFxAjAU\nGA30jYhJlT89llJqKq+yw3IlcF0laPye4mfGAyg+yHqMiBhI8T5s2xIcU3n+tqSU1pRXWT4RcRUw\nGzgXaKoMqAfYllLqUZNMRsTXKQ7HrqE47H4RMB2YVWZdOVU+U/YZP1P5ztycUlpx4F5/rtcEjIOo\n7eNDB9Y2X8ulFL+/X0fxZvh6D5yvZRYwptLaPqjbjuH3PVinGvU14CPtri+uXM4A7ur+cg5fSunG\nys8ZvwYMpzhXxFtTShvLrSy7aRSH8FKlfbOy/DpqbK/bS7iYYt3u2G/5R4Hru72arjWcYp1GAtuA\nZcCszv7SooZ0+Puy5sdgSJKk6lPzvyKRJEnVx4AhSZKyM2BIkqTsDBiSJCk7A4YkScrOgCFJkrIz\nYEiSpOwMGJIkKTsDhiRJys6AIakmRMTCiLiy7DokHRpPFS6pJkTEEGBPDU/uJvUqBgxJkpSdh0gk\ndUhE1EfEuoj4Urtlr4uI3REx4yB9pkXEvIjYGBFbI+KOiDij3d+nV/q/vt2yL0bE+ogYVrm+zyGS\niPi7iHgkInZVbndj16yxpM4wYEjqkJTSJoppxv8lIqZExEDgR8B3UkoLD9LtaOBa4PXAmcAjwC2V\nvqSU7gS+Bfw4Io6OiMnAvwB/faDp2yNiGvBt4J+AccBbqdFp66WeykMkkjolIr4LzAT+CEwEXpNS\n2nOIffsAzwKzU0q3VJbVAb8FHqvc390ppU+267MQeCCl9LmIOB+4BhjlmAypOrkHQ1Jn/QPQD/gL\n4IMppT0RcUJEPFdp29sOo0REQ0T8oHJIYyuwDRgInNh2Z5Vw8mHgAuBI4HMv8djzgSeBxyPi+oj4\nYET075K1lNQp/couQFLNGgscR7GhcjLwEPAMMKndbbZULq8HXgF8BngK2A38Djhiv/tsG4MxtNKe\nPtADp5R2RMQU4I3ALIrDKZdGxLSU0vbDWitJWbgHQ1KHVQ5n/Bj4H+CrwDURMSyl1JJSWt2uba10\nOYtijMbclNIKYA9Qv999jgWuBP4GuJ9iXMdBpZRaU0oLUkpfogg1JwFvyreWkg6HezAkdca/AcdQ\n7JHYCbyDYkzEuw9y+0eBD0fEImAwcHmlH/DimIwfAbellK6LiLnAsoj4fErpiv3vLCLeCYyhGNj5\nLPBOIICH86yepMPlHgxJHRIR04HPAh9KKTWlYqT4R4A3RMQnDtLtYxSHSBYD11H8AqSx3d+/QjEe\n4xMAKaX1lX//a0ScXrlN+xHpW4H3Ar+hODTzt8AHKntHJFUBf0UiSZKycw+GJEnKzoAhSZKyM2BI\nkqTsDBiSJCk7A4YkScrOgCFJkrIzYEiSpOwMGJIkKTsDhiRJys6AIUmSsjNgSJKk7AwYkiQpu/8H\neFmmUSe/fvEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f226bd12978>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"% matplotlib inline\n", | |
"\n", | |
"# x,yの範囲\n", | |
"xmin, xmax = -4, 4\n", | |
"ymin, ymax = -3, 3\n", | |
"\n", | |
"# グラフ初期化\n", | |
"def init_graph():\n", | |
" plt.title(u'$y=sin(x), y=cos(x)$')\n", | |
" plt.xlabel('x-axis')\n", | |
" plt.ylabel('y-axis')\n", | |
" plt.xlim(xmin, xmax)\n", | |
" plt.ylim(ymin, ymax)\n", | |
" plt.hlines([0], xmin, xmax, color='skyblue')\n", | |
" plt.vlines([0], ymin, ymax, color='skyblue')\n", | |
"\n", | |
"# 主処理\n", | |
"init_graph()\n", | |
"x = np.arange(xmin, xmax, 0.1)\n", | |
"y_sin = np.sin(x)\n", | |
"y_cos = np.cos(x)\n", | |
"plt.plot(x, y_sin, label='$y=sin(x)$')\n", | |
"plt.plot(x, y_cos, label='$y=cos(x)$')\n", | |
"plt.legend(loc='right')\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# [Jupyter事始め](http://qiita.com/taka4sato/items/2c3397ff34c440044978)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Python codeを入力してみる" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2017/03/05 14:04:37\n", | |
"2017/03/05 14:04:38\n", | |
"2017/03/05 14:04:39\n", | |
"2017/03/05 14:04:40\n", | |
"2017/03/05 14:04:41\n" | |
] | |
} | |
], | |
"source": [ | |
"# libraryのimport\n", | |
"import datetime, time\n", | |
"\n", | |
"# サブ関数をコールして1秒待つことを5回繰り返す\n", | |
"def main():\n", | |
" for count in range(0, 5):\n", | |
" print_current_time()\n", | |
" time.sleep(1)\n", | |
"\n", | |
"# 現在の時刻をprintする\n", | |
"def print_current_time():\n", | |
" print(datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S'))\n", | |
"\n", | |
"# 主処理\n", | |
"if __name__ == '__main__':\n", | |
" main()\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Chartを作成してみる" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[]" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFkCAYAAAB1rtL+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHBtJREFUeJzt3X2wXGWB5/HvDyNh0E2ghgmBVXZ0GTCi5ZgrEHYEx8mM\noKCzLrUjUWpUCksBLerWbMkwQMFAWUthDZdB0LXULeVFLSau5bCwBMFZVgGDJgwyEljdQYNAgpF4\nQwXDW57945wrTee1n3Tfvi/fT1XXvX3Oc57z9HOTPr9+znNOp5SCJElSjb2G3QBJkjR9GSQkSVI1\ng4QkSapmkJAkSdUMEpIkqZpBQpIkVTNISJKkagYJSZJUzSAhSZKqGSQkSVK1noNEkoOTXJtkQ5Kn\nk9yXZHFXmYuTPNau/3aSQ7vW75/k+iTjSTYm+WKSV+zpi5EkSZOrpyCRZD/gTuAZ4HhgEfBXwMaO\nMucAHwc+ChwFbAZWJNm7o6qvttsuBU4EjgM+X/0qJEnSUKSXL+1KcilwTCnlbTsp8xjw6VLKWPt8\nHrAe+GAp5YYki4AfAyOllHvbMscDNwGvKqWsq341kiRpUvV6auPdwA+T3JBkfZLVSU6fWJnkNcBC\n4PaJZaWUTcBK4Jh20RJg40SIaN0GFODoitcgSZKGZE6P5V8LnAH8HfApmgP/lUm2lFKuowkRhWYE\notP6dh3tzyc6V5ZSXkjyZEeZl0jyuzSnUn4GbOmxzZIkzWb7AL8PrCil/KrflfcaJPYC7imlXNA+\nvy/JETTh4rqdbBeagLEzOytzPHB9Lw2VJEkv8QGaOYp91WuQeBxY07VsDfCf2t/X0QSCA3npqMQC\n4N6OMgs6K0jyMmB/th3JmPAzgOuuu45Fixb12GTVGh0dZWxsbNjNmFXs88lnn08++3xyrVmzhlNP\nPRXaY2m/9Rok7gQO71p2OPBzgFLKw0nW0VyN8SP47WTLo4Gr2/J3A/sleXPHPImlNAFk5Q72uwVg\n0aJFLF68eAdF1G/z58+3vyeZfT757PPJZ58PzUCmBvQaJMaAO5OcC9xAExBOBz7SUeYK4PwkP6VJ\nP5cAvwC+BVBKeTDJCuALSc4A9gY+A3zNKzYkSZpeegoSpZQfJnkvcClwAfAwcHYp5esdZS5Lsi/N\nfSH2A74LvLOU8mxHVe8HrqK5WmMrsBw4e09eiCRJmny9jkhQSrkZuHkXZS4CLtrJ+l8Dp/a6b0mS\nNLX4XRvaoWXLlg27CbOOfT757PPJZ5/PLD3d2XJY2u/yWLVq1Son6EiS1IPVq1czMjICzR2lV/e7\nfkckJElSNYOEJEmqZpCQJEnVDBKSJKmaQUKSJFUzSEiSpGoGCUmSVM0gIUmSqhkkJElSNYOEJEmq\nZpCQJEnVDBKSJKmaQUKSJFUzSEiSpGoGCUmSVM0gIUmSqhkkJElSNYOEJEmqZpCQJEnVDBKSJKma\nQUKSJFWbM+wGSJJUa+3atWzYsGEgdR9wwAEccsghA6l7JjFISJKmpbVr13L44YvYsuXpgdS/zz77\n8tBDawwTu2CQkCRNSxs2bGhDxHXAoj7XvoYtW05lw4YNBoldMEhIkqa5RcDiYTdi1jJISFIfec5e\ns41BQpL6xHP2mo0MEpLUJ56z12xkkNB2OTwr7QnP2Wv2MEhoGw7PSpJ2l0FC23B4VpK0uwwS2gmH\nZyVJO2eQ0Izi3A5JmlwGCc0Yzu2QpMlnkNCM4dwOSZp8BgkcDp95nNuhnRvU//k1a9b0vc6ZwP6e\n2WZ9kHA4XJpdBv1/Xi9lf898sz5ITMZw+He/+10WLep33Y52SDUG+3/+ZuCCPtc5vdnf2zeTRsJn\nfZB40SCGwx8H9uLUU0/tc70NRzukPTGI//MOte/Y9OzvQZw+efzxxzn55P/MM8/8pu91w+QfG3oK\nEkkuBC7sWvxgKeX17fq5wOXA+4C5wArgzFLKEx11vBr4b8AfA08B1wB/XUrZWvkaprBfA1tx8p8k\nTTeD/SDYmBnHhpoRiX8BlgJpnz/fse4K4J3AycAm4GrgG8CxAEn2ohmLegxYAhwMXAs8C5xf0ZZp\nwsl/kjS9DPKD4MQpmZlxbKgJEs+XUn7ZvTDJPOA04JRSyh3tsg8Da5IcVUq5BzgeeB3w9lLKBuD+\nJBcAlya5qJTyfHe9kiQNz/Q8JTOZ9qrY5g+SPJrk/yW5rj1VATBCE0xunyhYSnkIWAsc0y5aAtzf\nhogJK4D5wBEVbZEkSUPU64jE94EPAQ8BBwEXAf8nyRuAhcCzpZRNXdusb9fR/ly/nfUT6+7rsT3S\njDCTZnBLml16ChKllBUdT/8lyT3Az4G/ALbsYLMAZXeq31WB0dFR5s+f/5Jly5YtY9myZbtRvaaS\nQcyEnq43p/FeJpL65xbgpcfL8fHxge5xjy7/LKWMJ/m/wKHAbcDeSeZ1jUos4MVRh3XAkV3VHNj+\n7B6p2MbY2BiLF0//iSmz22TMhJ5evLW3pP45ATjvJcfL1atXMzIyMrA97lGQSPJK4N8DXwFW0VzB\nsRT4Zrv+MOAQ4K52k7uBv0lyQMc8iXcA48ADe9IWTReTMRN6upoZM7glzS693kfi08CNNKcz/i3w\ntzTh4eullE1JvgRcnmQjzT0irgTuLKX8oK3iVprAcG2Sc2jmWVwCXFVKea4fL0jThTOhJWkm6HVE\n4lXAV4HfBX4JfA9YUkr5Vbt+FHgBWE5zQ6pbgLMmNi6lbE1yEvA5mlGKzcCX2fYmV5L6aFDzR5zI\nKanXyZY7ndVYSnkG+ET72FGZR4CTetmvpFrepl3SYPldG9KM5m3aJQ2WQUKaFZzIKWkwDBKSpIHd\nFG263t9Fu88gIUmz3KBviqaZzSAxzXmHSA2bV4RMf4O9Kdp0v7+LdsUgMW15h0gNm1eEzDze30W9\nM0hMW94hUsPmFSGSDBIzgJ8gNGxeESLNZgYJqQfOSZlc9rc09RkkpN3inJTJZX/viOFKU41BQtot\nzkmZXPb3tgxXmpoMElJPnJMyuezvFxmuNDUZJCRpWjFcaWrZa9gNkCRJ05dBQpIkVTNISJKkagYJ\nSZJUzSAhSZKqTaurNlauXMmTTz7Z1zp/8pOf9LU+SZJmk2kVJM4888xhN0GSJHWYVkEC/ifwhr7W\nmLybUu7va52SJM0W0yxIHAT8u77WmOxNKX2tUpKkWcPJlpIkqZpBQpIkVTNISJKkagYJSZJUzSAh\nSZKqGSQkSVI1g4QkSapmkJAkSdUMEpIkqZpBQpIkVTNISJKkagYJSZJUzSAhSZKqGSQkSVI1g4Qk\nSapmkJAkSdUMEpIkqZpBQpIkVdujIJHk3CRbk1zesWxukquTbEjyVJLlSRZ0bffqJDcl2ZxkXZLL\nkhhqJEmaZqoP3kmOBD4C3Ne16grgROBk4DjgYOAbHdvtBdwMzAGWAB8EPgRcXNsWSZI0HFVBIskr\ngeuA04FfdyyfB5wGjJZS7iil3At8GPijJEe1xY4HXgd8oJRyfyllBXABcFaSOfUvRZIkTbbaEYmr\ngRtLKd/pWv4WmpGG2ycWlFIeAtYCx7SLlgD3l1I2dGy3ApgPHFHZHkmSNAQ9jwAkOQX4Q5rQ0O1A\n4NlSyqau5euBhe3vC9vn3esn1nWfKpEkSVNUT0Eiyato5kD8WSnluV42BcpulNudMpIkaYrodURi\nBPg9YFWStMteBhyX5OPACcDcJPO6RiUW8OKowzrgyK56D2x/do9UdBmlOQPSaVn7kCRptrsFgNHR\nUebPb46X4+PjA91jr0HiNuCNXcu+DKwBLgUeBZ4DlgLfBEhyGHAIcFdb/m7gb5Ic0DFP4h3AOPDA\nznc/BizuscmSJM0WJwDnMTY2xuLFzfFy9erVjIyMDGyPPQWJUspmug72STYDvyqlrGmffwm4PMlG\n4CngSuDOUsoP2k1ubeu4Nsk5wEHAJcBVPZ4ukSRJQ9aPyy275zWMAi8Ay4G5NOMsZ/22cClbk5wE\nfI5mlGIzzajGhX1oiyRJmkR7HCRKKX/S9fwZ4BPtY0fbPAKctKf7liRJw+VtqSVJUjWDhCRJqmaQ\nkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFC\nkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJ\nklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJ\nUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUrWegkSSjyW5L8l4\n+7gryQkd6+cmuTrJhiRPJVmeZEFXHa9OclOSzUnWJbksiYFGkqRpqNcD+CPAOcBI+/gO8K0ki9r1\nVwAnAicDxwEHA9+Y2LgNDDcDc4AlwAeBDwEXV78CSZI0NHN6KVxKualr0flJzgCWJHkUOA04pZRy\nB0CSDwNrkhxVSrkHOB54HfD2UsoG4P4kFwCXJrmolPL8nr4gSZI0eapPKSTZK8kpwL7A3TQjFHOA\n2yfKlFIeAtYCx7SLlgD3tyFiwgpgPnBEbVskSdJw9BwkkrwhyVPAM8BngfeWUh4EFgLPllI2dW2y\nvl1H+3P9dtbTUUaSJE0TPZ3aaD0IvAnYj2YuxDVJjttJ+QBlN+rdjTKjNIMXnZa1D0mSZrtbABgd\nHWX+/OZ4OT4+PtA99hwk2nkM/9o+XZ3kKOBs4AZg7yTzukYlFvDiqMM64MiuKg9sf3aPVGzHGLC4\n1yZLkjRLnACcx9jYGIsXN8fL1atXMzIyMrA99uOyy72AucAq4Hlg6cSKJIcBhwB3tYvuBt6Y5ICO\n7d8BjAMP9KEtkiRpEvU0IpHkU8D/orkM9N8AHwDeBryjlLIpyZeAy5NsBJ4CrgTuLKX8oK3iVprA\ncG2Sc4CDgEuAq0opz/XjBUmSpMnT66mNA4FraALAOPAjmhDxnXb9KPACsJxmlOIW4KyJjUspW5Oc\nBHyOZpRiM/Bl4ML6lyBJkoal1/tInL6L9c8An2gfOyrzCHBSL/uVJElTk7emliRJ1QwSkiSpmkFC\nkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJ\nklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJ\nUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ\n1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1XoKEknOTXJPkk1J\n1if5ZpLDusrMTXJ1kg1JnkqyPMmCrjKvTnJTks1J1iW5LImhRpKkaabXg/exwGeAo4E/BV4O3Jrk\ndzrKXAGcCJwMHAccDHxjYmUbGG4G5gBLgA8CHwIurnoFkiRpaOb0UriU8q7O50k+BDwBjADfSzIP\nOA04pZRyR1vmw8CaJEeVUu4BjgdeB7y9lLIBuD/JBcClSS4qpTy/py9KkiRNjj09nbAfUIAn2+cj\nNOHk9okCpZSHgLXAMe2iJcD9bYiYsAKYDxyxh+2RJEmTqDpIJAnNaYzvlVIeaBcvBJ4tpWzqKr6+\nXTdRZv121tNRRpIkTQM9ndro8lng9cBbd6NsaEYudmUXZUZpBi46LWsfkiTNdrcAMDo6yvz5zfFy\nfHx8oHusChJJrgLeBRxbSnmsY9U6YO8k87pGJRbw4qjDOuDIrioPbH92j1R0GQMW1zRZkqRZ4ATg\nPMbGxli8uDlerl69mpGRkYHtsedTG22I+HOayZJru1avAp4HlnaUPww4BLirXXQ38MYkB3Rs9w5g\nHHgASZI0bfQ0IpHkszTnEd4DbE4yMZIwXkrZUkrZlORLwOVJNgJPAVcCd5ZSftCWvZUmMFyb5Bzg\nIOAS4KpSynN7/pIkSdJk6fXUxsdo5jH8767lHwauaX8fBV4AlgNzaU7YnDVRsJSyNclJwOdoRik2\nA18GLuyxLZIkach6vY/ELk+FlFKeAT7RPnZU5hHgpF72LUmSph5vSy1JkqoZJCRJUjWDhCRJqmaQ\nkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFC\nkiRVM0hIkqRqBglJklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJ\nklTNICFJkqoZJCRJUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklTNICFJkqoZJCRJ\nUjWDhCRJqmaQkCRJ1QwSkiSpmkFCkiRVM0hIkqRqBglJklSt5yCR5Ngk/5jk0SRbk7xnO2UuTvJY\nkqeTfDvJoV3r909yfZLxJBuTfDHJK/bkhUiSpMlXMyLxCuCfgbOA0r0yyTnAx4GPAkcBm4EVSfbu\nKPZVYBGwFDgROA74fEVbJEnSEM3pdYNSyi3ALQBJsp0iZwOXlFJubMv8JbAe+I/ADUkWAccDI6WU\ne9synwBuSvJfSinrql6JJEmadH2dI5HkNcBC4PaJZaWUTcBK4Jh20RJg40SIaN1GM7pxdD/bI0mS\nBqvfky0X0gSC9V3L17frJso80bmylPIC8GRHGUmSNA1M1lUbYTvzKSrKSJKkKaTnORK7sI4mEBzI\nS0clFgD3dpRZ0LlRkpcB+7PtSEaXUWB+17Jl7UOSpNnuFgBGR0eZP785Xo6Pjw90j30NEqWUh5Os\no7ka40cASebRzH24ui12N7Bfkjd3zJNYShNAVu58D2PA4n42WZKkGeQE4DzGxsZYvLg5Xq5evZqR\nkZGB7bHnINHe7+FQmgM/wGuTvAl4spTyCHAFcH6SnwI/Ay4BfgF8C6CU8mCSFcAXkpwB7A18Bvia\nV2xIkjS91IxIvAX4J5r5DAX4u3b5V4DTSimXJdmX5r4Q+wHfBd5ZSnm2o473A1fRXK2xFVhOc9mo\nJEmaRmruI3EHu5ikWUq5CLhoJ+t/DZza674lSdLU4ndtSJKkagYJSZJUzSAhSZKqGSQkSVI1g4Qk\nSapmkJAkSdUMEpIkqZpBQpIkVTNISJKkagYJSZJUzSAhSZKqGSQkSVI1g4QkSapmkJAkSdUMEpIk\nqZpBQpIkVTNISJKkagYJSZJUzSAhSZKqGSQkSVI1g4QkSapmkJAkSdUMEpIkqZpBQpIkVTNISJKk\nagYJSZJUzSAhSZKqGSQkSVI1g4QkSapmkJAkSdUMEpIkqZpBQpIkVTNISJKkagYJSZJUzSAhSZKq\nGSQkSVI1g4QkSapmkJAkSdUMEpIkqZpBQpIkVTNIaCduGXYDZqGvDbsBs5B9Pvns85lkaEEiyVlJ\nHk7ymyTfT3LksNqiHVkx7AbMQr7BTj77fPLZ5zPJUIJEkvcBfwdcCLwZuA9YkeSAYbRHkiTVGdaI\nxCjw+VLKNaWUB4GPAU8Dpw2pPZIkqcKkB4kkLwdGgNsnlpVSCnAbcMxkt0eSJNWbM4R9HgC8DFjf\ntXw9cPgOttmn+fE/gB/2tTFbtz7R/nYzsKavdcOd07zu9cD1A6p7uvbJoOv+Bf3t85nQJ4Ouu599\nPlP6ZNB196vPZ1Kf9MvDAKxZ82K9Hb/v0+edAZBmMGDyJDkIeBQ4ppSysmP5ZcBbSyn/YTvbvJ/+\nH9EkSZpNPlBK+Wq/Kx3GiMQG4AXgwK7lC9h2lGLCCuADwM+ALQNrmSRJM88+wO8zoEvxJn1EAiDJ\n94GVpZSz2+cB1gJXllI+PekNkiRJVYYxIgFwOfCVJKuAe2iu4tgX+PKQ2iNJkioMJUiUUm5o7xlx\nMc0pjn8Gji+l/HIY7ZEkSXWGcmpDkiTNDH7XhiRJqmaQkCRJ1aZ8kPDLvQYnyblJ7kmyKcn6JN9M\nclhXmblJrk6yIclTSZYnWTCsNs807d9ga5LLO5bZ532W5OAk17Z9+nSS+5Is7ipzcZLH2vXfTnLo\nsNo73SXZK8klSf617c+fJjl/O+Xs80pJjk3yj0kebd9D3rOdMjvt3yT7J7k+yXiSjUm+mOQVvbZl\nSgcJv9xr4I4FPgMcDfwp8HLg1iS/01HmCuBE4GTgOOBg4BuT3M4ZqQ3FH6H5d93JPu+jJPvR3Erw\nGeB4YBHwV8DGjjLnAB8HPgocBWymea/Ze9IbPDP8NU1fngm8Dvgk8MkkH58oYJ/vsVfQXKhwFrDN\nZMfd7N+v0vx/WErznnMc8PmeW1JKmbIP4PvA33c8D829VT857LbNxAfN7cu30txhFGAezZvvezvK\nHN6WOWrY7Z3OD+CVwEPAnwD/BFxunw+sry8F7thFmceA0Y7n84DfAH8x7PZPxwdwI/CFrmXLgWvs\n84H091bgPV3Ldtq/bYDYCry5o8zxwPPAwl72P2VHJPxyr6HYjybZPtk+H6G5RLjzb/AQzc3D/Bvs\nmauBG0sp3+la/hbs8357N/DDJDe0p/BWJzl9YmWS1wALeWmfbwJWYp/XugtYmuQPAJK8Cfgjmi+X\nsM8HbDf7dwmwsZRyb8emt9EcA47uZX/DuiHV7qj5ci9Vau8uegXwvVLKA+3ihcCz7T/ATuvbdaqQ\n5BTgD2lCQ7cDsc/77bXAGTSnST9F8yZ5ZZItpZTraPq1sP33Gvu8zqU0n4AfTPICzWn080opX2/X\n2+eDtTv9uxB4onNlKeWFJE/S499gKgeJHQnbOR+kPfZZ4PXAW3ejrH+DSkleRRPY/qyU8lwvm2Kf\n19oLuKeUckH7/L4kR9CEi+t2sp19Xu99wPuBU4AHaILz3yd5rJRy7U62s88Ha3f6t+e/wZQ9tUHd\nl3upQpKrgHcBf1xKeaxj1Tpg7yTzujbxb1BvBPg9YFWS55I8B7wNODvJszT9Otc+76vH2fa7mtcA\nh7S/r6N58/S9pn8uA/5rKeUfSik/LqVcD4wB57br7fPB2p3+Xdc+/60kLwP2p8e/wZQNEu2ntVU0\ns0mB3w6/L6U5/6Y+aEPEnwNvL6Ws7Vq9imbiTeff4DCaN+C7J62RM8ttwBtpPqG9qX38kOaT8cTv\nz2Gf99OdbHs69HDg5wCllIdp3lQ7+3wezSkQ32vq7Mu2n2q30h5z7PPB2s3+vRvYL8mbOzZdShNA\nVvayv6l+asMv9xqgJJ8FlgHvATYnmUiv46WULaWUTUm+BFyeZCPwFHAlcGcp5Z7htHp6K6Vsphnq\n/a0km4FflVLWtM/t8/4aA+5Mci5wA82b6ek0l95OuAI4P8lPgZ8Bl9BcIfatyW3qjHEjcF6SR4Af\nA4tp3r+/2FHGPt8D7f0eDqU58AO8tp3U+mQp5RF20b+llAeTrAC+kOQMYG+a2wF8rZSyrqfGDPuy\nld24rOXMthN+Q5Og3jLsNs2UB80nhBe28/jLjjJz239cG2gOav8ALBh222fSA/gO7eWf9vnA+vhd\nwI+Ap2kObKdtp8xFNJfMPQ2sAA4ddrun64PmHgeXAw/T3L/gJ8DfAnPs87718dt28B7+33e3f2mu\n1LsOGKe5r8oXgH17bYtf2iVJkqpN2TkSkiRp6jNISJKkagYJSZJUzSAhSZKqGSQkSVI1g4QkSapm\nkJAkSdUMEpIkqZpBQpIkVTNISJKkagYJSZJU7f8DjqzW3pAMdfgAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f228d01a668>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline\n", | |
"\n", | |
"x = np.random.randint(0, 100, 10000)\n", | |
"plt.hist(x, bins=20)\n", | |
"plt.plot()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 数式を入力してみる" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": [ | |
"$$r=\\frac{1}{f}$$\n", | |
"$$\\left(x + y\\right)^{5}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$r=\\frac{1}{f}$$\n", | |
"$$\\left(x + y\\right)^{5}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## コマンドラインを実行してみる" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 77, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Mar 5 13:54:55 UTC 2017\n", | |
"-----\n", | |
"drwxrwxrwx 1 root root 136 Mar 5 12:08 コハル\n", | |
"-rwxrwxrwx 1 root root 47593 Mar 5 13:53 Docker_Jupyter.ipynb\n", | |
"-rwxrwxrwx 1 root root 338 Feb 21 07:24 hello_tensorflow.py\n", | |
"drwxrwxrwx 1 root root 136 Feb 25 19:03 Moeka\n", | |
"-rwxrwxrwx 1 root root 44959 Feb 25 19:12 Python_Libraries.ipynb\n", | |
"drwxrwxrwx 1 root root 68 Mar 3 22:58 tmp\n", | |
"-----\n", | |
"hello, tensorflow!\n", | |
"-----\n", | |
"Sun Mar 5 13:54:58 UTC 2017\n" | |
] | |
} | |
], | |
"source": [ | |
"!date\n", | |
"!echo '-----'\n", | |
"!ls -ald *\n", | |
"!echo '-----'\n", | |
"!python ./hello_tensorflow.py\n", | |
"!echo '-----'\n", | |
"!date" | |
] | |
} | |
], | |
"metadata": { | |
"celltoolbar": "Raw Cell Format", | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment