Created
November 8, 2014 20:39
-
-
Save JonathanReeve/b98cda8bca6ac9084175 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "def PCA(data, dims_rescaled_data=2):\n \"\"\"\n returns: data transformed in 2 dims/columns + regenerated original data\n pass in: data as 2D NumPy array\n \"\"\"\n import numpy as NP\n from scipy import linalg as LA\n m, n = data.shape\n # mean center the data\n data -= data.mean(axis=0)\n # calculate the covariance matrix\n R = NP.cov(data, rowvar=False)\n # calculate eigenvectors & eigenvalues of the covariance matrix\n # use 'eigh' rather than 'eig' since R is symmetric, \n # the performance gain is substantial\n evals, evecs = LA.eigh(R)\n # sort eigenvalue in decreasing order\n idx = NP.argsort(evals)[::-1]\n evecs = evecs[:,idx]\n # sort eigenvectors according to same index\n evals = evals[idx]\n # select the first n eigenvectors (n is desired dimension\n # of rescaled data array, or dims_rescaled_data)\n evecs = evecs[:, :dims_rescaled_data]\n # carry out the transformation on the data using eigenvectors\n # and return the re-scaled data, eigenvalues, and eigenvectors\n return NP.dot(evecs.T, data.T).T, eigenvalues, eigenvectors\n\ndef test_PCA(data, dims_rescaled_data=2):\n '''\n test by attempting to recover original data array from\n the eigenvectors of its covariance matrix & comparing that\n 'recovered' array with the original data\n '''\n _ , _ , eigenvectors = PCA(data, dim_rescaled_data=2)\n data_recovered = NP.dot(eigenvectors, m).T\n data_recovered += data_recovered.mean(axis=0)\n assert NP.allclose(data, data_recovered)\n\n\ndef plot_pca(data):\n from matplotlib import pyplot as MPL\n clr1 = '#2026B2'\n fig = MPL.figure()\n ax1 = fig.add_subplot(111)\n data_resc, data_orig = PCA(data)\n ax1.plot(data_resc[:, 0], data_resc[:, 1], '.', mfc=clr1, mec=clr1)\n MPL.show()", | |
"prompt_number": 4, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "import numpy as NP\ndf='/home/jon/Dropbox/Research/stylometry-experiments/iris.csv' \ndata = NP.loadtxt(df, delimiter=',')", | |
"prompt_number": 14, | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "plot_pca(data)", | |
"prompt_number": 14, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"metadata": {}, | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF3lJREFUeJzt3XuMXNV9wPGvjRdsh6wJgtpgu7VKSAIOpAbkkAcwLSE1\nbgVFCg1IqCGVSJQ0pFVCShyMbIRa0xSaYAVaqoaKogbSBEQdjEtIwmCKEhMCbGjAPFw7BRJewmAb\nSlkb9487Y4bxPO7MfZx773w/0mpnd+/MPbt797fn/M7vnAuSJEmSJEmSJEmSJEmSJElK2bXAs8BD\nXb5eA14GHmi8Lc+nWZKktJwALKJ3oF+TW2skSW8xNYXXuBvY2ueYKSmcR5I0hDQCfT+7gQ8CE8Bt\nwJE5nFOSlLIFdE/dvB2Y2Xh8KvBYHg2SJEWm5XCO7S2P1wFXAwcCL7YedNhhh+3etGlTDs2RpErZ\nBLyz1wF5pG5m82aOfnHj8YvtB23atIndu3cX/m3FihXB21CFNtpO21n0t7K0EzisXxBOo0d/A3AS\ncBDwJLACGGt87RrgY8BngJ3Aq8BZKZxTkhRTGoH+7D5fv6rxJkkKII/UTaXUarXQTeirDG0E25k2\n25musrQzjiLVt+9u5JskSTFNmTIF+sRye/SSVHEGekmqOAO9JFWcgV6SKs5AL0kVZ6CXpIoz0EtS\nxRnoJaniDPSSVHEGekmquDz2o5dysWz5BJu37GD6jGmsvuIYxsfH+j9JGgH26FUZm7fsYMNPX+Su\n9c+x7OKJ0M2RCsNAr8qYPiMaoB591CxWXfq+wK2RisPdK1UZ27ZNsuziCVZd+j7TNhoZcXavNNBL\nUom5TbEkyaobKQQrhJQne/RSAFYIKU8GeikAK4SUJydjpQCsEFJarLqRpIqz6kaSZKCXpKoz0EtS\nxRnoJaniDPSSVHFpBPprgWeBh3ocsxp4HJgAFqVwTklSTGkE+n8GlvT4+lLgncDhwKeAv0/hnJKk\nmNII9HcDW3t8/TTgusbjDcABwOwUzitJiiGPTc3mAk+2fPwUMI8o3SPF5kZg0nDy2r2yfdWWS2AV\nWzPAb3x0Gy9v2xl97uIJrrryuMAtk8ohj0D/NDC/5eN5jc/tZeXKlXse12o1arValu1SSTR3emxy\nIzCNsnq9Tr1eH+g5ae11swD4HnBUh68tBT7XeH888PXG+3budaOOzj1vA3etf46FR45z6KEzuHzV\nItM2UkNem5rdAJwEHESUd18BNP8Kr2m8/wZRZc4rwCeB+zu8joFeHbnTo9Sdu1dKUsXFCfTeSjAF\nVoNIKjK3QEiBt4WTVGQG+hR4WzhJRWaOPgVOFkoKxclYSao4byUoSTLQS1LVGeglqeKso5cScA2F\nysAevZSAayhUBgZ6KQHXUKgMLK+UEij7GgpTT+VnHb2kns465549e/0vXXKIN3MpITc1U2nYs8xX\n8+f92BPbAVNPVWeOXoXgpGa+mj/vrVsnmTN7Otdf+wH/uVaYgV6F4KRmvlp/3rffWjPIV5w5ehVC\nUSc1q5pSKurPW4NzMlYaQmtw37H9dX72wEuAk5UqJidjpSE089cABx+0H2BKSeVmoNdI65Saac1f\nX3Xlcaz66sMdUxyDpnWqmgZS8TkZq5HWqdpn9RXHsHTJIVx/7QeYN3cmV115XMegPGilkJVFCsUe\nvUZap2qf8fGxWLn4QSuFrCxSKE7GaqQlqT4Z9LlWuigLVt1IUsVZdSMJcCJ41DkZK40AJ4JHmz16\nKYay94jjTASfvORHPP/8a0wbm8qam05k3tyZeTZRGbJHn8Cy5ROcdc49nHveBrZtmwzdHGWo7D3i\n1pLRbv+knn/+Nbbv2MXWrZOcefY9ObdQWbJHn0DrCsplF0+4PL7C4vSIi9zrj1MyOm1sKrCLGTOm\n8p0bPpRPw5SLNHr0S4CNwOPAhR2+XgNeBh5ovC1P4ZyFYF306IjTIw7R609zVLnmphOZM3s631/7\nu3ulbRy9llvS8sp9gEeBjwBPAz8FzgYeaTmmBnwBOK3Pa5WuvNK6aLU697wN3LX+OY4+alZu+7vn\ndYco70RVXHHKK5P26BcDTwBbgEngRuD0Tm1JeJ5Cag6HDfKCeL3+tOU1qnT0Wm5JA/DHgN8Hzmt8\nfA7wfuD8lmNOAm4GniLq9V8APNzhtYL16IucW1V55XFd5TWqjHMe/47CyGPBVJzIfD8wH3gVOBW4\nBXhXpwNXrly553GtVqNWqyVsXjxxJ1W9kDWIPK6ruPvyJBXnPBYn5KNer1Ov1wd6TtJA/zRREG+a\nT9Rzb7W95fE64GrgQODF9hdrDfR5ijss9ULWIEbtujK9k4/2TvAll1zS9zlJc/T3AYcDC4B9gY8D\na9qOmc2bw4rFjcd7BfmQ4uZWvZA1iFG7rkLMUSieNCZJTwW+TlSB801gFfDpxteuAf4M+Aywkyh9\n8wXgJx1ep/BVN1bZKAteV0rC3SslqeLcvVIqkZCT/RYaVJt73UgpSGPlaMj9dMq+l496M9BLKUgj\nUIaclK3KhLA6M9BLKUgjUIasWul2bve4qQYnYzUyssxDZ105EyqH7h43xedkrNQiy4VJrStHkwTl\nbs8NtajKlE41mLoZgMPYcssraCXJ13d7bqiA6yKoajB1MwCHseWWZXqltSe+c/IN7vnxC0NtV9xt\nq+O02245ZXW4YCplcfcb94+o+tp/x5/67L17OgGnnDybsbGpQwXlvFbJ2mmpDnP0KVt9xTGx/gir\nskmVumv/HbemVi6/bNHQQTqv3SjNvY8WA/0A4v4R+kdUfZ1+x506AUUd3bV3WoraTqXD1E0G3KSq\n+tp/x90CZVlSJGVpp/Zm6iaQvIbfSscwvdn233G3dF1ZRndlaaeGY3llRizFLI8sty8oS3likdvp\n31Jypm5S1Noz3LFjkp/dvxVwKFx0caupejFdlx3TSr1ZXpmTZoDf+Nh2Xn456nEcfNC+PP/C64mC\nh/KRRZAe1cnNYb/vXs9L4x9xlcUJ9KZuUtAc+jeD/NFHzeLmfzuhsENhvVUz357m76ls2/6mlR4Z\n5vtetnyCteue7vq8IqeVysLJ2BQ087MLjxzn0ENm7Kmjbh1iNnssv3zyVeYeOoP99x8bqZ7eqCnb\n5GZaaz+G+b43b9nB9h27AJg1PrbX8yxuSM5An4I4C6la/5CeeeY1wMVUVRZ3cV0SaaZJ0vrH1Ov7\n7tbe5rlnjU/j1ltOtPOTAXP0GWm/qD//xfu5a/1z7L//NHbs2Gm+UQPpFCTjTlL22q6h+bw8JpO7\ntdeJ7GTM0QfUnqts5hnXrTnJfKMG1in3HbcX3v7cTs/LYp6iXbf25nHuUWfqJoFeQ+f2i7o1z5jG\nvuUaLZ2CZNz0UNztGpqyui7zSGepM1M3CfQaOscZjlofrLh6XU/9AvOgqRGvy3JxC4SM9Ro6N3vw\nRx+7jlde3cnUqVNYc/MJHPHuWbGeL7XqVXnSr2Km03MHGY2q/MzRJxCnvveVV3fyxhuwc+duzjjz\nPwd+vqopzWX9w5Y0Wrc+OkzdpKRbD+nwhbeyc+dupkyBtf9+4lt69BpdaaZHuqVmXG06Gqy6yVG3\nHtKam09gv/2mGuRHUK9ee5rpkW5VK/ba1WSgT0m3P9wj3j2LjT//A4P8CAodaOPMIRnkR0MagX4J\nsBF4HLiwyzGrG1+fABalcM7CsYekdqEDbZWuSbcqTiZpjn4f4FHgI8DTwE+Bs4FHWo5ZCnyu8f79\nwJXA8R1eq9Q5+rRZY19+Wa34HMVrw5LP7vLI0S8GngC2AJPAjcDpbcecBlzXeLwBOACYnfC8lVe2\n3Q+1t6x67aN4bfSb07DH31vSQD8XeLLl46can+t3zLyE5608a5nVzSheG/3SUKP4z28QSRdMxc21\ntA8rOj5v5cqVex7XajVqtdpQjaoCl4urm1G8NvptVTxK//zq9Tr1en2g5yTN0R8PrCSakAVYBrwB\n/E3LMf8A1InSOhBN3J4EPNv2WpXP0Y9iblXxeX0Mb5R3wMwjR38fcDiwANgX+Diwpu2YNcCfNB4f\nD7zE3kF+JDi8VC9Vvj6yzqFbLtpb0tTNTqKKmtuJKnC+SVRx8+nG168BbiOquHkCeAX4ZMJzltYo\nDS81uCpeH53up+wNd/LnFgg5GuXhpfqr4vXRWhYJuOVCBuKkbgz0CZlXVRHlfV12O19zT532+ykr\nPe51k4Mq51VVXnlfl93O1yyL/NZ1H+Qfr15skA/E/egTyjqv6ohBw8g739/vNoEKy9RNQknu/BOH\nS781jLzz/d3Od/KSH/H8868xbWwqa246kXlzZ2bellFjjj6wuEHafcNVVUcfexvbd+wCYM7s6fx4\n/SmBW1Q93kpwAFmkSOIOn3vdCm4UV0GqOim7aWNTgV3MmDGV79zwoa7HVeX7LSonYxuymLyKu01s\n6O1sVTxVmeRfc9OJzJk9ne+v/d2eaZuqfL9FZY++IYvJq9aJqF49FnvtaleVxVPz5s6Mla6pyvdb\nVOboG7KevHJSVYOo0uKpOGmZrIsaqszJ2AKJM6nqBa1uynxtJO3k2EnqzQVTBRInX2+eUt2U+dqI\nm5bptvGZaZ3kDPQ5iTOp6gWtbpIGy5DiFiX0W11refHwTN3krNcQvEp5WaUr7rUxaJpj2JRQFqkk\n14wMxxx9AZlvVJYGDZbDXo9ZXMd2dN4q7j9Tc/QB9Bs6m55RlgZNc8S5Hjtd01mWIxvkI2nOy9ij\nT1m/no69FuUhbm8wzvXY6Zou4nVc5sqkTuKOzkzdBGCeUUWQZmqlLNd01dKicf+ZmroJwAoBFUGa\nqZWiXdOjUoaZZirLHn3Gli2f4Id3PsNLL08yY/o+HPXeA7h6tXlIJTeqFVzdeu5V/p57MXUTUKeb\nIjdVYVipsJYtn2Dtuqf3bAFcxWuq3+0Ji55Kyoupm4CaM+btQX7hkeOVGFYqrM1bduwJ8rPGp1Xy\nmkqygGqYhWNFXGyWFnevzEgzX7jwyHEOPmg/mAJjY1O5fJU3R1Zyzetr1vgYt95yYiWvqSS3J+x1\nj4c0n1MWBvqM9Np6uGplYMpfVba2Hnb77n5/Q3HXB7S+RtUmc1uZow+gamVg0rCyWpk7zPqAVZe+\nr5T/PL2VYEENskGVPX9V2bC96H7Pi5PeaX+NOM8pK3v0AXTrbbQH9k999l57/kpNqI5DFmWgaZRS\nVqUc0/LKkmkfSr7y6i7LyJSaUClDU5XZMnVTYJ16OZ2Go+09DtM5GlaoycYqT3KWRZIe/YHAt4Hf\nArYAfwy81OG4LcA2YBcwCSzu8noj1aMfdqMoe0caVqhURVVSJEll1UnLOnXzVeCFxvsLgXcAX+5w\n3GbgWODFPq83UoF+2NV9rgpU0yiO7sr8PWfVSct6ZexpwHWNx9cBf9SrLQnOU0nDbhRVtA2mFE6Z\n7yM7rDJ/zyFTWEkC/Wzg2cbjZxsfd7Ib+AFwH3BegvNVyrA703lzBjWNYu67zN9zyE5av572HcCc\nDp+/iKgX/46Wz71IlLdvdwjwa+DgxuudD9zd4bjdK1as2PNBrVajVqv1aV55lXkIqmLIKvdd5GvT\nfD/U63Xq9fqejy+55BLIMEe/EagBzxAF8zuB9/R5zgpgB3BFh6+NRI5+z66Wj27j5W07ASdVVSxO\n+JdL1jn6NcAnGo8/AdzS4ZiZwNsbj98GfBR4KME5S2/PrpaNIF/GIaiqrczpEXWWJNBfBpwCPAb8\nXuNjgEOBtY3Hc4jSNA8CG4Bbge8nOGfpte5qecpHZjupqsJxwj+5om15XKRqmJFI3ZhjlLIXep4h\nz/SXNx4pIKtmpOyFLsMsWvrLQB9I0YZ2UpWEDrRFS3+ZusmJO1NK+RmlFKm7VxaIO1NKyoK7VxZI\nnJ0pJSkL9uhzMkpDSUn5MXVTcKFLwCSVn+WVBRe6BEzSaDBHH1DoEjCNLkeT8VXhZ2WPPqCi1dpq\ndDiajK8KPyt79AE1V8lKeXM0GV8VflZOxkojyCqw+Ir+s7LqRpIqzgVTFVGFySBJ4TgZWwJVmAyS\nFI49+hKowmSQVGRVHzXboy8ByzClbFV91GyPvgQsw5SyVfVRs1U3OVi2fIIf3vkMr0/u5r0LZ3G1\nd5iSCqXoJZS9WF5ZEK170YM3GpGUHjc1K4jmsBBg4ZHjlRwaSioue/Q52LZtkguWPQC74fLLFpVu\naCipuEzdSFLFuTK2gqpe7yspfeboS6bq9b6S0megL5mq1/tKSp85+pIpc72vpPQ5GStJFZd1Hf2Z\nwC+AXcAxPY5bAmwEHgcuTHA+SdIQkgT6h4AzgPU9jtkH+AZRsD8SOBs4IsE5JUkDSlJeuTHGMYuB\nJ4AtjY9vBE4HHklwXknSALKuupkLPNny8VONz0mSctKvR38HMKfD578CfC/G6zu7KkmB9Qv0pyR8\n/aeB+S0fzyfq1Xe0cuXKPY9rtRq1Wi3h6SWpWur1OvV6faDnpFFeeSdwAfCzDl+bBjwKnAz8CriX\naEK2U47e8kpJGlDW5ZVnEOXfjwfWAusanz+08THATuBzwO3Aw8C3cSJWknLlgilJKjFvPCJJMtBL\nUtW5H32O3EteUgj26HPkXvKSQjDQ58i95CWFYNVNjtxLXlLa3I9ekirOm4NLUgGELsQwR5+DZcsn\nOOucezj3vA1s2zYZujmScha6EMNAn4PQv2RJYYUuxDDQ5yD0L1lSWKuvOIalSw7h+ms/EKQQw8nY\nHFhtIykrVt1IUsW5qZkkyUAvSVVnoJekijPQS1LFGeglqeIM9JJUcQZ6Sao4NzUrmNCbH0mqHnv0\nBeO+OJLSZo++YNwXRyqHMo2+7dEXTOjNjyTFU6bRtz36ghkfH+OqK48L3QxJfZRp9O2mZpI0hKLs\nSuvulZJUce5eKUlKFOjPBH4B7AKO6XHcFuDnwAPAvQnOJ0kaQpJA/xBwBrC+z3G7gRqwCFic4HyF\nUK/XQzehrzK0EWxn2mxnusrSzjiSBPqNwGMxjy3SXEAiZfjll6GNYDvTZjvTVZZ2xpFHjn438APg\nPuC8HM4nSWrRr47+DmBOh89/BfhezHN8CPg1cHDj9TYCd8dtoCQpmTRSKncCXwTuj3HsCmAHcEWH\nrz0BHJZCeyRplGwC3tnrgLRWxnb7hzET2AfYDrwN+ChwSZdjezZUkpS/M4Angf8FngHWNT5/KLC2\n8fi3gQcbb/8FLMu5jZIkSZLy9kXgDeDA0A3p4lJggmiU8kNgftjmdPW3wCNEbb0ZmBW2OV3FXXgX\nyhKiAoLHgQsDt6Wba4Fnida2FNl8ojm9XxCN8D8ftjkdTQc2EP19PwysCtucvvYhWowatzimEOYD\n/wFspriB/u0tj88H/ilUQ/o4hTfLZy9rvBXRe4B3EQWAogX6fYiKBBYAY0R//EeEbFAXJxAtSCx6\noJ8D/E7j8f7AoxTz5zmz8X4a8BPgwwHb0s8XgH8F1vQ6qGh73fwd8JehG9HH9pbH+wMvhGpIH3cQ\njYwg6qHMC9iWXgZZeJe3xUSBfgswCdwInB6yQV3cDWwN3YgYniH6ZwlR9d0jRHN6RfNq4/2+RP/s\nXwzYll7mAUuJOpul2dTsdOApon1xiu6vgP8BPkFxe8qt/hS4LXQjSmguUcFB01ONzym5BUSjkA2B\n29HJVKJ/SM8SjTQfDtucrr4GfIk3O3Rd5X3jkW4LsC4iqsj5aMvnQm6b0G+h2EWNty8T/bA/mV/T\n3iLOgraLgNeBb+XVqA7SWHgXgvtmZ2N/4LvAnxP17IvmDaIU0yzgdqK9uuoB29PJHwLPEeXna2Gb\nEt97if57bm68TRINl38jYJvi+E2iSaWiOhe4h2iCqeiKmKM/nmjOqGkZxZ2QXUDxc/QQzXXcDvxF\n6IbEdDFwQehGdPDXRKPNzUQ7D7wC/EvQFg2hyJOxh7c8Ph+4PlRD+lhCVN1wUOiGxHQncGzoRrSZ\nRrTqcAFRvraok7FQjkA/hSgYfS10Q3o4CDig8XgG0e68J4drTiwnUeyRcVf/TXED/XeJ/qAeBG6i\nuKOOx4FfEg3tHgCuDtucrrotvCuKU4mqQ56guAv+bgB+Bfwf0c8yVCqxnw8TpUUe5M3rcknQFu3t\nKKLtXB4kmi/8UtjmxHISfapuJEmSJEmSJEmSJEmSJEmSJEmSJKky/h9/iNWzzLPTIwAAAABJRU5E\nrkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x7f1dd01d3780>" | |
} | |
], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
} | |
], | |
"metadata": {} | |
} | |
], | |
"metadata": { | |
"name": "", | |
"signature": "sha256:d16cc6d843b854f2a4de784d6550ee2412a461cb76dba931f85ab70c70017633" | |
}, | |
"nbformat": 3 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment