Skip to content

Instantly share code, notes, and snippets.

View Jutho's full-sized avatar

Jutho Jutho

  • Ghent, Belgium
  • 12:45 (UTC +01:00)
View GitHub Profile
; Function rec_diff
%2 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 1
%3 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 0
%4 = load i64, i64 addrspace(11)* %3, align 8
%5 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 5
%6 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 9
%7 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 13
%8 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 17
%9 = getelementptr [20 x i64], [20 x i64] addrspace(11)* %1, i64 0, i64 18
%10 = bitcast i64 addrspace(11)* %2 to <4 x i64> addrspace(11)*
@Jutho
Jutho / hessenbergschur.jl
Created September 7, 2018 08:56
Julia implementation of QR algorithm
import Base.LinAlg: SingularException, checksquare
# QR ALGORITHM:
# Compute Schur form of a Hessenberg matrix
# Givens transform the upper right corner of a matrix.
function transform!(H::AbstractMatrix, U, G::Givens, imax::Int = size(H,1), jmin::Int = 1)
lmul!(H, G, jmin:size(H,2))
rmulc!(H, G, 1:imax)
rmulc!(U, G)
@Jutho
Jutho / hptt.log
Created September 29, 2017 23:08
Errors building latest hptt
src/transpose.cpp:383:39: error: assigning to 'float' from incompatible type
'complex<float>'
B[i + j * ldb] = alpha * std::conj(A[i * lda + j]);
~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
src/transpose.cpp:676:13: note: in instantiation of function template
specialization 'hptt::macro_kernel_scalar<1, float, true>' requested here
macro_kernel_scalar<betaIsZero,floatType, conjA>(&A[i*lda], ...
^
src/transpose.cpp:842:16: note: in instantiation of function template
specialization 'hptt::transpose_int<32, 32, 1, float, false, true>'
@Jutho
Jutho / productiterator.jl
Last active November 28, 2016 23:49
A type stable product iterator
import Base: start, next, done, size, length, eltype, iteratorsize, iteratoreltype, first, last
using Base: tail, IteratorEltype, HasEltype, EltypeUnknown, IteratorSize, HasShape, HasLength, IsInfinite, SizeUnknown
immutable ProductIterator{T<:Tuple}
iterators::T
end
ProductIterator(iterators...) = ProductIterator(iterators)
iteratorsize(P::ProductIterator) = _itsize(P.iterators)
@inline _itsize(::Tuple{}) = HasShape()

Preliminary notes:

  • Abstract is left out of the type names for conciseness
  • We need a Covector (or alternative name) type for theoretical reasons, i.e. to make dispatch able to distinguish between all of the following operations and to have methods with a different return type for these different operations.
  • We need a LazyTranspose type (and Covector) for computational efficiency, i.e. to link with BLAS, to replace the current Ac_mul_Bt etc family.
  • Alternatives with ? ... ? are not very likely, just to point out the possibility.

Given vectors v and w, linear maps with matrix representation A and B, and a covector z

abstract operation julia ascii julia method possible alternative or unicode equivalent
function analyzeconvert()
methodlist = methods(convert,Tuple{Type,Number})
dict = Dict{DataType,Vector{Any}}()
for m in methodlist
to = m.sig.parameters[1].parameters[1]
from = m.sig.parameters[2]
TT = isa(to,Union) ? to.types : Base.svec(to)
TF = isa(from,Union) ? from.types : Base.svec(from)
@Jutho
Jutho / cartesianiteration
Created November 19, 2014 17:53
Cartesian Iteration with correction for N=0
### Multidimensional iterators
module IteratorsMD
import Base: start, _start, done, next, getindex, setindex!, linearindexing
import Base: @nref, @ncall, @nif, @nexprs, LinearFast, LinearSlow
export eachindex
# Traits for linear indexing
linearindexing(::BitArray) = LinearFast()
@Jutho
Jutho / gist:832f3f4aee84cf927a53
Last active August 29, 2015 14:09
Cartesian indexing and iteration
import Base: start, done, next, getindex, setindex!
import Base: @nref, @ncall, @nif, @nexprs
export eachelement, eachindex, linearindexing, LinearFast
# Traits for linear indexing
abstract LinearIndexing
immutable LinearFast <: LinearIndexing end
immutable LinearSlow <: LinearIndexing end
@Jutho
Jutho / stagedpermutedims.jl
Created November 4, 2014 22:24
A staged function approach to permutedims!
using Base.Cartesian
function permutedimsnew!{T1,T2,N}(P::StridedArray{T1,N},B::StridedArray{T2,N},perm)
length(perm) == N || error("expected permutation of size $N, but length(perm)=$(length(perm))")
isperm(perm) || error("input is not a permutation")
dims = size(P)
for i = 1:N
dims[i] == size(B,perm[i]) || throw(DimensionMismatch("destination tensor of incorrect size"))
end
stridesB = strides(B)[perm]
stridesP = strides(P)
@Jutho
Jutho / permutedims
Created April 28, 2014 16:43
recursive permutedims benchmark
{
"metadata": {
"language": "Julia",
"name": "permutebench"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [