Created
October 18, 2021 15:00
-
-
Save JoshCheek/b167089de1cb8f89bdfb641958cbbb32 to your computer and use it in GitHub Desktop.
Making sense of floating point format + Q_sqrt from the Quake source
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #include <stdio.h> | |
| /* | |
| ruby -e ' | |
| n = 0x5f3759df.to_s(2) | |
| n = "0 10000010 01011".ljust(32, "0").delete(" ") | |
| n = "0 01000001 00010000000000000000000" | |
| n = "0 10111110 01101110101100111011111" | |
| n = n.ljust(32, "0").delete(" ") | |
| sign = (-1) ** n[0].to_i | |
| exponent = n[1,8].to_i(2)-127 | |
| mantissa = 1 + n[9..].chars.each.with_index(1).map { |bit, exp| bit.to_f / (2**exp) }.sum | |
| result = sign * (mantissa * (1 << exponent)) | |
| formatted= "#{n[0]} #{n[1,8]} #{n[9..]}" | |
| pp n: n, sign: sign, exponent: exponent, | |
| mantissa: mantissa, result: result, formatted: formatted' | |
| {:n=>"01011111001101110101100111011111", | |
| :sign=>1, | |
| :exponent=>63, | |
| :mantissa=>1.4324301481246948, | |
| :result=>1.3211836172961055e+19, | |
| :formatted=>"0 10111110 01101110101100111011111"} | |
| */ | |
| void show_binary(char* desc, int32_t n) { | |
| int i = n; | |
| float f = * (float*) &n; | |
| char buffer[35]; | |
| for(int i = 0; i < 35; ++i) buffer[i] = ' '; | |
| buffer[34] = '\0'; | |
| // mantis, 23 bits | |
| for(int i = 0; i < 23; ++i) { | |
| buffer[33-i] = '0' + (n & 1); | |
| n >>= 1; | |
| } | |
| // exponent, 8 bits | |
| for(int i = 0; i < 8; ++i) { | |
| buffer[9-i] = '0' + (n & 1); | |
| n >>= 1; | |
| } | |
| // sign, 1 bit | |
| buffer[0] = '0'+n; | |
| printf("%s | %s (int: %d, float: %f)\n", desc, buffer, i, f); | |
| } | |
| // reciprocal sqrt | |
| float Q_rsqrt(float number) { | |
| long i; | |
| float x2, y; | |
| const float threehalfs = 1.5F; | |
| x2 = number * 0.5F; | |
| y = number; | |
| i = * (long*) &y; | |
| i = 0x5f3759df - (i>>1); | |
| y = * (float*) &i; | |
| y = y * (threehalfs - (x2*y*y)); | |
| return y; | |
| } | |
| int main() { | |
| /* printf("%d: %f\n", 9, Q_sqrt(9)); */ | |
| const float number = 9; | |
| /* float number = 3; */ | |
| /* 9 | 0 10000010 00100000000000000000000 */ | |
| /* 3 | 0 10000000 10000000000000000000000 */ | |
| int32_t i = * (long*) &number; | |
| show_binary("pre ", i); | |
| show_binary("shft", (i>>1)); | |
| /* pre | 0 10000010 00100000000000000000000 (int: 1091567616, float: 9.000000) */ | |
| /* shft | 0 01000001 00010000000000000000000 (int: 545783808, float: 0.000000) */ | |
| i = 0x5f3759df - (i>>1); | |
| show_binary("C ", 0x5f3759df); | |
| show_binary("post", i); | |
| /* C | 0 10111110 01101110101100111011111 (int: 1597463007, float: 13211836172961054720.000000) */ | |
| /* post | 0 01111101 01011110101100111011111 (int: 1051679199, float: 0.342483) */ | |
| float y = * (float*) &i; // y = C - (number/2) | |
| y = y * (1.5F - (number*0.5F*y*y)); | |
| // (C-n/2) * (3/2 - n/2 * (C-n/2) * (C-n/2)) | |
| // (C-n/2) * (3/2 - n/2 * (CC - Cn/2 - Cn/2 + nn/4)) | |
| // (C-n/2) * (3/2 - n/2 * (CC - 2Cn/2 + nn/4)) | |
| // (C-n/2) * (3/2 - n/2 * (CC - Cn + nn/4)) | |
| // (C-n/2) * (3/2 - nCC/2 - nnC/2 + nnn/8) | |
| // (C-n/2) * (3 - nCC - nnC + nnn/4) * 1/2 | |
| printf("%f\n", y); | |
| printf("%f\n", Q_rsqrt(number)); | |
| /* show_binary( */ | |
| /* return y; */ | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment